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Figure 2. Effects of ATP on NRTI action. A. Effects of ATP on AZTTP-dependent inhibition of RT activities. The dTMP incorporation into poly
(rA)-p(dT)1.1s Was measured using [a->?PIdTTP and purified p51/p66 heterodimers in the presence of the indicated concentrations of ATP and AZTTP.
Ratios of the dTTP incorporation at given concentrations of AZTTP to that in the absence of AZTTP are shown. B. Effects of nucleotides and related
compounds on ICsgs of AZTTP. ICsos of AZTTP were determined in the presence of 5 mM of the indicated compounds, and the fold increases in ICso
compared to AZTTP without the compounds are shown. C. A simplified kinetics model of DNA polymerization in the presence of ATP and. NRTI. The
model was generated on the basis of the kinetics data in Figure 1 and Figure S2, previously reported kinetics data [17,18], and a crystal structure
study of the ATP-RT complex [11]. D. Effects of ATP on the K; values of AZTTP and d4TTP. The K/*“"™ and K" values were estimated by fitting the
initial velocity of dTTP incorporation to Equation 5 as described in Materials and Methods. The mean values with variances are shown for two
independent experiments performed with duplicate samples.
doi:10.1371/journal.pone.0008867.g002
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Figure 3. Structural models of the HIV-1 RT p66 subunit in a DNA polymerization cycle. The 3-D models of the 93JP-NH1 p66-template-
primer ternary complex of the fingers-open configuration at post-translocation (A), fingers-open configuration at the stage of dTTP binding (B),
fingers-closed configuration after fingers-rotation (C), and fingers-open configuration at pre-translocation stage (D). The models were constructed by
homology modeling and docking simulation techniques using two crystal structures [1,14] of the HIV-1 RTs as modeling templates (see Materials and
Methods). Catalytic clefts composed of fingers, palm, and thumb subdomains are shown. dTTP, magenta sticks; p66 main chain, grey ribbon; Mg**
ion, gray spheres; template-primer, grey sticks; 3-B4 loop of the fingers subdomain, blue ribbon.

doi:10.1371/journal.pone.0008867.g003

along the highly conserved motif A near the side chains of R72,
D110, D113, F116, D185, and K219 residues at the p66 fingers
subdomain of both RTs (Figure 4). The ATP-binding position was
stabilized through electrostatic and hydrophobic interactions
between the ATP molecule and the side chains of surrounding
amino acids. The ATP position was similar to the ATP position in
the crystal structure of the template-primer-free RT [11] and was
indistinguishable between the pre- and post-translocation stages
(Figure S3), suggesting that a specific ATP-binding site is preserved

“{B). PLOS ONE | www.plosone.org

in the free-RT and RT-template-primer tertiary complex. The
ATP-binding position was distinct from that of dNTP at initial
binding [23] and after fingers-domain rotation [1] in the fingers-
open and -closed configurations of RT, respectively (Figures 3 and
4), consistent with our kinetic data for allosteric regulation
(Figures 1 and 2).

The bound ATP molecule was located near the YMDD motif,
motif A, and the 3'-end of the primer, suggesting that the ATP
binding can modulate polymerization and support the excision
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Figure 4. Docking simulations of ATP to the HIV-1 RT p66 subunit with NRTI resistance. ATP was docked with the optimized p66-
template-primer complex of the ERT-mt6 strain at the pre-translation stage, using the automated ligand docking program ASEDock2005 [22]
operated in the Molecular Operating Environment (see Materials and Methods). Catalytic clefts composed of fingers, palm, and thumb subdomains
are shown. ATP, red sticks; p66 main chain, grey ribbon; template-primer, grey sticks; motif A, blue ribbon. The side chains of amino acids around ATP
are indicated with cyan sticks, and the side chains of amino acids for NRT! resistance (M41L, T69I, L210W, and T215W) with orange sticks. The main
chain of an 11-amino-acid insertion at the B3-B4 loops for NRTI resistance is shown in orange.

dai:10.1371/journal.pone.0008867.g004

~ reaction (Figure 4). The bound ATP molecule was positioned
between the catalytic site and the $3-B4 loops, suggesting that the
ATP binding can modulate the initial binding and translocation of
dNTP and NRTIs into the catalytic site (Figures 3 and 4). Taken
together, these structural data are well consistent with our kinetic
data, biochemical data for excision [8,9,10], and crystal structure
data for ATP binding [11].

NRTI-resistance mutations of the ERT-mt6 p66 (Figure 4,
orange residues) were located relatively far away from the bound
ATP molecule and catalytic center in p66. Thus, it is less likely
that these mutations directly influence the ATP-mediated excision.
Instead, the M41L, T69I, L210W, and T215Y substitutions
augmented the hydrophobicity of the catalytic cavity of p66, which
could enhance p66’s ability to exclude water from the catalytic site
cleft for a higher fidelity of nucleotide selection [6,29]. This
possibility is consistent with our kinetic data. The fingers-domain
insertion induced changes in the shape of the 3-B4 loops that
could alter the position of the initial binding site of ANTP and
NRTT relative to the catalytic site.

Site-Directed Mutagenesis Study

We further examined how substitutions of amino acids around
the predicted ATP-binding site would influence the biochemical
properties of the ERT-mt6 RT. Single-amino-acid substitutions
were introduced into the p66 chain of ERT-mt6, and their effects on
the overall DNA polymerization activity, IC;5q of AZTTP, K, value,
keq value, and K; value of ATP for the ERT-mt6 RT were analyzed.
The positions of the substitutions introduced corresponded to
positions 72, 110, 113, 116, and 219 of the 93JP-NH1 p66. We did
not conduct mutagenesis of D185 in the YMDD loops, because its
essential role in the translocation of the template primer has been

@ PLoS ONE | www.plosone.org

established [14]. All of the tested substitutions changed the overall
DNA polymerization activity of the RT (Figure S4B). The
substitutions at positions 72, 110, and 116 (R72A/Q, D110A/N,
and F116A/L) resulted in a loss of DNA polymerization activity,
suggesting their essential role in this activity. In contrast, those at
positions 113 and 219 (D113A/N and K219Q/A) enhanced the
incorporation of dT'TP (Figure S4B), suggesting their regulatory role
in overall DNA polymerization activity.

The active D113A/N and K219Q/A RTs were further
examined for changes in the IG5 of AZTTP, and in the K,,, k.4,
KT, and K “'P values. The DII3A/N resulted in an
approximately 4- to 5-fold reduction in the ICso of AZTTP (Figure
54C), suggesting that D113 plays an imlfa;))rtant role in the
development of NRTI resistance. K, k.., K177, and K 477 values
were estimated by using the substrate-velocity curves for the
D113A/N and K219Q/A RTs (Figure S4D). The D113A/N and
K219Q/A substitutions induced changes in the K;,, &4, KA , and
K 4™ values, suggesting that the D113 and K219 residues regulate
the K, of substrate, k., and K; values of ATP (Figure 5). The
D113A/N substitutions resulted in reductions in K, and £, values,
which paralleled the reductions in K’ and & 7% values. The
K219Q/A substitutions resulted in increases in K, values, which
paralleled the increases in K”” values. The kinetics data implied
that residues 113 and 219 can regulate the affinity of the substrate
and ATP molecule but do not contribute directly to the catalysis of
DNA polymerization, suggesting that the ATP binding site would
be distinct from the catalytic site for DNA polymerization.

Discussion

How HIV-1 RT regulates the nucleotide selectivity for DNA
synthesis is a central issue for genetics and the NRTT resistance of
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Figure 5. Site-directed mutagenesis study of the HIV-1 RT p66 subunit with NRTI resistance. Single substitutions of amino acids around
the predicted ATP-binding site in Figure 3 were introduced into the p66 chain of ERT-mt6. The overall DNA polymerization activity (Figure S4B), ICsq
of AZTTP (Figure $4C), and Ky, kear, K277, and K;' A7 values were measured using the [0->2PIdTTP and poly (rA)-p(dT);,.1 System, and fold increases in
the Ky (A), keae B), K™ (C), and K ™ values (D) compared to those for the ERT-mt6 were calculated. Results for the RT mutants, D113A, D113N,
K219Q, and K219A, which retained sufficient polymerization activity for a kinetic study, are shown.

doi:10.1371/journal.pone.0008867.g005

HIV-1. In this study, we showed that the ATP molecule at
physiological concentrations acted as an allosteric regulator of
HIV-1 RT to modulate nucleotide selectivity. We also showed
probable 3-D positions of the bound ATP molecule and NRTI
mutations in the catalytic cleft; these positions immediately
suggested that a nucleotide-selection mechanism—i.e., an ATP-
and RT-mutation-mediated modulation of the geometric selection
of nucleotides—played a role in the DNA polymerization and
NRTI resistance of HIV-1.

First, we demonstrated that the ATP molecule modulated the
K, and k,,, values of the substrate for HIV-1 RT. We showed that
the ATP molecule reduced the K, values of dTTP with both
NRTI-sensitive and -resistant RTs (Figure 1C). These results
suggested that the ATP molecule can decrease the K, value of a
natural substrate to HIV-1 RT. We also showed that the ATP
molecule reduced the £, values of these RTs (Figure 1C). These
results suggested that the ATP molecule can decrease the rate of
DNA polymerization and thereby increase the probability of an
excision reaction by HIV-1 RT. Lineweaver-Burk double-
reciprocal plots showed that the ATP molecule is a mixed
noncompetitive inhibitor of RT, suggesting distinct binding sites
for ATP and dNTP. Taken together, these data strongly suggest
that the ATP molecule can act as an allosteric regulator to
modulate the nucleotide selectivity of HIV-1 RT.

@ PLoS ONE | www.plosone.org

We next investigated the mechanisms by which the ATP
molecule modulates the nucleotide selectivity of HIV-1 RT.
Docking simulations predicted that the ATP-binding site would be
similar between NRTI-sensitive and -resistant RTs during DNA
polymerization. Consistent with the results of the kinetic study, the
predicted ATP-binding site was distinct from that of dNTP and
NRTIs [23], and single-amino-acid substitutions at positions 113
and 219 around the predicted ATP-binding site indeed induced
significant changes in the K; value of ATP. Importantly, the ATP-
binding position suggested possible mechanisms by which ATP
could influence DNA polymerization and the excision reactions of
RT, as follows: First, interactions between the y-phosphate of the
ATP molecule and the side chain of D185 in the YMDD loops
could influence the DNA translocation of the primer template
[14]. Second, interactions between charged portions of the ATP
molecule and the side chains of D110 and D185 could modulate
the ~Mg2+ position and stability for DNA polymerization [1].
Third, the y-phosphate of the ATP molecule is located near the 5’
phosphate of DNA primer terminus and thus could increase the
probability of a DNA excision [11] in concert with a reduction in
the £, value of RT.

We found no marked increases in the K; values of AZTTP and
d4TTP at the ATP concentrations around the k! 47 value
(1.1£0.4 mM) for ATP binding to the RT-template-primer-dTTP
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complex for the excision reaction (Figures 2C and 2D). The ATP
molecule was estimated to bind with equivalent &; values to the
NRTI-sensitive and -resistant RTs, as others have indicated
[15,16], suggesting that NRTI-resistance mutations do not
necessarily increase ATP-binding affinity. Moreover, some
NRTI-resistant mutations, such as M41L and T691, are located
relatively distantly from the ATP-binding site and catalytic site
(Figure 4), which makes their direct impact on DNA excision
unlikely. Thus, our study suggests that an ATP-mediated DNA
excision mechanism alone is insufficient to explain the roles of the
NRTI-resistance mutations, as was also noted previously [12].
Therefore, we speculate that NRTI-resistance mutations can
decrease the affinity of NRTIs to HIV-1 RT in concert with the
ATP molecule.

Our data imply that the ATP molecule and NRTI mutations
can modulate the nucleotide selectivity of HIV-1 RT by
influencing the geometric selection of nucleotides in the catalytic
cavity, as follows: First, the presence of bound ATP molecule in
the catalytic cavity can sterically influence the initial binding and
translocation of ANTP/NRTT into the catalytic site. Second, more
hydrophobic side chains of the NRTI-resistance mutations can
improve p66’s ability to exclude water from the catalytic cavity
and allow more intimate interactions between nucleotides, the
primer-template, and amino acids around the catalytic site for
distinguishing between correct and incorrect base pairs. In this
regard, previous crystal structure analyses have revealed that the
active site of a low-fidelity polymerase is more accessible to the
solvent than those of more accurate polymerases [30,31]. Third,
ENRTE values increased sharply with NRTI-resistant RT (ERT-
mt6 RT) at ATP concentrations around the K77 value
(2.8x1.3 mM) for ATP binding to the RT-template-primer
complex (Figures 2C and 2D). Fourth, the changes in the K,
value of dTTP correlated with those in the K; value of the ATP
molecule to the RT-template-primer complex (Figures 5A and
5C). Taken together, our structural, kinetic and mutagenesis data
suggest that the NRTI-resistance mutations and the ATP molecule
can cooperatively modulate physicochemical properties of the p66
catalytic cavity to alter the fidelity of the geometric selection of
nucleotides and the probability of an excision reaction.

In conclusion, we demonstrated that the ATP molecule at
physiological concentrations acts as an allosteric regulator of HIV-1
RT to decrease the K, value of the substrate, decrease the £, value,,
and increase the K; value of NRTIs for RT. The effects were
independent of NRTI-resistance mutations of RT. The ATP
molecule and NRTT mutations could decrease RT’s sensitivity to
NRTT of RT in concert with the RT mutation. Our data support the
notion that the ATP molecule and NRTI mutations can modulate
nucleotide selectivity by altering the fidelity of the geometric selection
of nucleotides and the probability of an excision reaction.

Materials and Methods

Nucleotides

Poly(rA)ep(dT);2.13, ANTPs (100 mM, pH 7.5), NTPs (100 mM,
pH 7.5), and [0->>P]dTTP were purchased from Pharmacia
Biotech Inc. (USA). ADP and AMP were from ICN (USA).
Adenosine 5'-(B, y-imido) triphosphate (AMP-PNP) was from
Sigma Chemical (USA). 3'-Azido 3'-deoxythymidine 5'-triphos-
phate (AZTTP), 3'-deoxy-2’, and 3'-didehydrothymidine 5'-
triphosphate (d4TTP) were from Moravek Biochemicals (USA).

Expression and Purification of HIV-1 RT
HIV-1 infectious molecular clones, 93JP-NH1 and ERT-mt6
[13], were used to clone and express the p51 and p66 subunits of

@ PLoS ONE | www.plosone.org
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the HIV-1 RT. The open reading frames encoding the RT p51
and p66 subunits of the 93JP-NHI1 and ERT-mt6 RTs were
amplified by PCR and cloned into the BamH1 site of pQE-9
(Qjagen, Germany). The nucleotide sequences of the PCR-
amplified fragments and the sequences around the cloning sites
were verified with an automated sequencer. Each subunit was
expressed individually in XL1-blue by induction with isopropyl-p-
D-thiogalactopyranoside, and the cells expressing p51 and pb6
were mixed in binding buffer (20 mM sodium phosphate,
500 mM NaCl, 10 mM imidazole, and EDTA-free protease
inhibitor mixture (Roche, Germany), lysed with a French press,
centrifuged at 10,000 g for 20 min, and filtered (0.45-um pore
size). The p51/p66 heterodimers were purified from the filtered
lysates by Ni®* affinity chromatography (HiTrap Chelating HP;
Amersham Biosciences, UK) and size exclusion chromatography
(HiLoad 16/60 Superdex 200 pg; Amersham Biosciences, UK).
All of the purification processes were carried out at 4°C. About 1.5
(ERT-mt6) and 3 mg (93JP-NH1) of the p51/p66 heterodimers
with greater than 95% purity as judged by SDS-polyacrylamide
gel electrophoresis (Figure S1) were obtained with a 1-liter culture.

 The specific activities of the purified RTs were 40,000 and 10,000

units/mg of protein for 93JP-NHI1 and ERT-mt6, respectively,
wherein one unit is defined as the amount of enzyme required
for incorporation of 1.0 nmol of **P-dTTP into poly(rA)/
poly(dT)i2.15 in 10 min at 37°C.

Measurement of RT Activity

The purified RTs were dissolved in the RT stock buffer (50 mM
Tris-HCI pH 7.5, 75 mM KCl, 5 mM MgCl,, 2 mM DTT,
0.05% NP40, and 50% glycerol)[32,33] and kept at —30°C until
use. RNA-dependent DNA polymerase activity was measured
using [0-*°P]dTTP and poly(rA)/poly(dT)s.;g as described
previously [33]. For the RT reaction in the presence of ATP,
RT activities were measured in 100 pl of RT reaction cocktail
consisting of 50 mM Tris-HCl pH 7.5, 75 mM KCl, 5 mM
MgCly, 2 mM DTT, 0.05% NP40, and 50% glycerol containing
RT (1-10 nM), dTTP (0.2-18 pM), and ATP (0-4 mM). For the
RT reaction in the presence of ATP and NRTI, RT activities were
measured in 100 pl of the RT reaction cocktail containing RT (1-
10 nM), dTTP (0.2-18 uM), ATP (0-5 mM), and AZTTP or
d4TTP (0-1 pM). These experiments were performed in duplicate
and repeated two to six times.

Steady-State Kinetic Analysis

The averages of the experimental data were fit by a nonlinear
regression method using the program Igor Pro (WaveMetrics,
USA). The kinetics parameters were determined by the Michaelis-
Menten equation:

_ Voa™18] "
K +[S)°

where [S] is the substrate concentration; K,?” is the apparent
Michaelis-Menten constant; and V,,.,* is the apparent maximal
rate attained when the enzyme active sites are saturated by
substrate.

Based on the kinetics data in Figure 1 and Figure S2, the
previously reported kinetics data [17,18], and a crystal structure
study of the ATP-RT complex [l11], we assumed mixed
noncompetitive inhibition of ATP and competitive inhibition of
NRTIs (Figure 2C).

Using this model, the enzyme kinetic parameters were
calculated using Equations 2-5.
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respectively, where K, is the Michaelis-Menten constant; [£] is the
enzyme concentration; [/] is the inhibitor concentration; K; and K}
are the inhibition constants for the enzyme and the complex of the
enzyme with substrate; and £,/ is the apparent turnover number:

k
kcatapp = __Ca_l[__, (4)
1+,
K;
where £, 1s the turnover number.
The k* and K,”’ that can be derived from the model

(Figure 2C) are
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where K47 is the dissociation constant of ATP; X! TTP §s the
dissociation constant of AZTTP; [IATP] is the ATP concentration;
and [F'<"™"] is the AZTTP concentration.

Structural Analysis

We constructed the 3-D models of HIV-1 RTs by homology
modeling [19] using the Molecular Operating Environment, MOE
(Chemical Computing Group, Canada) as previously described
[34]. We generated models of the 93JPNH-1 RT and ERT-mt6 RT
structures at the pre- and post-translocation stages, which
theoretically are competent for the binding of the incoming-ATP.
We used two crystal structures of the HIV-1 RTs (PDB code: IN6Q
[14] and IRTD [1]) as modeling templates. The sequence identities
of the IN6Q and 1RTD with the 93JPNH-1 RT and ERT-mt6 RT
are ~90%. We optimized the 3-D structure thermodynamically by
energy minimization using MOE and an AMBER94 force field. We
further refined the physically unacceptable local structure of the
models on the basis of evaluation by the Ramachandran plot using
MOE. The optimized models were docked with ATP with the
automated ligand docking program ASEDock2005 [22] (Ryoka
Systems, Japan) operated in the Molecular Operating Environment.
The RT-template-primer-ATP complex structures were thermody-
namically and sterically optimized as described above.

Site-Directed Mutagenesis

Site-directed mutagenesis was performed with a QuikChange
Multd Site-Directed Mutagenesis Kit (Stratagene, USA), using

@ PL0S ONE | www.plosone.org
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PQE70 (Qiagen, Germany) containing the coding sequence of the
p66 subunit of ERT-mt6 as the template. The positions of the
amino acid substitutions corresponded to the positions 72, 110, 113,
116, and 219 of 93JP-NH1. The mutations and oligonucleotides
used in the mutagenesis reaction were R72A (5'-CGGCCAGCA
TTAAATGGgcGAAATTAGTAGATTTCAGAGAG-3'), R72Q)
(5'-CGGCCAGCATTAAATGGcaGAAATTAGTAGATTTCA-
GAGAG-3"), D110A (5'-GAAAAAATCAGTAACAGTACTAG-
cTGTGGGAGATGCATATTTTTC-3'), D110N (5'-GAAAAA-
ATCAGTAACAGTACTAaATGTGGGAGATGCATATTTT-
TC-3"), D113A (5'-CAGTACTAGATGTGGGAGcTGCATAT-
TTTTCAGTTCCTT-3"), D113N (5'-CAGTACTAGATGTGG-
GAaaTGCATATTTTTCAGTTCCTT-3"), FI16A (5'-GGAA-
CTGAAgcATATGCATCTCCCACATCTAGTACTG-3'), F116L
(5"-GGAACTGACAAATATGCATCTCCCACATCTAGTACT-
G-3"), K219A (5'-GGGATTTTATACACCAGACgcAAAGCAT-
CAGAAGGAACCTGC-3'), and K230(219)Q (5'-GGGATTTTA-
TACACCAGACcAAAAGCATCAGAAGGAACCTC-3"), where
the introduced mutations appear in lowercase letters. In all cases,
the nucleotide sequences of the complete p66 coding region and of
cloning sites were verified with an automated sequencer. The
mutant p66 subunits were expressed in XL1-blue and used to form
the p51/p66 heterodimer using the p51 subunit of 93JP-NH! in
binding buffer, as described above. The p51/p66 heterodimers
were purified by Ni%* affinity chromatography. About 104 to
221 pg of the p51/p66 heterodimers, with about 90% purity as
judged by SDS-polyacrylamide gel electrophoresis (Figure S4A),
were obtained from a 20 ml culture. The purified RTs were
dissolved in the RT stock buffer and kept at —30°C until use.

Supporting Information

Figure S1 Data on RTs of 93JP-NHI and ERT-mt6. A.
Electrophoresis of the purified p51/p66 heterodimers of HIV-1
RTs. The purified p51/p66 heterodimers of 93JP-NH1 RT (NHI1)
and ERT-mt6 RT (mt6) were electrophoresed on an SDS-4/20%
polyacrylamide gradient gel. The gel was stained with GelCode
Blue Stain Reagent (Pierce, USA). (Lanes 1 and 4) Molecular size
markers. B. The substrate-velocity curves of purified HIV-1 RTs.
RNA-dependent DNA. polymerase activity at the indicated
concentrations of [0-**P]dTTP was measured using purified
RTs of 93JP-NH1 (1 nM) and ERT-mt6 (10 nM).

Found at: doi:10.1371/journal.pone.0008867.s001 (0.29 MB TIF)

Figure 82 Lineweaver-Burk double-reciprocal plots of AZTTP-
dependent inhibition of dTTP incorporation. A. 93JP-NH1 RT.
B. ERT-mt6. The initial velocities of dTMP incorporation into
poly (rA)p(dT)jo.1s were measured using [a->?P]dTTP and
purified RTs in the presence of AZTTP. Reciprocal values of
the initial velocities and substrate concentrations are plotted.

Found at: doi:10.1371/journal.pone.0008867.s002 (0.15 MB TIF)

Figure 83 Docking simulations of ATP with RT-template-primer
ternary complex models. A and C: 93JP-NH1 RT. B and D: ERT-
mt6 RT. The 3-D models of the p66-template-primer complexes at
the pre-translation stage (A and B) and the post-translation stage (C
and D) were constructed by a homology modeling technique and
docked with ATP using the ASEDock2005 (see Materials and
Methods). Catalytic clefts composed of fingers, palm, and thumb
subdomains are shown. ATP, red sticks; p66 main chain, grey
ribbon; template-primer, grey sticks; motif A, blue ribbon.

Found at: doi:10.1371/journal.pone.0008867.s003 (1.93 MB TIF)

Figure S84 Data on RT mutants from the ERT-mt6 RT. A.
Electrophoresis of the purified RT mutants from the ERT-mt6
RT. B. dTMP incorporations into poly (rA)-p(dT),s.;s by the
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mutant RTs. RNNA-dependent DNA polymerase activity of the
purified RTs (20 nM) was measured using a [0-32P]dTTP and
poly (tA)-p(dT);z.15 system. C. Fold increases in the ICsy of
AZTTP by ATP addition. ICs59 values of AZTTP with RT
mutants were calculated from the amounts of [a-*?P]dTTP
incorporation in the presence of various concentrations (0—
1 pM) of AZTTP and 5 mM ATP. Fold increases in ICsg
compared to the values without ATP are shown. D. The substrate-
velocity curves of purified HIV-1 RTs in the presence of ATP.
RNA-dependent DNA polymerase activity of the purified mutant
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Multiple sites in the N-terminal half of simian
immunodeficiency virus capsid protein contribute
to evasion from rhesus monkey TRIM5c-mediated
restriction

Ken Kono', Haihan Song', Masaru Yokoyama?, Hironori Sato? Tatsuo Shioda', Emi E Nakayama'"

Abstract

Background: We previously reported that cynomolgus monkey (CM) TRIM5a could restrict human
immunodeficiency virus type 2 (HIV-2) strains carrying a proline at the 120" position of the capsid protein (CA), but
it failed to restrict those with a glutamine or an alanine. In contrast, rhesus monkey (Rh) TRIM5a could restrict all
HIV-2 strains tested but not simian immunodeficiency virus isolated from macaque (SIVmac), despite its genetic
similarity to HIV-2.

Results: We attempted to identify the viral determinant of SIVmac evasion from Rh TRIM5a-mediated restriction
using chimeric viruses formed between SIVmac239 and HIV-2 GH123 strains. Consistent with a previous study,
chimeric viruses carrying the loop between a-helices 4 and 5 (L4/5) (from the 82" to 99™ amino acid residues) of
HIV-2 CA were efficiently restricted by Rh TRIM5a.. However, the corresponding loop of SIVmac239 CA alone (from
the 81% to 97™" amino acid residues) was not sufficient to evade Rh TRIMS5a restriction in the HIV-2 background. A
single glutamine-to-proline substitution at the 118" amino acid of SIVmac239 CA, corresponding to the 120™
amino acid of HIV-2 GH123, also increased susceptibility to Rh TRIMS5a., indicating that glutamine at the 118" of
SIVmac239 CA is necessary to evade Rh TRIMSa. In addition, the N-terminal portion (from the 5% to 12™ amino
acid residues) and the 107" and 109™ amino acid residues in a-helix 6 of SIVmac CA are necessary for complete

TRIM5aou restriction.

evasion from Rh TRIM5a-mediated restriction. A three-dimensional model of hexameric GH123 CA showed that
these multiple regions are located on the CA surface, suggesting their direct interaction with TRIM5c..

Conclusion: We found that multiple regions of the SIVmac CA are necessary for complete evasion from Rh

Background

The host range of human immunodeficiency virus type
1 (HIV-1) is very narrow, being limited to humans and
chimpanzees [1]. HIV-1 fails to replicate in activated
CD4-positive T lymphocytes obtained from Old World
monkeys (OWM) such as rhesus (Rh) [2,3] and cyno-
molgus (CM) monkeys [4,5]. Simian immunodeficiency
virus (SIV) isolated from sooty mangabey (SIVsm) and
SIV isolated from African green monkey (SIVagm) repli-
cate in their natural hosts [6]. SIV isolated from a
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macaque monkey (SIVmac) evolved from SIVsm in cap-
tive macaques, and replicates efficiently in Rh [2,3] and
CM [4,5] monkeys. Human immunodeficiency virus
type 2 (HIV-2) is assumed to have originated from
SIVsm as the result of zoonotic events involving mon-
keys and humans {7]. Previous studies have shown that
HIV-2 strains vary widely in their ability to grow in cells
of OWM such as baboon, and Rh and CM monkeys
[8-12].

In 2004, the screening of a Rh ¢cDNA library identified
TRIM5a as a factor that confers resistance to HIV-1
infection [13]. Both Rh and CM TRIMb5a proteins
restrict HIV-1 infection but fail to restrict SIVmac
[13,14]. In contrast, human TRIM5a is almost powerless

© 2010 Kono et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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to restrict the aforementioned viruses, but potently
restricts N-tropic murine leukemia viruses (N-MLV)
and equine infectious anemia virus [15-17].

TRIM5a. is a member of the tripartite motif (TRIM)
family of proteins, and consists of RING, B-box 2,
coiled-coil, and SPRY (B30.2) domains [18]. Proteins
with RING domains possess E3 ubiquitin ligase activity
[19]; therefore, TRIM5a was thought to restrict HIV-1
by proteasome-dependent pathways. However, protea-
some inhibitors do not affect TRIM5o.-mediated HIV-1
restriction, even though HIV-1 late reverse transcribed
products are generated normally [20-22]. TRIM5a. is
thus supposed to use both proteasome-dependent and
-independent pathways to restrict HIV-1.

The intact B-box 2 domain is also required for
TRIM5a-mediated antiviral activity, since TRIM5a
restrictive activity is diminished by several amino acid
substitutions in the B-box 2 domain [23,24]. TRIM5a
has been shown to form a dimer [25,26], while the B-
box 2 domain mediates higher-order self-association of
Rh TRIM5a oligomers [27,28]. The coiled-coil domain
of TRIM5a. is important for the formation of homo-oli-
gomers [29], and the homo-oligomerization of TRIM5a
is essential for antiviral activity [30,31]. The SPRY
domain is specific for an a-isoform among at least three
splicing variants transcribed from the TRIMS gene.
Soon after the identification of TRIM5a as a restriction
factor of Rh, several studies found that differences in
the amino acid sequences of the TRIM5a SPRY domain
of different monkey species affect the species-specific
restriction of retrovirus infection [14,32-39]. Studies on
human and Rh recombinant TRIM5as have shown that
the determinant of species-specific restriction against
HIV-1 infection resides in variable region 1 (V1) of the
SPRY domain [32,33]. In the case of HIV-2 infection,
we previously found that three amino acid residues of
TEP at the 339™ to 341°% positions of Rh TRIM5a. V1
are indispensable for restricting particular HIV-2 strains
that are still resistant to CM TRIM5a [34].

The SPRY domain is thus thought to recognize viral
cores. Biochemical studies have shown that TRIM5a
associates with CA in detergent-stripped N-MLV virions
[40] or with an artificially constituted HIV-1 core struc-
ture composed of the capsid-nucleocapsid (CA-NC)
fusion protein in a SPRY domain-dependent manner
[41]. Ylinen et al. mapped one of the determinants of
Rh TRIM5a sensitivity to a loop between a-helices 4
and 5 (L4/5) of HIV-2 [42]. In the present study, we
found that the 120™ amino acid of HIV-2 CA, which is
the determinant of CM TRIMb5a sensitivity, also contri-
butes to Rh TRIM5a susceptibility. Furthermore, studies
on chimeric viruses between Rh TRIM5a -sensitive HIV-
2 and -resistant SIVmac revealed that multiple regions
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in the N-terminal half of SIVmac CA including L4/5
contribute to the escape of SIVmac from Rh TRIM5a.

Methods

DNA constructs

The HIV-2 derivatives were constructed on a back-
ground of infectious molecular clone GH123 [43]. Con-
struction of GH123/Q, the mutant GH123 possessing Q
at the 120" position of CA protein, and SIVmac239/P,
the mutant SIVmac239 possessing P at the 118" posi-
tion of CA, were described previously [44]. The CA L4/
5 of GH123 or GH123/Q was replaced with the corre-
sponding segments of SIVmac239 CA using site-directed
mutagenesis with the PCR-mediated overlap primer
extension method [45], and the resultant constructs
were designated GH123/CypS or GH123/CypS 120Q,
respectively. The GH123 derivative with L4/5 of SIV-
mac239, Q at the 120", and A at the 179" position of
CA (GH123/CypS 120Q 179A) was generated by site-
directed mutagenesis on a background of GH123/Cyp$S
120Q.

Chimeric GH123 containing the whole region of SIV-
mac239 CA (GH/SCA) was generated by site-directed
mutagenesis. Restriction enzyme sites NgoM IV and Xho
I, located in the LTR and p6 cording region, respec-
tively, were used for DNA recombination. To obtain the
NgoM IV-Xho 1 fragment containing the CA region, we
performed four successive PCR reactions using GH123
and SIVmac239 as templates. The primers used in these
reactions were GH114F (5-TTGGCCGGCACTGG-3'),
SCAIlFor (5-CCAGTACAACAAATAGG-3’), SCA1 Rev
(5'-CCTATTTGTTGTACTGG-3’), SCA2 For (5-
GCTAGATTAATGGCCGAAGCCCTG-3’), SCA2 Rev
(5-CAGGGCTTCGGCCATTAATCTAGC-3’), and
2082R (5-GACAGAGGACTTGCTGCAC-3)).

The first PCR reaction used GH123 as a template and
GH114F and GHSCA1 Rev as primers, the second used
SIVmac239 as a template and GHSCA1l For and
GHSCAZ2 Rev as primers, and the third used GH123 as
a template and GHSCA2 For and 2082R as primers.
The resultant 1%, 2™, and 3™ fragments were used as
templates in the fourth reaction with GH114F and
2082R as primers. The resultant NgoM IV-Xho I frag-
ment was transferred to GH123. GH/SCA derivatives
GH/SCA N-G, GH/SCA VD, GH/SCA CypG, and GH/
SCA TE were constructed by site-directed mutagenesis
on a GH/SCA background.

To construct GH/NSCG, a GH123 derivative contain-
ing the N-terminal half (from 1°* to 120'") of SIV-
mac239CA, we performed three successive PCR
reactions. The first used GH/SCA as a template and
GH114F and NSCA Rev (5-GGGATTTTGTTGTCTG-
TACATCC-3’) as primers, the second used GH123 as a
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template and NSCA For (5-GGATGTACAGACAA-
CAAAATCCC-3’) and 2082R as primers. The resultant
1°" and 2™ fragments were used as templates in the
third reaction with GH114F and 2082R as primers. The
resultant NgoM IV-Xho 1 fragment was transferred to
GH123. The GH/NSCG derivative GH/GSG was con-
structed by site-directed mutagenesis on a GH/NSCG
background.

Cells

The 293T (human kidney) and FRhK4 (Rh kidney;
American Type Culture Collection, Manassas, VA) were
cultured in Dulbecco’s modified Eagle medium supple-
mented with 10% heat-inactivated fetal bovine serum
(FBS). MT4, a human CD4 positive T cell line immorta-
lized by human T cell leukemia virus type 1 [46], was
maintained in RPMI 1640 medium containing 10% FBS.

Viral propagation

Virus stocks were prepared by transfection of 293T cells
with HIV-2 GH123 derivatives using the calcium phos-
phate co-precipitation method. Viral titers were mea-
sured with the p27 RETROtek antigen ELISA kit
(ZeptoMetrix, Buffalo, NY).

Recombinant Sendai virus (SeV) carrying Rh, CM, or
CM SPRY(-) TRIM50 was described previously [14,34].
Green fluorescence protein (GFP) expressing HIV-1 car-
rying SIVmac239 L4/5 (HIV-1-L4/5-GFP) was prepared
as described previously [47].

Viral infection

MT4 cells (2 x 10°) were infected with SeV expressing
each of the TRIM5as, at a multiplicity of infection
(MOI) of 10 plaque-forming units (pfu) per cell and
incubated at 37°C for 9 h. Cells were then superinfected
with 20 ng of p25 of HIV-2 GH123 or derivatives, or 20
ng of p27 of SIVmac239 or derivatives. Culture superna-
tants were collected periodically, and the levels of p25 or
p27 were measured with the RETROtek antigen ELISA
kit.

Particle purification and Western blot analysis

Culture supernatant of 293T cells transfected with plas-
mids encoding HIV-1 NL43 and HIV-2 GH123 deriva-
tives was clarified using low-speed centrifugation. The
resultant supernatants were layered onto a cushion of
20% sucrose (made in PBS) and centrifuged at 35,000
rpm for 2 h in a Beckman SW41 rotor. After centrifuga-
tion, the virion pellets were resuspended in PBS and
applied to sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE). Virion-associated proteins
were transferred to a PVDF membrane. CAs and cyclo-
philin A (CypA) were visualized with the serum from
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SIV-infected monkeys or the anti-CypA antibody (Affi-
nity BioReagents, Golden, CO), respectively.

Saturation assay

HIV-2 or SIVmac derivative particles were prepared by
co-transfection of the relevant plasmids with one encod-
ing vesicular stomatitis virus glycoprotein (VSV-G) into
293T cells, and culture supernatants were collected two
days after transfection. One day before infection, FRhK-
4 cells were plated at a density of 2 x10 * cells per well
in a 24-well plate. Prior to GFP virus infection, the cells
were pretreated for 2 h with 800 ng of p25 of each of
HIV-2 or SIVmac derivatives pseudotyped with VSV-G.
Immediately after pretreatment, cells were washed and
infected with 10 ng of p24 of the HIV-1-L4/5-GFP
virus. Then, 2 h after infection, the inoculated GFP
viruses were washed and the cells cultivated in fresh
media. Two days after infection, GFP-positive cells were
counted with a flow cytometer.

Molecular modeling of hexameric HIV-2 CA
The crystal structures of the HIV-2 CA N-terminal

“domain at a resolution of 1.25A [PDB: 2WLV] [48], HIV-

1 CA C-terminal domain at a resolution of 1.70A (PDB
code: 1A80) [49], and hexameric HIV-1 CA at a resolu-
tion of 1.90A [PDB:3H47] [50] were taken from the
RCSB Protein Data Bank [51]. Three-dimensional (3-D)
models of monomeric HIV-2 CA were constructed by
the homology modeling technique using ‘MOE-Align’
and ‘MOE-Homology' in the Molecular Operating Envir-
onment (MOE) version 2008.1002 (Chemical Computing
Group Inc., Quebec, Canada) as described [44,52]. We
obtained 25 intermediate models per one homology
modeling in MOE, and selected those 3-D models which
were intermediate with best scores according to the gen-
eralized Born/volume integral methodology [53]. The
final 3-D models were thermodynamically optimized by
energy minimization using an AMBER99 force field [54]
combined with the generalized Born model of aqueous
solvation implemented in MOE [55]. Physically unaccep-
table local structures of the optimized 3-D models were
further refined on the basis of evaluation by the Rama-
chandran plot using MOE. The structures of hexameric
HIV-2 CA were generated from the monomeric struc-
tures by MOE on the basis of the assembly information
of hexameric HIV-1 CA crystal structures [50].

Results

The L4/5 loop of SIVmac239 CA and Q and A at the 120%™
and 179" positions of CA are not sufficient for HIV-2 to
evade Rh TRIM50-mediated restriction

Previously, we evaluated the antiviral effect of CM and
Rh TRIM5a and found that CM TRIM5a. could restrict
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HIV-2 GH123 carrying P at the 120t position of CA,
but failed to restrict the HIV-2 GH123 mutant in which
P was replaced with Q (GH123/Q) [44] (Figure 1A). In
contrast, Rh TRIM5a could restrict both viruses [34]
(Figure 2A and 2B). Although CA of HIV-2 GH123 and
SIVmac239 share more than 87% amino acid identity
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(Figure 1B), CM and Rh TRIMb5ass failed to restrict SIV-
mac239 (Figure 2C).

Since wild type SIVmac239 possesses Q at the 11
position of CA (analogous to the 120" position of
GH123 CA), we constructed mutant SIVmac239 carry-
ing P at the 118" position (SIVmac239/P), and found

8th
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Figure 1 Schematic representation of chimeric viral CAs. (A) White and black bars denote HIV-2 GH123 and SIVmac239 sequences,
respectively. +++, ++, +, and - denote more than 1000-fold, 100- to 1000-fold, 5- to 100-fold, and less than 5-fold suppression of viral growth,
respectively, compared with viral growth in the presence of negative control CM SPRY(-) TRIMSa on day 6. Peak titer Av. denotes average titers
in the presence of CM SPRY(-) TRIM5a on day 6 of two independent experiments. (B) Alignments of amino acid sequences of GH123 and
SIVmac239 CAs. Dots denote amino acid residues identical to one of the GH123 CA and dashes denote lack of an amino acid residue present in
GH123 CA. Boxes show the regions replaced between GH123 and SIVmac239.
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Figure 2 MT4 cells were infected with recombinant SeV expressing Rh (white circles), CM (black triangles), or CM SPRY(-) (white
squares) TRIM5a. Nine hours after infection, cells were superinfected with GH123, SIVmac239 or their derivative viruses. Culture supernatants
were separately assayed for levels of p25 from GH123 or p27 from SIVmac239. Error bars show actual fluctuations between levels of p25 or p27
in duplicate samples. A representative of two independent experiments is shown.

that CM and Rh TRIMS5as could restrict the mutant
virus [44] (Figure 2D). These results indicate that Q at
the 118" position of CA is required to evade restriction
by CM and Rh TRIM5as, although Rh TRIM5a could
restrict GH123/Q. In the case of Rh TRIM5q, it has
been reported that Rh TRIM5a sensitivity determinants
lie in the loop between a-helices 4 and 5 of CA protein,
equivalent to the cyclophilin A (CypA) binding loop of
HIV-1 [42]. This conclusion was made after Rh
TRIM5a. restricted SIVmac-based SIV H2L in which the
L4/5 was replaced with that of HIV-2. However, when
we constructed a GH123 derivative in which L4/5 was
replaced with that of SIVmac239 (GH123/CypS), the
reciprocal virus of SIV H2L, we found that Rh TRIM5a
still restricted this virus very well (Figure 2E), indicating
that SIVmac239 L4/5 alone is not sufficient for HIV-2
to evade Rh TRIMb5a restriction.

We then constructed a GH123 derivative with L4/5 of
SIVmac239 (CypS) and Q at the 120" position of CA
(GH123/CypS 120Q). Contrary to our expectations, Rh
TRIM5a still fully restricted this virus (Figure 2F). Since
we previously found that the amino acid change at the
179" position of HIV-2 CA correlated with plasma viral

load in infected individuals [56], we next replaced P at
the 179™ position of GH123/Cyp$S 120Q CA with ala-
nine (A) of SIVmac239 CA analogous to the 179™ posi-
tion of GH123 CA to generate GH123/CypS 120Q179A.
However, Rh TRIM5a also completely restricted this
virus (Figure 2G). The peak titers of GH123/CypS 120Q
and GH123/CypS 120Q179A in cells expressing Rh
TRIM5a. were approximately 1000 times (+++ in Figure
1) and 300 times (++ in Figure 1), respectively, lower
than those in cells expressing CM TRIM5a lacking the
SPRY domain, CM SPRY (-) TRIM5a, a negative control
for functional TRIM5a (Figure 2F and 2G). Although
this result suggests that the 179" amino acid slightly
contributes to evade Rh TRIMS5aq, it is clear that L4/5 of
SIVmac239 CA and Q at the 120" and A at the 179"
positions of CA were insufficient to evade Rh TRIM5a.-
mediated restriction.

In the case of CM TRIMb5aq, viruses carrying P at the
120™ position (GH123, GH123/CypS, and SIVmac239/
P) were restricted by CM TRIMb5a, whereas all other
viruses bearing Q (GH123/Q, GH123/CypS 120Q,
GH123/CypS 120Q179A, and SIVmac239) were not
(Figures 1 and 2). These results are in good agreement
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with our previous conclusion that glutamine at the 120
position of HIV-2 CA alone is sufficient to evade CM
TRIMb5a restriction [34,44].

The N-terminal half of SIVmac239 CA is sufficient to
evade Rh TRIM5a

To confirm that CA contains all determinants for

restriction by Rh TRIM5a, we constructed a chimeric
GH123 containing the whole region of SIVmac239 CA
(GH/SCA). This virus could grow in the presence and
absence of Rh TRIM5o (Figures 1 and 3A), clearly
excluding the possibility that some of the determinants
lie outside the CA. We then generated a chimeric
GH123 containing the N-terminal half (from the 1* to
120™) of SIVmac239 CA (GH/NSCG) to further narrow
down the determinant for restriction by Rh TRIM5a.
Although GH/NSCG grew to lower titers than GH/SCA,
even in the absence of Rh TRIM5q, this virus could also
grow in the presence of Rh TRIM5a (Figures 1 and 3B).
These results suggest that the N-terminal half of SIV-
mac239 CA is almost sufficient to evade Rh TRIM5q,,
even though the 179™ amino acid of the C-terminal half
possessed a slight effect of restriction.

Multiple sites in the N-terminal half of SIVmac239 CA
contribute to evasion from restriction by Rh TRIM50.

In the N-terminal half of GH123 CA, 19 amino acid
residues differ from those of SIVmac239. We grouped
these differences into six regions as shown by boxes in
Figure 1B, and evaluated their contribution to evasion
from Rh TRIM5a by replacing each region of GH/SCA
with the corresponding region of GH123. Rh TRIM5a
completely restricted the GH/SCA derivative with the
GH123 L4/5 (CypG) (GH/SCA CypG) (Figures 1 and
3C), consistent with a previous study [42]. Rh TRIM5a
moderately restricted the GH/SCA derivative with
threonine (T) and glutamic acid (E) of GH123 at the
109" and 111*" positions, respectively (GH/SCA TE)
(Figures 1 and 3D). These results suggest that not only
L4/5 but also the 107™ and 109" of amino acid residues
of SIVmac239 CA (analogous to the 109" and 111" of
GH123 CA) contribute to evasion from restriction by
Rh TRIM5a.

Moreover, Rh TRIM5a slightly but significantly
restricted the GH/SCA derivative with the GH123 N-
terminal portion from the 5% to 13 amino acid resi-
dues (N-G) (GH/SCA N-G) (Figures 1 and 3E) (p <
0.05, t-test, n = 4), indicating that the SIVmac239 N-
terminal portion from 5% to 12 (N-S) (analogous to
N-G) is also important in evasion from Rh TRIM5a.
Consistent with this result, Rh TRIM50 which failed to
restrict GH/NSCG, could restrict the GH/NSCG
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Figure 3 MT4 cells were infected with recombinant SeV
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TRIMS5o. Nine hours after infection, cells were superinfected with
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show actual fluctuations between levels of p25 in duplicate
samples. A representative of two independent experiments is
shown.
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derivative with N-G (GH/GSG) (Figures 1 and 3F). On
the other hand, Rh TRIM5a failed to restrict the GH/
SCA derivative with the valine (V) and aspartic acid (D)
of GH123 at the 27™ and 29" positions, respectively
(GH/SCA VD) (Figures 1 and 3G). It should be noted,
however, that the growth capability of GH/SCA VD in
MT4 cells was extremely low even in the absence of
TRIMb5a (Figure 3G), and further studies are necessary
to address the contribution of this region to viral sensi-
tivity to Rh TRIM5a.. Similarly, the GH/SCA derivative
with glutamic acid (E) and D of GH123 at the 71° and
75™ positions (GH/SCA ED) (Figure 1) did not grow in
MT4 cells expressing CM SPRY (-) TRIM5a, thus, we
were unable to evaluate the effect of these sites. Taken
together, we conclude that multiple sites in the N-term-
inal half of SIVmac239 CA (N-S, CypS (L4/5), and the
107, 109", and 118™ amino acid residues) contribute
to evasion from restriction by Rh TRIM5q..

We previously reported that a mutant CM TRIM5a
possessing TEP instead of Q at the 339" position (CM
Q-TFP TRIM5a) potently restricted GH123/Q [34]. In
the present study, CM Q-TFP TRIM5a showed nearly
the same spectrum of virus restriction as Rh TRIM5a as
it completely restricted GH/SCA CypG, moderately
restricted GH/SCA TE and SIVmac239/P, and only
slightly restricted GH/SCA N-G (data not shown).
These results indicate that the virus restriction specifi-
city of Rh TRIM5a is highly dependent on the three
amino acid residues 339™-TFP-341°,

CypA was not incorporated into GH123, SIVmac239 or
their derivative virus particles

It has been reported that CypA was incorporated into
group M HIV-1, but not HIV-2 or SIVmac particles
[567]. To confirm that the replacement of CA between
GH123 and SIVmac239 did not augment CypA incor-
poration, we performed Western blot analysis of viral
particles from GH123, SIVmac239, and their derivatives.
As shown in Figure 4 (upper panel), CypA proteins
were clearly detected in the particles of HIV-1 NL43 but
not in those of GH123, GH/SCA, GH/SCA CypG or
SIVmac239, although the amount of their CA proteins
was almost comparable (Figure 4, lower panel). This
result indicates that the replacement between GH123
and SIVmac239 did not augment their CypA incorpora-
tion ability.

Rh TRIM5o-resistant HIV-2 derivative virions showed
impaired saturation activity to TRIM5a in Rh cells

It is known that TRIM5o-mediated restriction of retro-
viral infection is saturated when cells are exposed to
high doses of restriction-sensitive viral particles [58-61].
To determine whether the amino acid substitutions we
generated would affect the viral ability to saturate
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Figure 4 Western blot analysis of CA and CypA in particles of
GH123, SIVmac239 and their derivatives. Viral particles from HIV-
1 NL43, HIV-2 GH123, SIVmac239, and their derivatives were purified
by ultracentrifugation through a 20% sucrose cushion. A total of 120
ng of p24 of HIV-1, p25 of HIV-2 GH123 derivatives or p27 of
SIVmac239 derivatives was applied for gel electropholesis. Cyp A
(upper panel) and CA (lower panel) were visualized by Western
blotting (WB) using an anti-CypA antibody and serum from a SIV-
infected monkey, respectively.

TRIMb5a restriction, Rh FRhK4 cells were pre-treated
with equal amounts of VSV-G pseudotyped HIV-2
GH123, SIVmac239, and their derivative viruses. The
pretreated cells were then infected with VSV-G pseudo-
typed GFP expressing HIV-1 carrying SIVmac239 L4/5
(HIV-1-L4/5S-GFP) [47], since we wanted to exclude
the effects of endogenous CypA on GFP-expressing
virus in FRhK4 cells. The susceptibility of particle-trea-
ted cells to virus infection was determined by the per-
centage of GFP-positive cells.

Cells treated with HIV-2 GH123 particles showed
enhanced susceptibility to HIV-1 infection compared
with non-treated cells (Figure 5), demonstrating that
TRIM5a in FRhK4 cells was saturated by the high dose
of the particles. In contrast, cells treated with SIV-
mac239 particles showed very low levels of enhance-
ment. Cells treated with particles carrying GH123/Q
showed similar levels of enhanced susceptibility to HIV-
1 infection to those of HIV-2 GH123, while cells treated
with particles of GH123/CypS, GH123/CypS 120Q, GH/
SCA CypG or SIVmac239/P showed intermediate levels
of enhancement (Figure 5).

On the other hand, cells treated with particles carrying
GH/NSCG, GH/SCA, and GH/SCA N-G showed similar
levels of enhancement of HIV-1 susceptibility to those
of SIVmac239 (Figure 5). These results are roughly con-
sistent with our data shown in Figures 2 and 3, but
there are two differences. First, Rh TRIM5a could
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% of GFP positive cells
by saturation of TRIM5o.

Figure 5 Activity of GH123, SIVmac239, and their derivatives to
saturate TRIM5c. in Rh cells. (A) Rh FRhK-4 cells were pretreated
with equal amounts of VSV-G pseudotyped particles (800 ng of p25
or p27) of GH123, GH123/Q, GH123/CypS, GH123/CypS 120Q, GH/
NSCG, GH/SCA N-G, GH/SCA CypG, GH/SCA, SlVmac239 or
SIVmac239/P for 2 h. Cells were then infected with the VSV-G
pseudotyped GFP-expressing HIV-1 vector carrying SIVmac L4/5.
Data from triplicate samples (means + SD) expressed as % GFP
positive cells subtracted with the value of mock-treated cells
(24.88%) are shown. Statistical significance of differences was
calculated using the t-test. Asterisks above bars show differences
between indicated viruses and SIVmac239. ***, P < 0007;

** P < 001; ns, not significant. The statistical significance of
differences between GH123 and GH123/CypS and that between
GH123 and GH/SCA CypG were both < 0.001.

completely restrict GH123/CypS and GH123/CypS
120Q (Figure 2), while particles of these viruses showed
decreased levels of enhancement compared with those
of GH123 or GH123/Q (Figure 5). Second, Rh TRIM5a
could slightly restrict GH/SCA N-G (Figure 3E), while
particles of this virus failed to saturate Rh TRIM5a (Fig-
ure 5). Although the precise reasons for these differ-
ences are unclear at present, similar differences were
previously reported in HIV-1 CA mutant constructs,
and might be due to differences in core stability among
mutant viral particles [62]. Nevertheless, our data in Fig-
ure 5 clearly indicate the importance of 1L4/5 (compare
GH123 with GH123/CypS, GH/SCA with GH/SCA
CypG) and other CA regions (compare GH123 with
GH/SCA CypG, SIVmac239 with SIVmac239/P) in the
viral ability to saturate TRIM5a in Rh FRhK4 cells, and
suggest that the multiple sites in the N-terminal half of
GH123 CA affect its binding to Rh TRIM5q..

Finally, we checked viral release and maturation/pro-
cessing of GH123, SIVmac239, and their derivative
viruses by a western blot for the lysate of viral producer
cells (Figure 6, upper panel) and viral particles (Figure 6,
lower panel), since viral maturation is essential for

precursor
Gag

CA

Figure 6 Western blot analysis of lysates of viral producer cells
and viral particles. Viral proteins in the lysate of equal number of
viral producer cells (upper panel) and particle fraction of equal
volume of culture supernatant of viral producer cells (lower panel)
were visualized by WB using serum from an SIV-infected monkey.

TRIMb5a recognition. CA proteins in the cells and
released viral particles were clearly detected. CAs with
SIVmac239 L4/5 showed slightly reduced mobility com--
pared with those with GH123 L4/5. Although there
were small differences in the amounts of CA among
viruses tested, there was no difference in the ratio of
intracellular CA to those in the released viral particles.
It should be also mentioned that there was no difference
in the ratio of Gag precursors to processed CA in the
viral producer cells. These results indicated that viral
release and maturation/processing of the derivative
viruses occurred normally.

Structural model of HIV-2 GH123 CA

To gain a structural insight into the mechanisms by
which Rh TRIM5a. recognizes HIV-2 CA, three-dimen-
sional (3-D) models of monomeric and hexameric
HIV-2 GH123 CA were constructed using homology-
modeling based on the crystal structures of the HIV-2
CA N-terminal domain [48], HIV-1 CA C-terminal
domain [49], and the hexameric HIV-1 CA [50]. All
amino acid residues conferring sensitivity to Rh
TRIM5a restriction (N-G, CypG (L4/5), the 109® T,
111™ E, and 120™ P) are located on the surface of CA
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(Figure 7A, C and 7D), suggesting that these positions
are involved in interaction with Rh TRIM5a. On the
other hand, amino acid residues that impaired viral
growth in the absence of TRIM5a (27 V, 29 D, 71°
E, and 75™ D) are located on the side of CA (Figure 7A
and 7D). Although we were unable to determine the
effect of these amino acid residues on viral sensitivity to
Rh TRIMb5a restriction, the structural models suggest
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that these sites are buried inside multimerized CA. It is
therefore unlikely that they are involved in the direct
interaction of CA with Rh TRIM5a.

Discussion

A previous study on the recombination between HIV-2
ROD and SIVmac showed that the CA region corre-
sponding to the CypA binding loop of HIV-1 (L4/5) is

Figure 7 Three-dimensional structural models of GH123 CA. (A) Structure of the N-terminal half of CA monomer. The model was
constructed by homology-modeling using "MOE-Align” and “MOE-Homology” in the Molecular Operating Environment (MOE) as described
previously [73,74]. N-G, dark purple; the 27"V and the 29D, pink; Cyp G (L4/5), orange; the 71°'E, green; the 75D, light purple; the 109" T, dark
blue; the 111™ E, light blue; and the 120™ P, red. The structure of CA hexamer from the top (B and C) and side (D) is shown.
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the determinant for susceptibility to Rh TRIMb5a [42]. A
subsequent study on HIV-1 and SIVagmTAN showed
that the loop between helices 6 and 7 (L6/7) also contri-
butes to Rh TRIM5a susceptibility [63]. In the present
study, we showed that the L4/5 and the 120™ amino
acids located in L6/7 were required but not sufficient
for HIV-2 to evade Rh TRIM5a-mediated restriction.

In addition to L4/5 and L6/7, we found that the N-
terminal portion (from the 5™ to 12 amino acid
residues), and 107" and 109 amino acid residues in o-
helix 6 of SIVmac239 CA are required for Rh TRIM5a
evasion. The 3-D models of CA showed that the analo-
gous regions of GH123 CA are located on the surface of
the CA core structure, suggesting that these sites are
involved in the direct interaction of CA with Rh
TRIMS5a. Our results are in good agreement with a pre-
vious report in which the HIV-1 derivative with an
entire CA and Vif of STVmac239 could replicate in Rh
cells [64]. In addition, we observed that the HIV-1 deri-
vative with L4/5 and L6/7 of CA and Vif of SIVmac239
(NLScaVR6/7S) that replicates in CM cells [47] failed to
replicate in Rh cells (Kuroishi et al., unpublished data).

The growth ability of GH123 was higher than that of
SIVmac239 in SeV-infected MT4 cells, but that of many
GH123 derivatives with SIVmac239 CA sequences was
lower than that of the parental GH123 and comparable
with that of SIVmac239 (Figures 1, 2, and 3). However,
GH/SCA VD replicated very poorly and GH/SCA ED
did not replicate at all. These results were reproducible
using the viruses produced with independent plasmid
clones, after which Gag processing of these viruses
occurred normally (data not shown). As shown in Figure
7, the 27™ V and 29™ D are in a-helix 1, and the 71 E
and 75" D are in a-helix 4. It is possible that the amino
acid changes at these sites are harmful for the formation
of a multimerized viral core. Supporting this notion, the
27" V and 71° E are highly conserved among different
HIV-2 strains in the Los Alamos sequence database.
Furthermore, the 71°° E and 75™ D are located on the
lateral side of the CA hexametric structure (Figure 7D),
and thus it is possible that these amino acid residues
associate with the neighboring CA hexamer. It is thus
interesting to know the impact of such amino acid
changes on viral core formation.

It has been reported that the CypA-CA interaction
renders HIV-1 more susceptible to Rh TRIM5a restric-
tion [65-68]. We found that HIV-2 CA L4/5 corre-
sponding to the CypA binding loop of HIV-1 had the
biggest impact on Rh TRIM5a susceptibility, although
we could not detect CA-CypA binding (Figure 4). Braa-
ten et al. also reported that neither HIV-2 nor SIV
recruits CypA into their cores, and that drugs that block
CA-CypA interaction have no effect on the titers of
these viruses [57]. CA crystal structures of human T-cell
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lymphotropic virus type 1 [PDB: 1QR]J] [69] and equine
infectious anemia virus [PDB: 1EIA] [70] possess an
exposed loop directed to the surface of the CA core
structure, similar to the HIV-1 CypA binding loop,
while retroviruses such as B-tropic murine leukemia
virus [PDB: 3BP9] [71] and Jaagsiekte sheep retrovirus
[PDB: 2V4X] [72] do not. It is reasonable to assume
that this HIV-2 loop would interact with certain host
factors other than CypA, and consequently is an attrac-
tive target for TRIM5a.

The differences in the L4/5 amino acid sequence
among different strains of HIV-2, SIVmac, and SIVsmm
are shown in Figure 8. Of these, SIVmac-specific amino
acid residues are the 88™ A, 90"-QQA-92™, and 99" §
(Figure 8 boxes). Ylinen et al. reported that SIVmac QQ
LPA, the mutant SIVmac containing HIV-2-specific
LPA instead of QQ at the 90" to 9274 positions, was
still not restricted by Rh TRIM5a [42], suggesting that
the 88™ and 99™ amino acids or all amino acid substitu-
tions in L4/5 between SIVmac and HIV-2 are involved
in resistance to Rh TRIMb5a restriction.

We previously reported that the TFP motif in the
SPRY domain of Rh TRIM5a is important in restriction

82 99
H2A GH123 AQHPIHGHLPAEQLRDHR]
H2A ROD V..... B N PR R D
H2A UC2 oo ol
H2A ALT VA.. E
H2A D194 ... 0 el
H2A BEN S..... N PR N
H2B KR020 V..... Y PR P I
H2B UC1 Q..... S P R
H2U 12034 T...NQ.|.P..|....E.
MAC 239 L...Q.ALRO-Il....E.IS
MAC 95058 L...Q0.ALIKRO-...... S
MAC NN142 L...QQALIO-|. ..... S
MAC MNES8 L...Q0ALIO-. ..... S
SMM PGM53 L...Q0. L. ...l
SMM SMES543 L...QJd. 4. .-} ...E.
SMM PBJ14 L...Q.J.l.LlT.B. .. .E.|.
Figure 8 Alignments of amino acid sequences of the CA L4/5
region of HIV-2, SlVmac, and SIVsmm selected from the Los
Alamos databases. Dots denote the amino acid identical to one of
the GH123 CA and dashes denote lack of an amino acid residue
that is present in GH123 and other viruses. Boxes show the site of
SIVmac-specific amino acid residues. H2A, B, and U represent HIV-2
group A, B, and U, respectively. MAC represents SIVmac, and SMM
denotes SIVsmm.

— 192 —



Kono et al. Retrovirology 2010, 7:72
http://www.retrovirology.com/content/7/1/72

of HIV-2 strains that are not restricted by CM TRIM5a
[34]. In the present study, we confirmed that this motif
is both necessary and sufficient to restrict various HIV-
2-SIVmac chimeras that are restricted by Rh TRIM5c.
If the TFP motif in the SPRY domain of Rh TRIM5a is
directly involved in interaction with viral CA, it is not
clear why multiple regions of SIVmac239 are necessary
for evasion from TRIM5a with a TFP motif. We pre-
viously constructed the 3-D structural model of the
SPRY domain [36] using homology modeling. It would
therefore be of interest to construct a 3-D binding
model of CA and TRIMS5a, and to understand how the
339™-TFP-341% motif of Rh TRIM5a. affects recognition
of the CAs that differ at multiple positions.

Conclusion

We found that multiple regions of the SIVmac CA, not
only L4/5 and the 118" amino acid but also the N-
terminal portion (from the 5% to 12™ amino acid resi-
dues), and the 107" and 109" amino acid residues, are
necessary for complete evasion from Rh TRIM5a
restriction.
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