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Fig.7 Anti-tumor activity induced by immunization with OVA-C-CPE
194 N309A/S313Ain an E.G7-OVA cancer model.

C57BL/6 mice were nasally immunized with vehicle, OVA, OVA-C-
CPE 303, OVA-C-CPE 194 or OVA-C-CPE 194 N309A/S313A (5 mg
of OVA) once a week for three weeks. Seven days after the last
immunization, the mice were injected s.c. on the right back with

1 x 108 E.G7-OVA cells. The tumor growth was monitored by
measuring two diameters, and the tumor volumes was calculated
as a x b x b/2, where a is the maximum diameter of the tumor and
b is the minimum diameter of the tumor. Data are means £+ SEM
(n=5~6). The results are representative of three independent

experiments.
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Fig.8 Preparation of V3-C-CPE mutant.

A) Schematic illustration of V3-C-CPE mutant. V3 was fused with
C-CPE mutant at the N-terminal of C-CPE mutant, resulting in
V3-C-CPE mutant. B) Purification of V3-C-CPE mutant. V3-C-CPE
mutant was expressed in E. coli and isolated by anti-His tag affinity
chromatography. The purification of V3-C-CPE mutant was confirmed
by SDS-PAGE followed by staining with Coomassie Brilliant Blue
(CBB) and by immunoblotting with an anti-his-tag antibody. Lane1,
V3-C-CPE 303; lane2, V3-C-CPE 194N309A/S313A.
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Fig.9 Binding of V3-C-CPEs to claudin-4. Wild-type BV (WT-BV),
mouse claudin-1 displaying BV (mCL1-BV) or -4 (mCL4-BV) was
absorbed onto immunoplate, and then V3-C-CPEs were added
to the well. V3-C-CPEs bound to BV was detected by an
anti-his-tag antibody followed by goat anti-mouse IgG (H+L)-
HRP. Data are means £ SD (n=4)
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LE-REERELTFREL. €D CL-4 FANER
EEL/T:O

B. IR A &

B-1. OVA Fi& C-CPE194 N309A/S313A D{EH!
OVA Fi& C-CPE194 N309A/S313A #3 plasmid
D 1)

C-CPE 194 N309A/S313A D & & F &
pET16b [T # & A A 7= pET-C-CPE 194
N309A/S313A TS XIK#% AL iz, pET-C-CPE
194 N309A/S313A % Nde I (New England
Biolabs., Inc) [ZT 37°C. 120 7 40¥EL, Tz /—
JL/oonmiL L., T4/—)LiEBET o=,
— A .2 D0 ME#EMAGEAYT
(Fuka-25:5" —tataggtacccgggactagttaattaagggagga

ggaggatctggaggaggaggatctggaggage—3’ , Fuka—26:
5’ —tagctcctccagatcctoctcctccagatcctoctectecctt
aattaactagtcccgggtaccta—3') ZN\ATUF A XE
ETCHERLE,. L FI/O—V T YA iR
Nde 1 binding % ,ZHD DNA Z{ERLT=. W
7% T4 DNA ligase (New England Biolabs., Inc) %
FAWT 16CITT—BI17—av RIBEToT=
‘/onizS1475—avEMED/—)L/oa0k
VL, T8/ —IVIEBL =& Nde 1 ZRAWT
37 °C.2 BB L=, SAT—PavEYER
BE DH5a (TOYOBO, Co., Ltd, Japan) ZiK E
T15 HELEE . 42°CT 40 # heat shock
ZiTWLW.KkET 3 SEBELE, ED&E SOC
tEHhZ ML 37°CIST 50 s> HEEL=HR, 100
ug/ml ampicilin sodium (SIGMA aldrich Japan Co,,
Ltd) £5EMLIz LB H5#th (LA i) TL—HkIZ
BEL—BEEL LA i % 3 ml 93FLE:
Sterile Culture Tubes (IWAKIGLASS, Co., Ltd) [Z
1 aa=—92EvI7vIL, —BRBBEL
#®.ELDDBELKBEZREYILT=, QIA prep Spin
Miniprep kit (50) (QIAGEN Sience, USA) IZTKEZ
B &Y plasmid ZFEE LTz, BoN Tz plasmid &
—OTREHL. BHOBEFEIE—EHTD
CEERERELT=,
LERDOBRETHELISIRIFIZHL Kon 1,
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Pac 1 (New England Biolabs., Inc) [ZT 37°C. 120
SEIREBERNEL, 7z/—)L/o00/K)LLHH,
IA/— ik %E{T>f-. —7H . OVA-C-CPE
plasmid #¥5 &L, Kpnl, Pacl ZFL\T37°C, 120
SUIBL, Jz/—)L/o00/KLLHE, T4/ —
IViEBRZE1To1=. 1% TAE FILICTERKREET
L. BHID OVA MO/AVRZEYIYHL, BEEIT-

t=o WA D DNA % T4 DNA ligase ZRLT
16 CIZT—MBSA 45— a3V RIEEToT=. #5

nN=SA5—avEYEI7/—I)L/oa08R)L L
HWH, T4/—ILEERLT =% Spe I (New England
Biolabs., Inc) T37°C, 120 3B LT=, SA45—
AaVEYEKRBE DHS ¢ ICh SV R T74—A—T3
VL (FERFHIEELEK) ( KBEZERLT -,

QIA prep Spin Miniprep kit (50) ICTKBE KLY

plasmid ZHHL=, Bohif=H T ILIZDNTY
— 9 T RfEH L. HsOVA-C-CPE 194
N309A/S313A #O—KL1=TS5RIFEET-,

B-2. OVA & C-CPE194 N309A/S313A # /XY
D YS!
OVA-C-CPE 194 N309A/S313A 3] plasmid

1 ul Z BL21(DE3)(Novagen, Co., Ltd) 10 ul (Z/0
Z.KET 15 HIELEE. 40 #F heat shock
Z17L 3 2REIK L THEL#&. SOC #&ih 100
w Z0Z 37°CT 1 BRfEEEL, LA TL—HIiB
FBL—MRIEELT-. LA b 3 ml #53ELT:
Sterile Culture Tubes (21 IA=—%EvI 7y
L.37°CT—MiRZEELEA LAEMZE 2 ml T
D4 ELT= Sterile Culture Tubes %4 ABEEL.
KIBEEERE 200 ul 2%, 37°CT 3 BFfl
IRESHEELI-, FDE. isopropyl-5-D (=)
thiogalactopyranoside  (IPTG, WaKo
Chemicals Ind., Japan) Z#;EE 0,025, 05,
1.0mM &EZEBHESITHRML, 30 F/=(& 37°CT 3 ¥
BiRESEEL - EDDBEICIY KEEZEUIR
#%.200 ul ™ 1xSDS (625 mM Tris—HCI, 5%
2-mercaptoethanol, 2% sodium dodecyl sulfate
(SDS), 10% glycerol, 0.001% bromophenol blue) [Z
BAEL.KALGNSEBEERME 20 #x3 ET

£
it

Pure



WRBEEHELT=, 4 °C, 14000 rpm T 10 %4
DS BEL, EFZEEULT 99°CT 5 4 REmEt
LY FILELT-, 10% polyacrylamide gel % B
LT 30 mA TESKE (SDS-PAGE) Z1TL).
CBB (Bio—Rad laboratories, Inc., USA) T 1 B[
/L MiliQ THRBLEZ#%E. 62 kDa {Ti1ED
OVA-C-CPE 194 N309A/S313A MZLELE SN T
W2 IPTG REZRELGLDELT,

OVA-C—CPE 194 N309A/S313A $38 plasmid
1 ul % BL21(DE3)(Novagen, Co., Ltd) 10 wl [/
A IKET 15 27 CEE . 40 #E heat shock
Z1TLy 3 K ETHEL-f&. SOC Hih 100
w #MZ 37°CT 1 BRREEL, LA JL—FkIC
BEL-—BEEL, KBEE 10 an=—EE%
LA #Eih 50 ml [2FBL. 37°CT—Hig&EL- (D
=iE#H), FH TA (TERRIFIC BROTH/amp ,
Co., Ltd) H&ih 500 ml IZKIEEIEE
BETEBL,.37°CT 3 BHEIRESEELE. %
D&, REL-FHEBRFEFHICHL IPTG 25
ML 37°CT 3 BREIRESEEL: (KEESE)
#%.10,000 rpm T 1 DEELHBELKXEEZEH
RLf=,

500 ml OKRGEBEERZRDSS 100 ml ZH
BAEEHEORETIZAL, 400 ml [FHBEEHEDR
EHZHEUL=, 100 ml culture DKEEZE buffer A
(10 mM Tris=HCI (pH 8.0), 400 mM NaCl, 5 mM
MgCl,, 0.1 mM phenylmethane sulfonyl fluoride, 1

Invitrogen ,

mM 2-mercaptoethanol, 10% glycerol) 1 ml [ZERiF
L.KALEAGEERQLE 40 % 3 ETL
KGEZEWELT=, 4°C, 14,000 rpm T 15 9 &
D BEL EBEEEURE . SEBIC 2 % TrironX-100
& buffer A & 1 ml MABEFRLEETHT =,
BIDDEEEIEERZ 8 M Urea 88 buffer A & 1
m MABERLEEL, RS EE%R EEEE
URL. JEBRIZ buffer A & 1 ml MZABEKLE
EITVWRESER. T ZTNDBRRES 20 u
[ 4XSDS % 6.7 ul IR, 99°CTMELY LT
JLEL =, 10% polyacrylamide gel Z ALV T
SDS-PAGE #* Tl CBB # & L = # .
OVA-C-CPE 194 N309A/S313A A E[;B{bL-E
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7D buffer Z AR buffer &LT=,

OVA-C-CPE 194 N309A/S313A 38 plasmid
1w Z BL21 10 pl IZMNZR. KET 15 HRELLC
Ft, 45 ¥R heat shock Z4TLY 15 9k ET
BEL-DOL, SOC HEih 100 w %X 37°CT
45 HHEIEEL, LA TL—MIBREL—BIEEL
= KIBE 10 aO0=——38E% LA 1E#1 100 ml
ICBL.37CT—HRIEEL-. ¥H TA it 1
DYMUVIZKIBEEERT A TEHBL.ITCT 2
FERESEELZ. RERED IPTG £FM
L 37°CT 3 BERIRESEEL-, FDH% 10,000
rom T 1 2EEODBLTKBEZEERL, —
20°CTEBEREL,

KBEZKETHEBELLZZ. AIALEEOR
ETFERICHELY, buffer A ZHLNT OVA-C-CPE
194 N309A/S313A D E[BILE 1T o1, buffer A &
1 ml/100 ml culture DENS THRML. 40 D
BERALES 3 [E1To7/=%. 14000 rpm , 15 %
[CTRODBZETO, EFEENRLIZ, T 6 M
guanidine/EDTA , MilliQ , NiSO,, buffer A ZJIBIZ
RLTEEILTHL = HiTrap™ Chelating HP
(GE Healthcare) [CH > ILEHEL . OVA-C-CPE
194 N309A/S313A Z W/ FESH 71z, 100 um @
imidazol & 10 ml THHELI=t. 400 uM D
imidazol & & 10 ml T OVA-C-CPE 194
N309A/SI1BAZBAHEE . FHEE 1 ml T25
L=,

OVA-C-CPE 194 N309A/S313A ASBfELTLY
% buffer  PBS () (137 mM NaCl , 2.68 mM
KClI, 8.14 mM Na,HPO, , 1.15 mM KH,PO,) [Zi&
9 5 1= PD-10 column (GE Healthcare
Bio—Sciences Corp., USA) ZHUL\f=. H5HLH
PD-10 column [Z PBS # 30 ml FHLTEHELL
THE, HiTrap™ Chelating HP THEAHE 1
ml L7z, PBS % 500 ul ¥ 2L T PD-10
column MoBHREFRLIz, RIZHIIMET
JUTJZ (PIERCE Biotechnology Inc., USA) %4Z
#£KZELT BCA™ Protein Assay Kit (PIERCE
Biotechnology Inc., USA) Z LY, 560 nm [ZHIT
5 W X E % Bl F L. OVA-C-CPE 194



N309A/S313A A INVEBEDREFEH LT,

B-3. OVA @4 C-CPE194 N309A/S313A 2> /X7

BEQRERED

FEEOBREIZKYHBI-.PBS ITEBEL
OVA-C-CPE 194 N309A/S313A EHEZ% 100
ug/ml [CTHRHELIz, TDIER 20 pl 1T 4xSDS
6.7 ul £MZA,99 °CT 5 SEMBLYUT L
ELT=. BTV 200 (BREELT 20 77
SAL = — AN FET—H—ELT Broad Range
(BIO-RAD Laboratories, Inc., USA) Z# Rl 1=,
12% polyacrylamide gel ZFALNT 20 mA TER
kB (SDS-PAGE) %#{TL).CBB T 1 BFE%
L MiliQ THEL#&. 62 kDa {TiEIZHFET
% OVA-C-CPE 194 N309A/S313A EHREZHER
L=,

B-4. OVA Ft& C-CPE194 N309A/S313A @ CL4

fEEH

96 57 ELISA plate (Greiner Bio—One GmbH,
Germany) [Z BV-mClaudin—-4 (A F«s7 b0
—JLELT wild BY &Y BV-mClaudin-1) %
0.5 ug/well NDEHT, 4°CT—HeA>Far—3
V¥ HIETEMIELT=, B, PBSC)T 3 E%
#%.16 % J0OyY I —X(DS PHARMA
BIOMEDICAL, Japan) TER. 2 HE7OvF>
J'L.PBS(-) T 3 [E%&LT=, L T, C-CPE
BIDEEELT 0.02 pg/well DEHTEIESR
VINGBEERML,ERT 2 BEAFa -2
avllhk. A1 Fan—3a3r ik, 005%
tween—PBS(-) (T-PBS) T 3 EtiFk. 1.6% 7
AyY IT—XT 3,000 fZFIZHIMLT= Mouse anti
His—tag Ab (Zymed Laboratories Inc., Co, USA) %
MZ, ERT 2 BERISESE =, RIGE. T-PBS
T 3 [E%%%.04% TAYYIT—XT 2,000 {5
|IZFFRLT= Goat anti-Mouse IgG HRP conjugated
ZFRML,ERT 1 BERGSER. RIGE&.
T-PBS T 5 El#% %% . TMB solution (Thermo
Scientific, Rockford, IL) ZMZ7=,20 1> F2
R—htk.2M OFHEE 100 pl/well MZ ., BAE
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ZiElE LT, (450 nm , ref 595 nm)

C. IR#&HR
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D. Z%
D-1. OVA §i& C-CPE194 N309A/S313A 2> /%
1)) 1]

C-CPE194 N309A/S313A [ZkBTIF U E
ERILTAHICHY. ETILREBEELTAASINT
WAIIBTZILTE OVA EDRE I\ E%EE
#Lf-, £ . pET16b-C-CPE194 N309A/S313A
plasimid [T OVA EBE{ZF%E AL . pET16b-
OVA-C-CPE194 N309A/S313A plasimid Z4E&IL

= o YEBLLT= plasmid & BL21 TSV R TH—A—

2avL PTG IZ&5EBERBEAFTELLUEE
N IT7—DREIEIT o1z RELIZ IPTG BES
KURIA/N\YT7—Z AL, AKTA [2&YE D
BOEAEIT o=, EELI=2>/ V&% CBB £
BH KLY Western blot jRIZCKYRIFEHEELT-
(Figg 1), ¥ 8 & h % OVA-C-CPE194
N309A/S313A AV NI BEDHRFEFMEIZ/NAVUF
NBEOHLHN = &M B, OVA-C-CPE194
N309A/S313A DA/ NFBETETNDILE
HEZELT=,

D-2. OVA Fi& C-CPE194 N309A/S313A M CL
fir-h=ukd

YE#L 1= OVA-C-CPE194 N309A/S313A (D CL
EEMHE CLEBEBY ZALVZELSAEB LU CL
HIRMEAZ AL FACS SEICKYRERELT-,

WT. mCL1 B&U mCL4-BY A L/Fa1—T
[ZE4B1EL T, OVA-C-CPE194 N309A/S313A %
HMU.HRP BEMAZRAVTHAEMERIEL -,
Z O %5 B . OVA-C-CPE194 N309A/S313A (%
OVA ZfthL1=35E& TH mCL4 ITH L THEME
KLU, EEHICEEEIROONEN oIz, Tz,
OVA-C-CPE194 N309A/S313A [ OVA-C-CPE
194 [CLELTHEZFLULED mCL4 fEAEMEERLY:
(Fig. 2), &<, CLAERMAZ ALV=FACSIZ&LY
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N-terminus linker C-terminus

OVA C-CPEs

Fig.1 Preparation of OVA-C-CPE mutant.

A) Schematic illustration of OVA-C-CPE mutant. OVA was fused with C-CPE
mutant at the N-terminal of C-CPE mutant, resulting in OVA-C-CPE mutant.

B) Purification of OVA-C-CPE mutant. OVA-C-CPE mutant was expressed

in E. coli and isolated by anti-His tag affinity chromatography. The purification
of OVA-C-CPE mutant was confirmed by SDS-PAGE followed by staining with
Coomassie Brilliant Blue (CBB) and by immunoblotting with an anti-his-tag
antibody. Lane1,0OVA-C-CPE 303; lane2, OVA-C-CPE 194; lane3 OVA-C-CPE
194N309A/S313A.
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Fig.2. Binding of OVA-C-CPEs to claudin-4 displaying BV.

Wild-type BV (WT-BV), claudin-1 displaying BV (CL1-BV) or -4 (CL4-BV)
was absorbed onto immunoplate, and then OVA-C-CPEs were added to
the well. OVA-C-CPEs bound to BV was detected by an anti-his-tag
antibody followed by goat anti-mouse IgG (H+L)-HRP.

Data are means =+

SD (n=4).
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Fig. 3 Binding of OVA-C-CPEs to claudin-4-expressing cell.
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Epithelial cells are pivotal in the separation of the body from the outside environment. Orally
administered drugs must pass across epithelial cell sheets, and most pathological organisms invade the
body through epithelial cells. Tight junctions (T]Js) are sealing complexes between adjacent epithelial
cells. Modulation of TJ components is a potent strategy for increasing absorption. Inflammation often
causes disruption of the TJ barrier. Molecular imaging technology has enabled elucidation of the
dynamics of TJs. Molecular pathological analysis has shown the relationship between TJ components
and molecular pathological conditions. In this article, we discuss TJ-targeted drug development over the

past 2 years.

During evolution from single-celled to multi-celled organisms, a
compartment system developed to separate the inside of the body
from the outside environment. This compartment system is made
up of epithelial and endothelial cell sheets. Sealing of the inter-
cellular space between individual epithelial or endothelial cells is
crucial for compartmentalization.

Tight junctions (TJs) are the apical-most component of inter-
cellular seals. TJs are directly involved both in the sealing of
paracellular spaces and in two major functions of membranes:
the barrier function and the fence function [1,2]. The barrier
function is the first line of defense against pathogenic microorgan-
isms and xenobiotics, and the fence function regulates cellular
polarity. Deregulation of these functions is often observed in
infectious diseases, inflammation and carcinogenesis.

Freeze-fracture electron microscopy analysis has shown that TJs
are a set of continuous and anastomosing strands [3]. A series of
analyses revealed that TJ-seals contain integral membrane pro-
teins, such as occludin, claudins and junctional adhesion mole-
cules (Fig. 1) [4-6]. The claudin protein family comprises 27
members and the junctional adhesion molecule (JAM) family
comprises 3 members [4,7]. A tricellular junction-sealing compo-
nent, tricellulin, has also been identified in epithelial cell sheets
[8]. Occludin and tricellulin contain the tetra-spanning and other
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related proteins for vesicle trafficking and membrane line (MAR-
VEL) domain. Occludin and tricellulin are members of the MAR-
VEL protein family [9]. MarvelD3, another member of the
MARVEL protein family, has been identified as a component of
TJs [10]. The intracellular constituents of TJs, ZO-1 and ZO-2,
determine where the claudin-based strands are formed [11]. Lipo-
lysis-stimulated lipoprotein receptors define where tricellular
junctions are formed [12]. These biochemical components of TJ-
seals were all clarified within a single decade [5,6,13]. Our under-
standing of TJ-components has provided us with a new perspective
on drug delivery and drug discovery for infectious diseases, inflam-
mations and cancers [14-16].

There have been two main progressions in our understanding of
the biology of TJs within the past 2 years: mucosal barrier home-
ostasis and TJ barrier homeostasis. Proof-of-concepts for Tj-tar-
geted drug delivery have been demonstrated. In this article, we
discuss recent topics in TJ biology and TJ-targeted therapy.

Biology of the epithelial barrier

Tight junctions

Epithelium is central to the construction of multicellular animals.
More than 60% of the cell types in the vertebrate body are
epithelial cells. Epithelia enclose and partition the animal body,
line all of its surfaces and cavities, and create internal compart-
ments. Epithelial cells are structurally polarized into a basal
side that is anchored to other tissue, and an apical side that is
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The epithelial barrier. Occludin, a tetra-transmembrane protein, was the first
TJ-constituting protein identified [19]. Claudin was the second [21]. Claudins
comprise a tetra-transmembrane protein family of 27 members. JAMs are

glycosylated transmembrane proteins that belong to the immunoglobulin

superfamily [4]. ZO-1, ZO-2 and ZO-3 are membrane-associated guanylate

kinase proteins composed of a PSD95/DIg/ZO-1 domain, an SH3 domain, a
guanylate kinase domain, an acidic domain and an actin-binding region [68].
Abbreviations: JAMs: junctional adhesion molecules; TJ: tight junction;

unanchored. Adjacent epithelial cells are joined by occluding
junctions called TJs. TJs have pivotal roles in separating the inside
of the body from the outside environment, and in separating the
inside and outside of tissues. TJs also function as a fence by
preventing the free movement of apical membrane components
and basal membrane components in epithelial cells.

TJs are intercellular sealing components located at the apical-
most part of lateral membranes between adjacent epithelial cells
and endothelial cells [17]. Adjacent TJ strands laterally associate
with each other to form a paired strand thereby eliminating the
intercellular space. Freeze fracture electron microscopy analysis
revealed that TJs are continuous anastomosing intramembranous
particle strands or fibrils with complementary grooves [3]. TJs are
composed of transmembrane proteins, such as claudins, occludin
and JAMs, in addition to cytoplasmic plaque proteins, including
Z0-1, ZO-2, ZO-3 and cingulin [18].

Integral membrane proteins

Occludin was the first integral membrane protein identified in TJs
[19]. Occludin has four transmembrane domains and has a mole-
cular mass of approximately 65 kDa. Deletion of occludin does not
affect the structure and function of TJs [20]. Claudins were the
second integral membrane proteins identified in TJs [21]. Claudins

comprise a multigene family with at least 27 members [7]. Clau-
dins are 21-28-kDa proteins with tetratransmembrane domains.
Claudins are key components in the structure and function of TJs
[5,6]. A series of cellular analysis and knockout mouse analysis has
clarified the roles of claudins in TJs [5,22].

Cytoplasmic proteins

Z0-1 was the first identified TJ-associated protein [23]. ZO-1, ZO-2
and ZO-3 contain PDZ-domains and the membrane-associated
guanylate kinase domain. ZO-1, ZO-2 and ZO-3 are involved in
formation of the TJ seal; they bind to the C-terminal cytoplasmic
domain of occludin and claudins through the ZO PDZ domains
[13]. ZO-1 and ZO-2 are crucial components for the definition of TJ
formation [11].

Tricellular tight junctions

There are two types of TJs in epithelial cell sheets: bicellular and
tricellular [2,24,25]. Occludin, claudins and JAMSs are components
of bicellular TJs. Tricellulin (approximately 65 kDa) is the only
integral membrane component in tricellular TJs [8]. Tricellulin
contains four transmembrane domains and shows structural simi-
larity with occludin. Tricellulin is highly concentrated in tricel-
lular TJs, but it is also localized in bicellular TJs [8,26]. Lipolysis-
stimulated lipoprotein, a tricellular TJ-associated protein, defines

~ tricellular contacts in epithelial cell sheets [12].

Mucosal barrier

The intestinal epithelium is where nutrients derived from food are
absorbed, and it is also the first line of defense against microorgan-
isms and xenobiotics. Regulation of the epithelial barrier is crucial
for mucosal homeostasis. Recently, two intestinal epithelium
proteins that regulate the intestinal barrier were identified.

The first protein is guanylyl cyclase C (GCC), which is a trans-
membrane receptor for the endogenous peptides guanylin and
uroguanylin and for bacterial heat-stable enterotoxins [27]. GCC
signaling has a pivotal role in the regulation of intestinal fluid and
electrolyte homeostasis [28]. GCC-knockout mice show increased
intestinal permeability, and GCC-knockdown in Caco-2 cells dis-
rupts TJ integrity. This disruption of the TJ barrier is accompanied
by phosphorylation of myosin II regulatory light chains, which
induces TJ disassembly. GCC signaling is therefore involved in
regulation of the TJ barrier [29].

The second intestinal membrane protein is matriptase. Matrip-
tase is an integral membrane protein with trypsin-like serine
protease activity and is a member of the type II transmembrane
serine protease family [30]. It is widely expressed in all epithelia,
and it is expressed in epithelial cells in the gastrointestinal tract
[30]. Loss of matriptase reduces epithelial barrier integrity and
enhances paracellular permeability. Matriptase facilitates claudin-
2 loss from TJ complexes by indirect regulation of claudin-2
protein turnover by atypical protein kinase C zeta. Interestingly,
matriptase does not affect some of the other TJ components, such
as claudin-1, claudin-3, claudin-4, claudin-8, ZO-1, or E-cadherin
[31].

These findings indicate that GCC signaling and matriptase
might be potent targets for the treatment of intestinal disorders
whose pathogenesis is disruption of the intestinal barrier function
leading to mucosal inflammation and immune activation.
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TJ dynamics

TJs are complexes of transmembrane and peripheral membrane
proteins, including occludin, claudins, ZO-1 and ZO-2 [6]. The TJ
structure is highly dynamic and undergoes continuous remodel-
ing through unique kinetics [32]. The properties of TJs are deter-
mined by these dynamics [33].

Occludin S$408 dephosphorylation reduces paracellular cation
influx by stabilizing the occludin-ZO-1 interaction, leading to
enhancement of claudin-1 and claudin-2 exchange and reduction
of their pore formation at the TJ. By contrast, occludin S408
phosphorylation enhances homotypic occludin-occludin interac-
tions, leading to the release of ZO-1 and formation of claudin-1-
and claudin-2-based pores. Therefore, occludin S408 phosphoryla-
tion is a key factor in the remodeling of the claudin-occludin-ZO-
1 interaction [34].

Claudin-1 is stably localized in TJs [35]. Most occludin is mobile
and diffused within the junctional membrane. By contrast, most
Z0O-1 is continuously exchanged between the membrane and
cytosol pools [34]. Fluorescence recovery after photo-bleaching
(FRAP) analysis provided new insights into the dynamics of TJs.
The perijunctional actomyosin ring contributes to myosin light
chain kinase (MLCK)-dependent TJ] regulation. FRAP analysis
showed that TJ-associated ZO-1 exists in three pools: a fixed pool,
a fast exchangeable pool associated with the cytosolic pool, and a
slow exchangeable pool associated with the cytosolic pool. The
exchange between the TJ pools and the cytosolic pool is regulated
by MLCK [36]. Claudin dynamics differ depending on the parti-
cular claudin. Claudins forming TJ strands showed slower
dynamics than those not forming TJ strands. Distinct claudin
stabilities might affect how TJs regulate paracellular permeability
by altering paracellular flux and paracellular ion permeability [37].

These insights into the dynamics of TJs address the molecular
mechanism of paracellular homeostasis and will hopefully lead to
the development of T]-targeted tissue-specific and solute-specific
drug delivery systems.

Epithelial barrier as the first line of defense against
pathological microorganisms

The human mucosa has a surface area equivalent to 1.5 tennis
courts. This large surface area means that there is significant risk of
infection by pathological microorganisms; therefore, homeostasis
of the epithelial barrier is important. Indeed, some pathogens
modulate the epithelial barrier to facilitate easy and widespread
infection (Fig. 2a).

Modulation of the epithelial barrier by pathogens

Human immunodeficiency virus-1 (HIV-1) infection is often asso-
ciated with increased permeability of mucosal epithelial cells. Viral
envelope glycoprotein (gp)120 is a crucial viral protein that
increases the permeability of the epithelial barrier. When HIV-1
binds to cells it induces production of TNF-c, leading to a decrease
in mucosal epithelial barrier integrity and spread of HIV-1 infec-
tion [38].

Atopic dermatitis (AD) is the most common inflammatory skin
disease [39], and susceptibility to cutaneous infections is increased
in AD patients. Widespread skin infection by the herpes simplex
virus (HSV) causes severe viral complications, such as eczema
herpeticum in AD patients. Defects in the epidermal TJ barrier
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Regulation of the first line of defense, the epithelial barrier. (a) Pathological
microorganism-epithelial barrier interaction. Infection of epithelial cells by
HIV-1, EHEC, or EAEC decreased epithelial barrier integrity [38,41,42]. By
contrast, RSV infection increased the barrier function [44]. (b) Lymphocyte-
epithelial barrier interaction. LPLs regulate the integrity of the epithelial
barrier via direct interaction with epithelial cells through notch signaling [49].
Abbreviations: EAEC: enteroaggregative Escherichia coli; EHEC:
enterohemorrhagic Escherichia coli; HIV-1: human immunodeficiency virus-1;
LPLs: lamina propria lymphocytes; RSV: respiratory syncytial virus.

increase the susceptibility of patients with AD to widespread
subcutaneous infection with HSV or other viral pathogens [40].
In the early stage of infection with enterohemorrhagic Escherichia
coli (EHEC), non-bloody diarrhea occurs in the absence of shiga
toxin. EHEC infection increases expression of claudin-2 and redis-
tribution of claudin-3 and occludin. These changes correlate with
increased intestinal permeability [41]. Infection by enteroaggre-
gative Escherichia coli (EAEC) causes dissociation of claudin-1 from
the TJs between epithelial cells, leading to disruption of the TJ
barrier [42]. By contrast, respiratory syncytial virus (RSV) increases
TJ integrity. RSV is the major cause of bronchitis, asthma and
severe lower respiratory tract diseases in infants and young chil-
dren [43]. RSV infection induces expression of claudin-4 and
occludin in human nasal epithelial cells. Induction of TJ compo-
nents has a crucial role in epithelial cellular polarity, leading to
budding of the virus from the epithelial apical surface [44]. There-
fore, prevention of TJ barrier modulation by pathogens might be a
viable therapeutic strategy.

Lymphoepithelial cross talk in the epithelial barrier

Mucosa-associated lymphoid tissues (MALTs) are lymphoid
immune tissues that are located in the mucosal epithelium. By
activating mucosal immune responses, they function as the first
line of defense against pathogens invading the body through the
epithelium [45]. MALTs comprise gut-associated lymphoid tissues,
nasopharynx-associated lymphoid tissues and bronchus-asso-
ciated lymphoid tissues. MALTs contain lymphocytes, M cells, T
cells, B cells and antigen-presenting cells. Recently, lamina propria
lymphocytes (LPLs) underlying the intestinal epithelium have
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been shown to have a crucial role in the homeostasis of the
epithelial barrier (Fig. 2b). Direct interaction of LPLs with intest-
inal epithelial cells is essential for the barrier function of the
intestinal epithelium [46]. The notch signaling pathway regulates
cell fate decisions through cell-cell interactions [47]. Notch sig-
naling determines the differentiation of intestinal stem cells into
secretory cells, absorptive cells, or enterocytes [47,48]. The absence
of LPLs in mice causes increased intestinal permeability and a lack
of activation of notch in colonocytes [49]. Transfer of LPLs to LPL-
deficient mice decreased intestinal permeability and activated
notch signaling in colonocytes. In Caco-2 cells, knockdown of
notch mRNA reduced the epithelial barrier function, and was
accompanied by upregulation of claudin-2 proteins, reduction
of occludin and cytoplasmic localization of claudin-5 [49]. There-
fore, lymphoepithelial cross talk might regulate epithelial differ-
entiation and barrier integrity. Notch signaling is highly activated
in the mucosa of patients with Crohn’s disease, leading to dysre-
gulation of the differentiation of epithelial cells [49]. Normal-
ization of disruption of this cross talk might be a potent
strategy for treating immune-mediated intestinal disorders.

Proof-of-concept for TJ-targeted drug development

As mentioned in the introduction, epithelial cells are a potent
target for drug development. TJ-targeted drug development has
been attempted [14,50], and proof-of-concepts for TJ-targeted drug
absorption, cancer targeting and mucosal vaccination have been
established. Recent findings indicate that TJ-targeted therapy for
hepatitis C virus (HCV), diabetes and inflammatory diseases might
be possible.

HCV infection

A total of 170 million people worldwide are infected with the HCV.
Hepatitis C is the leading cause of chronic liver inflammation,
cirrhosis and cancer. Claudin-1 and occludin are co-receptors for
HCV infection, indicating that binders to claudin-1 or occludin
might be potent inhibitors of HCV entry [16]. DNA immunization
enabled successful preparation of monoclonal anti-claudin-1 anti-
bodies against the extracellular loop of claudin-1, and these anti-
claudin-1 antibodies prevented HCV infection. Antibodies effec-
tively blocked cell entry of highly infectious escape variants of
HCV that were resistant to neutralizing antibodies [51]. When
hepatitis C patients reach end-stage liver failure, liver transplanta-
tion is the only choice for curative treatment; however, reinfection
of the transplanted liver by HCV often occurs. There is a significant
correlation between hepatic levels of claudin-1 and occludin and
HCV reinfection after liver transplantation [52]. Inhibition of HCV
reinfection of the transplanted liver by using anti-claudin-1 anti-
bodies might be a potent treatment for patients with liver trans-
plantation.

Diabetic retinopathy

Breakdown of the blood-retinal barrier (BRB) is a hallmark of
diabetic retinopathy [53]. Alterations to the BRB occur early in
the progression of diabetic retinopathy and eventually lead to
macular edema, which is responsible for vision loss [54]. Diabetic
patients show elevated levels of TNF-a in the vitreous humor.
TNF-a increases the permeability of retinal endothelial cells.
TNF-« decreases ZO-1 and claudin-5 expression and alters cellular

localization of ZO-1 and claudin-5 [55]. Thus, regulation of BRB-
integrity might be a potent strategy for treating vision loss owing
to diabetes. Indeed, a chemical already in clinical use for the
treatment of diabetic retinopathy, calcium dobesilate, attenuates
the decrease in occludin and claudin-5 and prevents BRB break-
down [56]. Berberine, a plant alkaloid, has also been used for the
treatment of diabetes. Berberine prevents barrier defects in retinal
epithelial cells [57]. Inducers of occludin and claudin-5 or pro-
moters of TJ integrity could be a potent treatment for diabetic
retinopathy.

Inflammatory diseases

Berberine has been also used in the treatment of gastroenteritis
and diarrhea. TNF-« disrupts TJ integrity in inflammatory bowel
diseases (IBD). Regulation of the TNF-a-dependent signaling path-
way is a potent strategy for the treatment of IBD. TNF-a removes
claudin-1 from TJs and induces claudin-2 expression, leading to
disruption of the TJ barrier. Attenuation of TNF-« signaling is a
potent strategy for IBD therapy. Berberine also attenuates TNF-a-
induced TJ barrier defects by removing claudin-1 and inducing
claudin-2 expression [58]. Spontaneous colitis was observed in
interleukin (IL)-10—/— mice in which paracellular permeability
was increased in conjunction with decreased expression and redis-
tribution of ZO-1, occludin and claudin-1. Treatment with a
probiotic, Lactobacillus plantarum, restored expression of TJ com-
ponents and TJ integrity, resulting in prevention of bacterial
translocation and proinflammatory responses in IL-10—/— mice
[59]. Recovery of TJ integrity might be a potent strategy for
inflammatory intestinal diseases. Ouabain, which is an inhibitor
of Na*, K*-ATPase, increased TJ integrity through signaling path-
ways involving ¢-Src and ERK1/2 and by modulating the expres-
sion of claudin-1, claudin-2 and claudin-4 [60,61]. Several natural
products have been found to be therapeutically useful against
epithelial barrier defects.

Paracellular drug transport

The claudin protein family comprises 27 members [7]. Claudins
form homo- and hetero-type strands in the lateral membrane.
Adjacent claudin-based TJ strands associate with each other, lead-
ing to sealing of the intercellular space. The combination of the
claudin members is a determinant factor for the properties of the
TJ barrier [5]. These findings suggest that optimization of claudin
modulators with narrow-specificity in certain cases, or broad-
specificity in other cases, might regulate solute- and tissue-speci-
ficity in paracellular transport. The most important issue in TJ-
targeted drug absorption is the development of claudin modula-
tors. Claudin is an integral membrane protein with a tetra-trans-
membrane domain. Claudin binders are the first choice for claudin
modulators. The first extracellular loop contains approximately 50
amino acids and the second contains approximately ten amino
acids. Claudins are hydrophobic proteins, and preparation of a
recombinant protein is only currently possible for claudin-4 [62].
Therefore, the development of claudin binders, including anti-
bodies, has been slow. Budded baculoviruses display functional
forms of membrane proteins on their surface [63]. Claudin-dis-
playing budded baculoviruses possess a native form of claudin and
can be used as a screening system for claudin binders [64]. Func-
tional membrane proteins are heterogeneously expressed on
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budded baculoviruses [63]. Functional information using FRAP
analysis will enable development of a screening system for claudin
modulators with narrow- or broad-specificity using the heteroge-
nous claudin-displaying baculoviral system. We predict that, in
the near future, proof-of-concept for tissue- and solute-specific
paracellular transport by modulating the claudin-barrier will be
demonstrated.

Coupling of transcellular and paracellular transport systems con-
trols permeability to solutes {65]. Claudin-based TJs function as
charge-selective paracellular channels [6]. Claudin-15 is responsible
for transepithelial permeability to extracellular monovalent cations,
especially Na*. Claudin-15-deficient mice exhibit low luminal Na*
levels and low glucose absorption in the intestine, indicating that
paracellular transport of Na* through claudin-15-based TJ strands
might be coupled to transcellular transport of glucose through a
glucose transporter [66]. These findings suggest that modulation of
theclaudin-mediated paracellular transport of solutes mightregulate
the transcellular transport of drugs through a transporter.

Concluding remarks

To our knowledge, the first report of TJ-targeted drug development
was the discovery in 1961 of enhanced mucosal absorption
of drugs by co-administration of ethylenediaminetetraacetic acid
[67]. TJs were identified in 1963 [17]. Modulation of the TJ-barrier
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has been a major strategy for enhancing mucosal absorption;
however, the biochemical structure of TJs was unclear until
1998. Until that year, absorption enhancers were screened mainly
by modulating epithelial cell sheets. Recent imaging studies have
begun to reveal the dynamics of TJs and also how these dynamics
are regulated [36,37]. Future detailed analyses using FRAP will
provide us with new insights into strategies for modulation of
the TJ barrier. In addition to TJ-modulated drug absorption, TJ-
targeted therapy for HCV infection and diabetic retinopathy has
recently been proved effective [51,56]. The questions of how TJ
dynamics are regulated, and how expression of TJ components is
regulated are still to be answered. The molecular pathology of
deregulation of the TJ barrier is not yet fully understood. TJ-
targeted drug development has been spearheaded by rapid pro-
gress in our understanding of the biology of the TJ barrier.
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