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Abstract Natural-killer group 2 member D (NKG2D) is an
activating receptor that plays an important role in the immune
response mediated by NK cells, v T cells, and CD§8" T
cells. In humans, MHC class I chain-related genes and UL-
16 binding protein (ULBP)/retinoic acid early transcript 1
(REAT1) gene family encode ligands for NKG2D. The
rhesus and crab-eating macaques, which belong to the Old
World monkeys, are widely used as non-human primate
models in medical researches on the immunological process.
In the present study, we investigated the polymorphisms of
ULBP4/RAETIE, a member of the ULBP/RAET family, and
found 25 and 14 alleles from the rhesus and crab-eating
macaques, respectively, of which diversities were far more
extended than in humans. A phylogenetic study suggested
that the allelic diversification of ULBP4/RAETIE predated
the divergence of rhesus and crab-eating macaques.
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Introduction

Non-human primates, such as rhesus and crab-eating macaques,
are important animal models for the study of infectious diseases,
autoimmune diseases, and organ transplantation. These mac-
aques are members of the Old World monkeys, and it has been
reported that the genetic diversity in the rthesus macaque is quite
unique, that is, more than 60% of the rhesus macaque-specific
expansions are found in the protein coding sequences (Gibbs et
al. 2007). To evaluate the results of immunological experi-
ments in the macaque models, it is essential to characterize the
genetic diversity of immune-related molecules which may
control the individual differences in the immune response
against foreign antigens and/or pathogens. It has been reported
that the gene copy number in the major histocompatibility
complex (MHC) loci in the rhesus and crab-eating macaques
is higher than that in humans (Kulski et al. 2004; Gibbs et al.
2007; Otting et al. 2007). In addition, the extent of genetic
diversity differed, in part, depending on the geographic areas,
and we have reported that the diversity of MHC class I genes
in the rhesus macaque is considerably different depending on
habitat (Naruse et al. 2010).

Because the innate immune system is involved in the
response to environmental pathogens, it is necessary to
consider the function of natural killer (NK) cells in the
experimental animal models. Natural-killer group 2 mem-
ber D (NKG2D), a C-type lectin molecule, is an activating
receptor expressed on the cell surface of NK, y8", and
CD8" T cells, which plays an important role in the immune
response (Wu et al. 1999; Raulet 2003). In humans, MHC
class I chain-related genes (MIC) and UL-16 binding
protein (ULBP)/retinoic acid early transcript 1 (REAT1)
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gene family are known to encode ligands for NKG2D
(Bauer et al. 1999; Cosman et al. 2001; Chalupny et al.
2003; Bacon et al. 2004). These ligand molecules are
usually stress-inducible, and their recognition by NKG2D
can lead to the activation of NK cells, consequently killing
virus-infected and tumor cells (Pende et al. 2002; Eagle et
al. 2006; Pappworth et al. 2007; Ward et al. 2007).

The human ULBP/RAETI gene family is located on
chromosome 6G24.2, which is composed of ten members
including six functional genes, ULBPI, 2, 3, 4, 5, and 6,
corresponding to RAETII, H, N, E, G, and L, respectively
(Radosavljevic et al. 2001; Chalupny et al. 2003; Eagle et
al. 20093, b). In addition, several sequence polymorphisms
in each ULBP gene have been identified (Romphruk et al.
2009; Antoun et al. 2010). Although it is evident that the
cell surface expression of the ligand molecules on target
cells is differentially regulated (Eagle et al. 2006), genetic
polymorphisms in the coding regions might have a
functional impact. We have previously investigated the
genetic polymorphisms of ULBP/RAETI genes and have
found that the ULBP4/RAETIE gene is the most poly-
morphic, with the allelic distribution differing among ethnic
groups (Romphruk et al. 2009).

On the other hand, rhesus macaque ULBP4/RAETIE
(GenBank: NW_001116520) is mapped on the long arm of
chromosome 4 (i.e., positions from 31, 164, 822 to 31, 175,
032 of chromosome 4 in the rhesus genome; data obtained
from the UCSC Genome Browser at http://genome.ucsc.edu/
cgi-bin‘hgGateway; Gibbs et al. 2007). However, its genetic
polymorphisms are poorly characterized, although the MIC
gene polymorphisms are well studied in the rhesus macaque
(Seo et al. 1999, 2001; Doxiadis et al. 2007; Averdam et al.
2007). In the present study, we investigated the polymor-
phisms of ULBP4/RAETIE in rhesus and crab-eating
macaques. This is the first report demonstrating the extreme
diversity of the NKG2D ligand in the Old World monkey.

Materials and methods
Animals

A total of 38 rhesus macaques from seven lineages
previously analyzed for the MHC polymorphisms (Naruse
et al. 2010) and 24 crab-eating macaques from five lineages
were the subjects. They were maintained in the breeding
colonies in Japan. The founders of the rhesus macaque
colonies were captured in Myanmar and Laos, whereas the
founders of crab-eating macaque colonies were captured in
Indonesia, Malaysia, and the Philippines. All care, includ-
ing blood sampling of animals, were in accordance with the
guidelines for the Care and Use of Laboratory Animals
published by the National Institutes of Health (NIH
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publication 85-23, revised 1985) and were subjected to
prior approval by the local animal protection authority.

DNA extraction and sequencing analysis

Genomic DNAs from B lymphoblastoid cell lines of the rhesus
macaque (Naruse et al. 2010) and from whole blood sample of
the crab-eating macaque were extracted by using the
QuickGene DNA kit (Fujifilm, Tokyo, Japan) according to
the manufacturer’s instructions. The genomic gene for
ULBP4/RAETIE of rhesus and crab-eating macaques was
amplified by polymerase chain reaction (PCR) with a primer
pair designed for the region spanning from introns 1 to 3 of
the rhesus gene (NCO007861), ULBP4F (5'-
TGGGCCTCTTCCCCTGTCC) and ULBP4R (5'-
GTGGGAGGTGGGATGGG), using FastStart Taq DNA
polymerase (Roche, Mannheim, Germany). The PCR condi-
tion was composed of the following steps: denaturation at -
95°C for 4 min; 30 cycles of 95°C for 30 s, 63°C for 30 s,
and 72°C for 45 s; and additional extension at 72°C for 7 min.
The PCR products of about 1,200 bp in length were cloned into
pSTBlue-1 AccepTer vector (Novagen, W1, USA) according
to the manufacturer’s instructions and were transformed to
Nova Blue Single™ competent cells (Merck4Biosciences
Japan, Tokyo, Japan). Ten to 20 independent transformant
colonies were picked up for each sample and subjected to
sequencing on both strands by using a BigDye Terminator
cycling system and an ABI 3730 automated sequence
analyzer (Applied Biosystems, CA, USA).

Data analyses

Nucleotide sequences of ULBP4/RAETIE from cloned
DNAs were aligned using the Genetyx software package
(version 8.0, Genetyx Corp., Japan). If at least three clones
from independent PCR or from different individuals
showed identical sequences, the sequences were submitted
to the DNA Data Bank of Japan (DDBJ). Neighbor-joining
trees were constructed with Kimura’s 2-parameter method
for a phylogenetic analysis of ULBP4/RAETIE sequences
spanning from exons 2 to 3 including intron 2 by using the
Genetyx software. Bootstrap values were based on 5,000
replications. The ULBP4/RAETIE sequences from humans
(GenBank accession number AY252119), chimpanzees
(AY032638), and rhesus (NC007861) were included in
the analysis as references.

Structure model analysis

A three-dimensional (3-D) structure model of rhesus
ULBP4/RAET1E, with amino acid positions from 1 to
178, was created by a molecular visualization software
RasTop2.2 (http://sourceforge.net/projects/rastop/), and the
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human RAETIB in complex with NKG2D (Radaev et al.
2001) from the Molecular Modeling Database (MMCB No.
18231) was used as the reference. Polymorphic sites were

mapped on the 3-D structure model of macaque RAETIE
by using the Cn3D 4.1 program (http://www.ncbinlm.nih.
gov/Structure/CN3D/cn3d.shtml).

Table 1 Identified alleles of the ULBP4 gene in rhesus and cynomolgus

Species

Allele name

Accession no. Reference animal

Identical
sequence

Rhesus macaque Mamu- AB568525 R228, R367
ULBP4*1.1
Mamu- AB568533 R492, R396, R465
ULBP4*1.2
Mamu-ULBP4*2  AB568526 R283, R384, R328, R337
Mamu-ULBP4*3  AB568527 R346, R361, R396, R379, R408
Mmau-ULBP4*4  AB568528 R320, R490, R321, R465, R367, R446, R328, R234, R237, R314
Mamu-ULBP4*5  AB568529 R430, R453, R325, R477, R439, R360, R379, R446, R355
Mamu-ULBP4*6  AB568530 R437, R350,
Mamu- AB568531 R325, R384, R491, R333, R337
ULBP4*7.1
Mamu- AB568544 R477
ULBP4*7.2
Mamu-ULBP4*8  AB568532 R408, R454, R241, R342, R316
Mamu- AB568534 R312, R314
ULBP4*9.1
Mamu- ABS568535 R333
ULBP4*9.2
Mamu-ULBP4*10 AB568536 R316
Mamu-ULBP4*11 AB568537 R241
Mamu-ULBP4*12 AB568538 R342
Mamu-ULBP4*13 AB568539 R491
Mamu-ULBP4*14 ABS568540 R495 Mafa-ULBP4*1.1
Mamu-ULBP4*15 AB568541 R350
Mamu-ULBP4*16 AB568542 R492
Mamu-ULBP4*17 ABS568543 R495
Mamu-ULBP4*18 AB568545 R454
Mamu-ULBP4*19 AB568546 R321
Mamu-ULBP4*20 AB568547 R355
Mamu-ULBP4*21 AB571025 R437
Mamu-ULBP4*22 ABS571026 R439
Crab-eating Mafa-ULBP4*1.1 AB578934 MO1, P01, P02, C001, C003, C004, C005, C006 Mamu-
macaque ULBP4*14
Mafa-ULBP4*1.2 ABS578935 MO02, C004
Mafa-ULBP4*2  AB578936 P04, M06, C010, CO11, C013
Mafa-ULBP4*3  AB578938 MO03, C007
Mafa-ULBP4*4  AB578939 MO03, C006
Mafa-ULBP4*5  AB578940 P04, P05, M05, M06, C012, C013
Mafa-ULBP4*6  ABS578941 MO5, C010, CO11
Mafa-ULBP4*7.1 AB578942 MO1, C002
Mafa-ULBP4*7.2  AB578943 P03, C008.
Mafa-ULBP4*8  AB578944 P03, M04, C008, C009
Mafa-ULBP4*9  AB578945 P01, C001, C002
Mafa-ULBP4*10  AB578946 MO04, C009
Mafa-ULBP4*11  AB578947 P02, CO07
Mafa-ULBP4*12  AB578948 MO02, C005
@ Springer
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Fig. 1 Phylogenetic tree of Mamu-ULBP4*9.1
Mamu- and Mafa-ULBP4/ 79
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Results
ULBP4/RAETIE polymorphisms in the rhesus macaque

In the rhesus macaque genome (Gibbs et al. 2007), there are
two paralogous genes for ULBP4/RAETIE, one of which
appears to be functional, whereas the other is a pseudogene
because it contains a large deletion containing the most part of
exons 2, 3, and 4. Therefore, we designed primer pairs to
amplify the region containing exons 2 and 3, which encode for
«l and «2 domains of ULBP4/RAETI1E molecule, respec-
tively, from the functional ULBP4/RAFETIE. By using the
primer pair, we obtained ULBP4/RAETIE sequences from 38
individuals of rhesus macaque. Because one or two sequences
were obtained from each individual, the sequences were
considered to be alleles of ULBP4/RAETIE. They were
classified into 25 different alleles, designated as Mamu-
ULBP4*1.1 to Mamu-ULBP4*22, submitted to DDBJ, and
given accession numbers (Table 1). The allele names with
different numbers indicate that they are different in predicted
amino acid sequences, whereas the alleles with the same
deduced amino acid sequences but different nucleotide
sequences, such as Mamu-ULBP4*].1 and Mamu-
ULBP4*1.2, are designated as subtypes. None of the
sequences obtained in this study was identical to the reference
sequence, NC007861, which was previously deposited to the
GenBank database as the rhesus ULBP4/RAETIE. On the
other hand, when the sequences were aligned referring the
human ULBP4/RAETIE, one rhesus allele (Mamu-ULBP4*8)

was found to contain a nonsense mutation at codon 29, which
would make the ULBP4/RAETI1E molecule non-functional.

ULBP4/RAETIE polymorphisms in the crab-eating
macaque

By using the primer pair designed for the rhesus ULBP4/
RAETIE, we could amplify the ULBP4/RAETIE sequences
from 24 individuals of the crab-eating macaque. Sequenc-
ing analysis revealed 14 different ULBP4/RAETIE alleles,
and inheritance of each allele was confirmed by family
studies. The identified allele sequences were submitted to
DDBJ, given accession numbers, and designated as Mafa-
ULBP4*1.1 to Mafa-ULBP4*12 (Table 1). The nucleotide
sequences from exons 2 to 3 of Mamu-ULBP4*14 were
identical to those of Mafa-ULBP4*1.1 and differed by only
one nucleotide in intron 2 from those of Mafa-ULBP4*1.2.
In addition, a neighbor-joining analysis performed by using
nucleotide sequences spanning from exons 2 to 3 showed
that the alleles of rhesus and crab-eating macaques were not
separately clustered from each other (Fig. 1).

Comparative analysis of ULBP4/RAETIE

The alignment of ULBP4/RAETIE sequences from rhesus
and crab-eating macaques with those from humans and
chimpanzees showed that the macaque genes were homol-
ogous to the human gene by more than 90% and were
equally diverged (Fig. 2). In addition, rhesus and crab-

50
Human :GHSLCFNFTI KSLSRPGQPW CEAQVFLNKN LFLQYNSDNN MVKPLGLLGK KVYATSTwge
Chimpanzee :-—--===~=~ - i e N-——====
Rhesus macaque :A--------~- —- W-—————— —————-] M-K- ———--- D—8- —————————— -- N-——~— Q-
Crab-eating macaque :A------=-- -- W= === M--- -F---D—SN --------—- -- N----- o-
100
Human :l1tgtlgevgr dlrmllcdIK PQIKTSDPST LQVEMFCQRE AERCTGASWQ FATNGEKSLL
Chimpanzee :---M----—-- —————- L--- —————— G-~ e - I--—---
Rhesus macaque :---K------ --=-=-]-V~ -=--=-GP-~ -==-= Lommm mmmmm e ~LI-~--C--
Crab-eating macaque :-—==------- -IM---L-V- P--=-~- G~~~ Lm==~L-=== —==——————— -II----C--
150
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Fig. 2 Alignment of deduced amino acid sequences of ol and o2
domains of ULBP4/RAETIE. Amino acid sequences were deduced
from the nucleotide sequences of ULBP4/RAETIE or MICH3 from
humans (AY252119), chimpanzees (AY032638), rhesus macaques
(NC007861), and crab-eating macaques (AY032639). Numbers above

93

the sequences represent the amino acid positions in mature protein.
Dashes indicate identical sequences. Sequences for the predicted o
helix structure were indicated by small italicized characters. Positions
of polymorphic sites in the human, rhesus macaque, and crab-eating
macaque were underlined
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Table 2 Single nucleotide polymorphisms of ULBP4 gene among human and Old World monkeys

Number of alleles  Exon 2 Intron 2 Exon 3
Polymorphism  Non-synonymous  Polymorphism  Polymorphism  Non-synonymous
change (%) change (%)
Human 5 2 2 (100%) 3 3 3 (100%)
Rhesus macaque 25 9 5 (55.6%) 22 22 14 (63.6%)
Crab-eating macaque 14 17 9 (52.9%) 18 16 9 (56.3%)

eating macaques showed a higher degree of polymorphism
in the analyzed region, namely, exon 2, intron 2, and exon
3, than in humans (Table 2). All polymorphisms found in
exons of human ULBP4/RAETIE were non-synonymous,
whereas a considerable part of the polymorphisms were
synonymous in the Old World monkeys. On the other hand,
the polymorphic sites in the rhesus macaque (positions 29,
46, 59, 64, 79, 88, 112, 121, 126, 135, 136, 144, 157, 158,
161, 168, 171, and 173) and the crab-eating macaque
(positions 32, 39, 40, 59, 72, 73, 79, 91, 112, 136, 163,
164, 165, 171, 178, and 179) were shared at five positions
(59, 79, 112, 136, and 171) by each other, whereas only one
position (position 112) was shared with polymorphic sites
in humans (positions 53, 99, 112, and 113) (Fig. 2). In
addition, a termination at position 29 was found in a rhesus
macaque allele Mamu-ULBP4*8; a single amino acid
deletion caused by deletions of a total of three nucleotides
was found in a crab-eating macaque allele Mafa-ULBP4*6
[i.e., TGGCTCAGG sequences corresponding to codons
163—-165 were changed to TGCTCA, which may be due to
two different deletions at codons 163 (from TGG to TG)
and 165 (from AGG to A)], whereas such polymorphisms
were not observed in humans. These findings suggest that a
selection pressure to generate and maintain the polymorphic
sites might be considerably different between the lineages
of humans and the Old World monkeys.

Discussion

It has been suggested that the ancestral gene for the ULBP/
REAT molecule of placental mammals was originally
diverged and duplicated in each species after an emigration
from the MHC region (Kondo et al. 2010). In humans, MHC
genes (HLA genes) are clustered and mapped on the short
arm of chromosome 6, 6p21.3, whereas the ULBP/RAETI
genes are located on the long arm of chromosome 6, 6q25.1.
As for the MHC genes in the macaque, it was previously
reported that rhesus macaque MHC, e.g., BAT1 gene, was
localized to chromosome 6g24 by using fiber-fluorescence in
situ hybridization (Huber et al. 2003) and cynomolgus (crab-
eating) macaque MHC, e.g., Mafa-A and Mafa-B genes, was
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cytogenetically mapped to chromosome 6pl3 (Liu et al.
2007), although the rhesus macaque MHC is mapped on the
short arm of chromosome 4 in the draft genome sequence
database of rhesus macaques (Gibbs et al. 2007); e.g.,
Mamu-A and BAT1 were mapped from positions 29, 517,
308 to 29, 520, 221 and from 31, 164, 822 to 31, 175, 032,
respectively, on chromosome 4 (data were obtained from the
UCSC Genome Browser at http://genome.ucsc.edu/cgi-bin/
hgGateway). The discrepancy between the cytogenetic
mapping and the assignment in draft genome sequence
should be resolved in the future. On the other hand, it is
interesting to note that each member of the ULBP/RAETI
gene family, except for ULBP6, is completely or partially
duplicated in the rhesus genome. As for the ULBP4/
RAETIE, two related sequences, LOC695031 (NC007861)
and LOC694265, have been identified as orthologs of human
ULBP4/RAETIE. On the other hand, the configuration of
ULBP/RAETI loci in the crab-eating macaque genome
remained unknown. Because LOC694265 was a pseudogene
lacking most part of the coding exons, we designed PCR
primers by referring the NC007861 sequence. By using the
designed primers, we could successfully amplify ULBP4/
RAETIE alleles from both rhesus and crab-eating macaques.

In this study, we identified a total of 25 and 14 alleles
from rhesus and crab-eating macaques, respectively. One of
the rhesus macaque alleles had identical sequences to one
of the crab-eating macaque alleles, and the phylogenetic
analysis demonstrated that the ULBP4/RAETIE alleles were
widely diverged. None of the alleles identified in this study
were identical to the previously reported sequence
NC007861, which was derived from an individual of
Indian rhesus macaque. Given that we analyzed rhesus
macaques of Burmese origin in this study, and allele
distribution of MHC-related polymorphic genes are well
known to be largely dependent on the habitat regions, the
extent of diversity and variation in ULBP4/RAETIE may be
further expanded.

It was demonstrated that the diversity of ULBP4/
RAETIE in the Old World monkeys was much higher than
that of human ULBP4/RAETIE. 1t is possible that the genes
in the ULBP/RAETI locus, in particular, ULBP4/RAETIE
and ULBP/RAETIs, might be highly polymorphic in the
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Old World monkeys. We therefore investigated ten unrelat-
ed rhesus macaque subjects, in which we had detected 16
ULBP4/RAETIE alleles for polymorphisms in the adjacent
ULBP/RAETI genes. We found one ULBPI1/RAETII allele,
seven ULBP2/RAETIH alleles, and one ULBP3/RAETIN
allele in these subjects. The observation suggested that
ULBP4/RAETIE was highly polymorphic as compared to
the adjacent ULBP/RAET] genes.

We revealed a high degree of polymorphism in the
ULBP4/RAETIE of the rhesus and crab-eating macaques,
although about half of the polymorphisms were synony-
mous changes (Table 2). Albeit the expression of the
ULBP4/RAETI1E molecule is known to be involved in the
recognition of tumor cells by the NKG2D receptor (Cao et
al. 2008; Kong et al. 2009), the functional significance of
the polymorphisms in the extracellular domain of the
ULBP4/RAETIE molecules remained unknown. To inves-
tigate a possible role of the polymorphisms, we have
created a 3-D structure model of rhesus ULBP4/RAETI1E
molecule by using the structure data of human ULBP3/
RAETIN in complex with NKG2D (Radaev et al. 2001) as
the reference. As shown in Fig. 3, only one polymorphic
site at 173 was on the surface of the « helix pointing to the
NKG2D receptor, five sites at 59, 136, 144, 161, and 165
were positioned outside the o helix, and only two sites at
32 and 91 were mapped on the 3 sheet in the groove. The
other polymorphic sites were on the {3 sheet outside of the
groove or were not on the surface of the « helix. In
addition, expression of ULBP4/RAETIE is predominantly
found in the skin and tumor tissues and not induced by viral
infection in normal cells (Chalupny et al. 2003; Eagle et al.
2006). These observations suggest that the polymorphisms
are unlikely to be involved in the differential presentation

Fig. 3 Mapping of polymorphic
sites on the structure model

of the macaque ULBP4/RAET1E
molecule. Polymorphic sites
found in the Old World

monkeys were mapped on the 3-
D structure model of ULBP4/
RAETIE. Residues on the upper
and outer sides of the « helix
structure were indicated by

a circle and squares, respectively.
Residues not found on the
surface of the « helix were
underlined, and those on the 3
sheet structure were represented
by rhombi

o,

s htin

S’ fsurface, upper side)

of characteristic small molecules bound by the ULBP4/
RAETIE molecules, as found in the presentation of
antigenic peptides by the MHC molecules. Nevertheless,
highly prevalent polymorphisms leading to amino acid
replacements suggest that a selection pressure had operated
on the configuration of diversity in ULBP4/RAETIE.

Of particular interest in this study was the rhesus
macaque allele Mamu-ULBP4*8, which was supposed to
contain a stop codon in the exon 2 coding sequence that
would truncate the most part of the molecule. This is the
first report of a non-functional ULBP/RAETI allele in
primates; however, a similar situation was reported for
another NKG2D ligand gene, MIC. For example, a specific
human MIC haplotype linked to HLA-B*048 consists of
non-functional MIC genes, in which MICA was deleted and
MICB contained a termination codon (Ota et al. 2000); the
non-functional MIC haplotype is widely distributed in the
East Asian populations (Komatsu-Wakui et al. 2001). It is
interesting to note that there are two distinct and poly-
morphic genes for MIC in the rhesus macaque, MICA
(previously designated as MICI! and MIC3) and MICB
(previous MIC2); however, they are not considered to be
orthologous to the human MICA4 and MICB genes,
respectively (Seo et al. 1999, 2001; Doxiadis et al. 2007,
Averdam et al. 2007). Because members of the MIC and
ULBP/RAET1 molecules are structurally related (Li et al.
2002), there is a functional redundancy in the recognition
by NKG2D, and thus, the presence of a null allele had been
allowed during the evolution of primates.

In the present study, we demonstrated the ULBP4/
RAETIE allelic polymorphisms not only in the rhesus
macaque but also in the crab-eating macaque. Although the
localization of ULBP4/RAETIE in the crab-eating macaque
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