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Autophagosome formation around MTB phagosomes (%)

Fig. 5. Thin-section electron micrographs of Corota KD macrophages infected with M. tuberculosis.
A-C. Macrophages were transfected with scrambled (A) or Corola-specific (B, C) siRNA and then infected with M. tuberculosis for 6 h.
Infected macrophages were fixed and observed with thin-section electron microscopy. An arrowhead indicates the internal membrane in the

mycobacterial phagosome.

D. The proportion of M. tuberculosis-containing phagosomes associated with multiple membrane structures in Corota KD macrophages.
Macrophages transfected with Coro1a-specific or scrambled siRNA were infected with M. tuberculosis for 6 h. Cells were fixed and observed
with thin-section electron microscopy. The number of M. tuberculosis-containing phagosomes with multiple membrane structures was counted.
Data represent the mean and SD of three independent experiments in which more than 50 phagosomes were counted for each condition.
*P < 0.05 (unpaired Student's t-test). Sc, scrambled; Coro, Corota; MTB, M. tuberculosis.

increased in Corola KD AM (Fig. 10B). Quantitative
analysis revealed that the proportions of LC3-positive
mycobacterial phagosomes were >25% and <5% in
Coro1a KD and control AM respectively (Fig. 10C). We
also examined the localization of LC3 to mycobacterial

phagosomes in bone marrow-derived macrophages
(BMDM) transfected with Coro1a-specific or scrambled
siRNA (Fig. 10A). The depletion of Coro1a also induced
the recruitment of LC3 to M. tuberculosis-containing
phagosomes in BMDM (Fig. 10D). Quantitative analysis

© 2012 Blackwell Publishing Ltd, Cellular Microbiology
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Fig. 6. LC3 recruitment to M. tuberculosis-containing phagosomes
in Coro1a KD macrophages treated with 3-MA or siRNA for
autophagy-related genes. The proportion of LC3-positive
mycobacterial phagosomes in Corota KD macrophages treated
with 3-MA at 10 mM (A) or transfected with siRNA for
autophagy-related genes (B). Data represent the mean and SD

of three independent experiments in which more than 200
phagosomes were counted for each condition. *P < 0.05; N.S., not
significant (unpaired Student's t-test). Sc, scrambled; Cr, Corota;
A3, Atg3; A5, Atg5; B1, Beclint.

revealed that approximately 10% and 2% of mycobacte-
rial phagosomes were LC3 positive in Corola KD and
control BMDM respectively (Fig. 10E). Treatment with
3-MA reduced the proportion of LC3-positive mycobacte-
rial phagosomes in Corola KD macrophages (Fig. 10F).

© 2012 Blackwell Publishing Ltd, Cellular Microbiology

These results suggest that autophagosome formation
around M. tuberculosis-containing phagosomes is also
induced in AM and BMDM as a consequence of Corola
depletion.

Discussion

Corotia was initially reported being retained on phago-
somes containing live mycobacteria, while being rapidly
released from phagosomes containing inactive mycobac-
teria (Ferrari etal, 1999). Genetic depletion or RNA
interference-mediated gene silencing of Corola was later
reported inhibiting the survival of mycobacteria within
macrophages (Jayachandran ef al., 2007; 2008; Kumar
et al., 2010). In this study, we confirmed that the survival
of M. tuberculosis was inhibited in Corota KD macroph-
ages (Fig. 1). However, the infection rate of M. tuberculo-
sis with Corola KD macrophages possibly affects its
proliferation within infected macrophages, because a
previous study demonstrated that the expression of a
dominant-negative form of Corola or transfection of
Corotla siRNA decreased the activity of phagocytosis
(Yan et al., 2005). To address this possibility, we exam-
ined the phagocytosis rate of latex beads and the infection
rate of M. tuberculosis in Corola KD macrophages but
found no differences in these events between Corola KD
and control macrophages (Fig. S2). Previous studies
demonstrated that the phagolysosome biogenesis of
mycobacterial phagosomes occurred by the depletion of
Corola in macrophages (Jayachandran etal, 2007;
2008). We also found that the acidification and the fusion
of lysosomes with mycobacterial phagosomes were pro-
moted in Corola KD macrophages (Fig. 2). However,
there has been no direct evidence that the inhibition of
mycobacterial proliferation in Coro1a KD macrophages is
caused by the promotion of phagolysosome biogenesis.

We hypothesized that autophagy is induced in Corola
KD macrophages and inhibits M. tuberculosis survival.
This is because the inhibition of autophagy by 3-MA or
gene silencing of autophagy-related genes restores the
mycobacterial survival in Corota KD macrophages
(Fig. 3). To verify this hypothesis, we examined the local-
ization of LC3 and found that LC3 was recruited to
M. tuberculosis-containing phagosomes in Corola KD
macrophages (Fig. 4). Thin-section electron microscopy
revealed that M. tuberculosis-containing phagosomes
were surrounded by characteristic autophagic membrane
structures in Coro1a KD macrophages (Fig. 5). Treatment
with 3-MA or silencing of autophagy-related genes inhib-
ited the recruitment of LC3 to M. fuberculosis-containing
phagosomes in Corola KD macrophages (Fig. 6). It is
reported that the delivery of anti-bactericidal protein
and/or peptides to mycobacterial phagosomes depended
on the induction of autophagy (Alonso et al., 2007; Yuk
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Fig. 7. Immunoblot analysis of LC3 in Coroia KD macrophages infected with M. tuberculosis.

A. Monitoring LC3 processing in Corola KD macrophages infected with M. tuberculosis. Macrophages transfected with Coro1a-specific or
scrambled siRNA were infected with M. tuberculosis for 6 h. Whole-cell lysates from non-infected or infected macrophages were subjected to
SDS-PAGE, followed by immunoblot analysis using the indicated antibodies.

B. Autophagic flux in Corola KD macrophages infected with M. tuberculosis. Macrophages transfected with Coro1a-specific or scrambled
siRNA were infected with M. tuberculosis for 6 h. Infected macrophages were then treated with NH,C! (10 mM) or Bafilomycin A1 (10 nM) for
2 h. Whole-cell lysates were subjected to SDS-PAGE, followed by immunoblot analysis using the indicated antibodies.

C. LC3 recruitment to isolated mycobacterial phagosomes. Macrophages transfected with Coro1a or scrambled siRNA were infected with

M. tuberculosis for 6 h, and phagosomal fractions were isolated as previously described (Beatty et al., 2002; Seto et al., 2011). Whole-cell
lysates and phagosomal fractions were subjected to SDS-PAGE, followed by immunoblot analysis using the indicated antibodies.

D-F. Quantification of band intensity for LC3-ll. The quantification of band intensity for LC3-Il in (A), (B) and (C) was shown in (D), (E) and (F)
respectively. The ratio of the band intensity for LC3-1i/Rab7 or actin at each condition to that in the macrophage transfected with scrambled
siRNA is shown. The data represent the mean and SD of three independent experiments.

*P < 0.05; N.S., not significant {paired Student's t-test). MTB, M. tuberculosis; Sc, scrambled; Coro, Coro1a; NH4Cl, ammonium chloride
(NH4CI); BafA, Bafilomycin A1.

et al., 2009; Ponpuak et al., 2011). We also showed that inhibition of mycobacterial proliferation in Corola KD
the proportion of LC3-positive mycobacterial phagosomes macrophages is caused by the autophagosome formation
colocalized with p62, ubiquitin and LAMP1 increased in around mycobacterial phagosomes and subsequent bac-
Corot1a KD macrophages up to 24 h p.i., suggesting the tericidal effector mechanisms.

involvement of the ubiquitin system and autophagic In the present study, we sought key events for
degradation. Combined, these results suggest that the the induction of autophagosome formation around

© 2012 Blackwell Publishing Ltd, Cellular Microbiology

— 140 ~



Role of Coronin-1a.in mycobacterial autoph&gosbrhe formation 11

M. tuberculosis-containing phagosomes induced by
Corola depletion. immunoblot analysis using whole-cell
lysates revealed that the M. tuberculosis infection itself
did not stimulate whole-cell LC3 processing in Corotla KD
macrophages (Fig. 7 and Fig. S1), because there was no
difference in autophagic flux between control and Corola
KD macrophages infected with M. fuberculosis (Fig. 7).
Immunofluorescence microscopy also demonstrated that
M. tuberculosis infection did not induce the formation of
punctuated LC3 structures in Corola KD macrophages
(Fig. 4). In addition, M. tuberculosis is thought to prevent
the induction of autophagy by inhibiting PI3-kinase acti-
vation via the bacterial cell wall component, lipoarabi-
nomannan or a secreted phosphatase (Vergne et al.,
2003; 2004; Deretic et al., 2004; 20086). Present results
suggest that M. tuberculosis infection itself cannot induce
autophagy within the cytosol of Coro1a KD macrophages
unlike nutrient starvation or pharmacological autophagy
inducers.

It is reported that Coroila regulated the activity of
calcineurin and that the calcineurin inhibitors stimulated
the fusion of lysosomes with mycobacterial phagosomes
(Jayachandran et al., 2007). In Caenorhabditis elegans, a
loss-of-function or null mutation of calcineurin induces the
autophagosome formation (Dwivedi et al., 2009). These
results imply that autophagosome formation around myco-
bacterial phagosomes is caused by the inhibition of
calcineurin activity in Coro1a KD macrophages. We exam-
ined whether the inhibition of calcineurin activity induced
the autophagosome formation around M. tuberculosis-
containing phagosomes but found no induction of LC3
recruitment to the phagosomes in macrophages treated
with FK506 or cyclosporine A (Fig. S3). Bcl-2 is a member
of the anti-apoptotic proteins and interacts with Beclin1 to
inhibit the induction of autophagy (Pattingre et al., 2005).
The expression of Bcl-2 is reduced in naive T cells from
Coro1a-deficient mice (Mueller et al., 2011). We therefore
addressed whether autophagosome formation around
M. tuberculosis-containing phagosomes by Coro1a deple-
tion is accompanied by the downregulation of Bcl-2 and
found no significant change in Bcl-2 expression between
control and Coro1a KD macrophages (Fig. S4). It is also
reported that the transcription of Coro1a is downregulated
by the combination of vitamin D3 and retinoic acid in
human macrophages (Anand and Kaul, 2003). Vitamin D3
is also reported inducing autophagy in monocyte, resulting
in the elimination of infected mycobacteria (Yuk et al.,
2009). These reports imply that vitamin D3 decreases the
expression of Corola in mycobacteria-infected macro-
phages, leading the autophagosome formation and elimi-
nation of infected mycobacteria.

A recent report demonstrated that LC3 is recruited
to Mycobacterium marinum-containing phagosomes
depending on the function of ESX-1 (Lerena and

© 2012 Blackwell Publishing Ltd, Cellular Microbiology

Colombo, 2011). ESAT-6 homologue of M. marinum has a
pore formation activity in phagosomal membranes and
assists the bacilli to escape from phagosomes to cytosol
and move by actin-based motility (Stamm et al,, 2003;
Gao et al., 2004; Smith et al., 2008). M. tuberculosis is
also reported to translocate from its containing phago-
somes to cytosols in infected monocytes depending on
ESX-1 secretion system (van der Wel et al., 2007), sug-
gesting that the secreted proteins including ESAT-6 by
ESX-1 system damage the phagosomal membranes.
Since Coro1la interacts with F-actin to stabilize the struc-
ture (Galkin et al., 2008), it is likely that Coro1a localiza-
tion to mycobacterial phagosomes (Ferrari et al., 1999)
supports the phagosomal membranes and that the
depletion of Corola increases the susceptibility of
the phagosomal membranes to ESAT-6 secreted by
M. tuberculosis. The damage on the membrane of
M. tuberculosis-containing phagosome could induce the
autophagosome formation (Lerena et al., 2010) in Corola
KD macrophages.

We examined the activation of MAPK signalling path-
ways involved in autophagosome formation around myco-
bacterial phagosomes in Corota KD macrophages
(Fig. 9), as they are involved in autophagy induction
(Esclatine et al., 2009). Activation of p38 is indispensable
for the induction of autophagy via Toll-like receptor
signalling pathways in innate immunity (Xu et al., 2007).
JNK signalling pathway was previously reported being
involved in the induction of autophagy in macrophages
infected with the eis-deletion mutant of M. tuberculosis
(Shin et al., 2010). We assessed the phosphorylation of
three MAPKSs (ERK-1/2, JNK and p38) and found that only
the p38 pathway was specifically activated by M. tubercu-
losis infection in Coro1a KD macrophages (Fig. 9). These
results suggest that Corota blocks the signal(s) for p38
MAPK activation in response to M. tuberculosis infection.

AM are the first defence line of the lung against M.
tuberculosis infection (Russell, 2001; 2007). We found
that the depletion of Corola induced autophagosome
formation surrounding M. tuberculosis-containing phago-
somes also in AM and BMDM (Fig. 10). These results
suggest that the inhibition of autophagosome formation by
Coro1a occurs in various types of macrophages. In con-
clusion, this study demonstrates that Corola regulates
the autophagosome formation around M. tuberculosis-
containing phagosomes and assists the survival of
infected mycobacteria in macrophages.

Experimental procedures
Cell and bacterial cultures

Raw264.7 and MH-S macrophage cell lines were obtained from
the American Type Culture Collection and maintained at 37°C
under a humidified condition with 5% CO, in Dulbecco’s modified
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Fig. 8. Recruitment of p62, ubiquitin or LAMP1 to LC3-positive M. tuberculosis-containing phagosomes in Corola KD macrophages.

A, C and E. Raw264.7 macrophages stably expressing EGFP-LC3 were transfected with Corola-specific siRNA for 48 h. Transfected
macrophages were infected with Alexa405-labelled M. tuberculosis for 24 h and then stained with anti-p62 (A), anti-ubiquitin (C) or anti-LAMP1
(E) antibodies. Enlarged images of A-1, C-1 and E-1 are represented in A-2 and A-3, B-2 and B-3, and C-2 and C-3 respectively.

B, D and F. The proportion of mycobacterial phagosomes labelled with p62 (B), ubiquitin (C) or LAMP1 (F) to the total LC3-positive

ones in Corola KD macrophages. Macrophages stably expressing EGFP-LC3 were transfected with Corola siRNA, and infected with
Alexa405-labelled M. tuberculosis for 6 or 24 h. Infected macrophages were stained with anti-p62 (B), anti-ubiquitin (D) or anti-LAMP1 (F)
antibodies. The numbers of LC3-positive mycobacterial phagosomes labelled with these markers were counted. Data represent the mean and
SD of three independent experiments in which more than 100 phagosomes were counted for each condition. *P < 0.05 (unpaired Student’s

ttest). Sc, scrambled; Coro, Corola; MTB, M. tuberculosis; Ub, ubiquitin.

Eagle’s medium (DMEM; Sigma-Aldrich, St. Louis, MO) supple-
mented with 10% fetal bovine serum (FBS; Invitrogen, Carisbad,
CA), 25 ug mi™ penicillin G and 25 pg mi™' streptomycin. BMDM
were differentiated from BALB/c mice bone marrow for 7 days in
DMEM supplemented with 20% L929-conditioned medium, 10%
FBS and antibiotics. M. tuberculosis Erdman was obtained from
the Japan Research Institute of Tuberculosis, Tokyo, Japan, and
grown to mid-logarithmic phase in 7H9 medium supplemented
with 10% Middiebrook ADC (BD Biosciences, San Jose, CA),
0.5% glycerol and 0.05% Tween 80 (Mycobacterium complete
medium) at 37°C. Mycobacteria transformed with a plasmid
encoding DsRed were grown in Mycobacterium complete
medium containing 25 pg mi~' kanamycin.

RNA interference

siRNA duplexes were synthesized by Sigma-Aldrich according
to the following sequences: Corola#1, sense 5-GACUGGA
CGAGUAGACAAGTT-3, antisense 5-CUUGUCUACUCGUCC
AGUCTT-3" (Jayachandran etal, 2008); Corola#2 sense
5-GCAAGACUGGACGAGUAGATT-3, antisense 5-UCUACU
CGUCCAGUCUUGCTT-3’; Atg3i#1, sense 5-GGUGUAAACA
GAUGGAGUATT-3, antisense 5-UACUCCAUCUGUUUACACC
TT-3; Atg3#2, sense 5-GCAUAUCUUCCGACAGACATT-3,
antisense  5-UGUCUGUCGGAAGAUAUGCTT-3;  Atg5#1,
sense 5-GCUUUACUCUCUAUCAGGATT-3, antisense 5-UC
CUGAUAGAGAGUAAAGCTT-3"; Atg5#2, sense 5-GAGACAA
GAAGAUGUUAGUTT-3’, antisense 5-ACUAACAUCUUCUUG
UCUCTT-3’; Beclin1#1, sense 5-GAAAGAUGCUUUAA
AUUAATT-3', antisense 5-UUAAUUUAAAGCAUCUUUCTT-3".
Beclin1#2, sense 5-CUGAGAAUGAAUGUCAGAATT-3', anti-
sense 5-UUCUGACAUUCAUUCUCAGTT-3’; Mission siRNA
universal negative control (Sigma-Aldrich) was used as
scrambled siRNA. Transfection of macrophages with siRNA
duplexes was performed using Lipofectamine RNAIMAX
(Invitrogen) according to the manufacturer’s instructions.

Colony-forming unit (cfu) assay

Macrophages transfected with siRNA were grown in 24-well
plates at 1 x 10° cells for 24 h, and subsequently infected with
M. tuberculosis at an moi of 10 for 4 h. Infected macrophages
were washed with DMEM three times to remove non-infected
mycobacteria and then incubated with DMEM and 10% FBS. At
4 and 72 h p.., infected macrophages were lysed with 1%
IGEPAL in phosphate-buffed saline (PBS), serially diluted with
Mycobacterium complete medium, and inoculated onto 7H10
agar medium supplemented with 10% Middlebrook OADC (BD
Biosciences) and 0.5% glycerol. Colony-forming unit was deter-
mined as the mean of four plates at each time point.

© 2012 Blackwell Publishing Ltd, Cellular Microbiology
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Fig. 9. Differential contribution of MAPK to autophagosome
formation around M. tuberculosis-containing phagosomes in Corota
KD macrophages.

A. Phosphorylation of p38 MAPK in Coro1a KD macrophages
infected with M. tuberculosis. Macrophages transfected with
Coro1a-specific or scrambled siRNA were infected with

M. tuberculosis for the indicated time periods. Whole-cell lysates
were subjected to SDS-PAGE, followed by immunoblot analysis
using the indicated antibodies.

B. The proportion of LC3-positive M. tuberculosis-containing
phagosomes in Coro1a KD macrophages treated with MAPK
inhibitors. Coro1a KD macrophages expressing EGFP-1.C3 were
infected with M. tuberculosis in the presence of MAPK inhibitors
(20 pM) for 6 h. PD98059, SP600125 and SB203580 were used as
inhibitors for MEK1, JNK and p38 respectively. Data represent the
mean and SD of three independent experiments in which more
than 200 phagosomes were counted for each condition. *P < 0.05
(unpaired Student’s ttest). Sc, scrambled; Coro, Corola; Mock,
solvent control for MAPK inhibitors (0.1% DMSO).
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Fig. 10. LC3 recruitment to M. tuberculosis-containing phagosomes in the MH-S alveolar macrophage cell line and bone marrow-derived
macrophage induced by Corola depletion.

A. Immunoblot analysis of MH-S alveolar macrophages (AM) or bone marrow-derived macrophage (BMDM) transfected with Corota siRNA.
Whole-cell lysates of macrophages transfected with Coro1a or scrambled siRNA were subjected to SDS-PAGE, followed by immunoblot
analysis using the indicated antibodies.

B and D. Analysis of LC3 recruitment to M. tuberculosis-containing phagosomes in Coroia KD AM or BMDM. AM (B) or BMDM (D)
transfected with Coro1a siRNA were infected with DsRed-expressing M. tuberculosis for 6 h. Infected macrophages were fixed and stained
with anti-LC3 antibody. Infected macrophages were then observed using LSCM. Projections of focal planes with y—z and x—z side views are
represented.

C and E. The proportion of mycobacterial phagosomes labelled with anti-LC3 antibody in AM or BMDM. AM (C) or BMDM (E) were
transfected with Coro1a or scrambled siRNA. Transfected macrophages were infected with DsRed-expressing M. tuberculosis for 6 h, and
then stained with anti-LC3 antibody. LC3-positive phagosomes were counted.

F. 3-MA inhibits the recruitment of LC3 to mycobacterial phagosomes in Corola KD BMDM. BMDM were transfected with Coro1a KD siRNA
and then treated with or without 3-MA at 10 mM. Macrophages were infected with DsRed-expressing M. tuberculosis for 6 h, and then stained
with anti-LC3 antibody. The LC3-positive mycobacterial phagosomes were counted. Data represent the mean and SD of three independent
experiments in which more than 200 phagosomes were counted for each condition. *P < 0.05 (unpaired Student’s ttest). Sc, scrambled; Coro,
Coro1a; MTB, M. tuberculosis; AM, alveolar macrophage cell line MH-S; BMDM, bone marrow-derived macrophage.

© 2012 Blackwell Publishing Ltd, Cellular Microbiology
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Antibodies

Rabbit anti-Corota polyclonal antibody (Sigma-Aldrich), mouse
anti-actin monoclonal antibody (Sigma-Aldrich), rat anti-mouse
LAMP1 monoclonal antibody (SouthernBiotech, Birmingham,
AL), mouse anti-LC3 monoclonal antibody (MBL, Nagoya,
Japan), rabbit anti-LC3 polyclonal antibody (Sigma-Aldrich),
rabbit anti-Atg3 polyclonal antibody (Sigma-Aldrich), rabbit anti-
Atg5 polyclonal antibody (Sigma-Aldrich), rabbit anti-Beclini
polyclonal antibody (Sigma-Aidrich), rabbit anti-p62 polyclonal
antibody (MBL), mouse anti-ubiquitin monoclonal antibody (FK2,
MBL), mouse anti-Rab7 monoclonal antibody (Abcam, Cam-
bridge, UK), rabbit anti-phospho-ERK1/2 antibody (CST, Denver,
MA), rabbit anti-phospho-p38 antibody (CST), rabbit anti-
phospho-JNK antibody (CST) and mouse anti-Bcl-2 monoclonal
antibody (BD Biosciences) were used for experiments. Alexa488-
and Alexa546-conjugated anti-IgG antibodies (Invitrogen) and
horseradish peroxidase-conjugated anti-lgG antibodies (Dako,
Glostrup, Denmark) were also commercially purchased.

Immunoblot analysis and fluorescence microscopy

Transfected macrophages were extracted by the cell lysis buffer
containing 25 mM Tris-HCI pH 7.6, 150 mM NaCl, 1% NP-40,
1% sodium deoxycholate, 0.1% SDS, 100 uM vanadate and
protease inhibitor cocktail (Roche, Mannheim, Germany). For
immunoblot analysis, cell lysates were separated by SDS-
polyacrylamide gel electrophoresis (SDS-PAGE) and then
subjected to immunoblot analysis using anti-Coroia antibody
(1:500 v/v), anti-actin antibody (1:1000 v/v), rabbit anti-LC3
polyclonal antibody (1:250 v/v), anti-Atg3 antibody (1:200 v/v),
anti-Atg5 antibody (1:300 v/v), anti-Beclin1 antibody (1:100 v/v),
anti-Rab7 antibody (1:300 v/v), phospho-ERK1/2 antibody (1:100
v/v), phospho-p38 antibody (1:100 v/v), phospho-JNK antibody
(1:100 v/v) or anti-Bcl-2 antibody (1:100 v/v). Band intensity from
three independent experiments was quantified using ImageJ
(http://rsbweb.nih.goviij/). To label lysosomal vesicles with fluo-
rescent dextran, macrophages were incubated with Alexa488-
dextran (Invitrogen) at 100 pg mi™" for 12 h. Labelled cells were
washed and chased in fluorescent dextran free DMEM with 10%
FBS for 6 h.

Immunofluorescence microscopic analysis was performed as
previously described (Seto etal, 2009). Macrophages were
stained with anti-LAMP1 antibody (1:10 v/v), mouse anti-.C3
monoclonal antibody (1:10 v/v), anti-p62 antibody (1:10 v/v) or
anti-ubiquitin antibody (1:10 v/v). Fluorescence microscopy was
performed using a LS-1 laser scanning confocal microscope
(LSCM; Yokogawa, Tokyo, Japan).

Transfection of macrophages with plasmid

PEGFP-LC3 plasmid was generously provided by Dr Tamotsu
Yoshimori (Osaka University, Suita, Japan) and used to transfect
Raw264.7 macrophages using an MP-100 electroporator (Digital
Bio Technology, Seoul, Korea), according to the manufacturer's
instructions. Transfected macrophages were incubated in DMEM
with 10% FBS for 24 h prior to the experiments.

Infection of mycobacteria

Transfected macrophages with siRNA grown for 48 h were
scraped and grown on round coverslips in 12-well plates for

© 2012 Blackwell Publishing Ltd, Cellular Microbiology

further 12 h. Mycobacteria were washed three times with PBS
containing 0.05% Tween 80 and then suspended in DMEM with
10% FBS at a multiplicity of infection (moi) of 30. Aliquots of
bacterial suspension were added to 3 x 10° cells of Raw264.7
macrophages on coverslips in 12-well plates, followed by cen-
trifugation at 150 g for 5 min and incubation for 10 min at 37°C.
Infected cells on coverslips were washed three times with DMEM
to remove non-phagocytosed bacteria and then incubated with
DMEM containing 10% FBS. At the indicated time points, infected
cells were fixed with 3% paraformaldehyde in PBS. For immuno-
blot analysis to detect the phosphorylation of MAPK, macroph-
ages transfected with siRNA grown for 48 h in six-well plates
were infected with M. tuberculosis at an moi of 30, and then
centrifuged for 5 min and incubated for 10 min at 37°C. Infected
cells were washed with DMEM to remove non-infected bacteria
and then incubated with DMEM containing 10% of FBS. At the
indicated time points, infected cells were washed three times with
PBS and extracted with the cell lysis buffer.

Thin-section electron microscopy

Raw264.7 macrophages transfected with siRNA in six-well plates
were infected with M. tuberculosis at an moi of 30 for 2 h, washed
three times with DMEM to remove non-infected bacteria, and
further incubated in DMEM with 10% FBS for 4 h. Infected mac-
rophages were fixed with 1% glutaraldehyde in 0.1 M cacodylic
acid buffer. Fixed macrophages were incubated with 0.1% (w/v)
osmium tetroxide. Cells were dehydrated with a series of ethanol
washes and treated with propylene oxide. Samples were embed-
ded in Qetol812 resin (OKEN, Tokyo, Japan) according to the
manufacturer's protocol. Thin sections were cut with diamond
knives and mounted on copper grids. Samples on grids were
counter stained with 2% (w/v) uranyl acetate, and then observed
with a JEM-1220 electron microscope (JEOL, Tokyo, Japan).

Isolation of M. tuberculosis-containing phagosomes

Six 15 c¢m dishes of Raw264.7 macrophages were used for
each condition. Transfection of macrophages with Corota or
scrambled siRNA was performed using an MP-100 electroporator
according to the manufacturer's instructions. Briefly, 6 x 10°
Raw264.7 macrophages were transfected with 1.2 nmol of siRNA
per plate. Transfected macrophages were incubated in DMEM
with 10% FBS for 48 h prior to the experiments. Raw264.7 mac-
rophages transfected with siRNA were infected with mycobacte-
ria at an moi of 30 for 2 h, washed with DMEM three times to
remove non-infected mycobacteria, and further incubated in
DMEM with 10% FBS for 4 h. Preparation of isolated mycobac-
terial phagosomes was performed as described previously
(Beatty et al., 2002; Seto et al., 2011).

Statistics

Paired or unpaired two-sided Student's ttests was used to
assess the statistical significance of differences between the two
groups. Three or four independent experiments were conducted
to assess mycobacterial growth in macrophages, and the number
of viable bacteria was determined from the means of four plates.
Three independent experiments were conducted to assess the
proportions of fluorescence-positive phagosomes.
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Fig. S1. Immunoblot analysis of LC3 in macrophages infected
with M. tuberculosis at deferent moi.
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A. Raw264.7 macrophages were transfected with Corola-
specific or scrambled siRNA. Transfected macrophages were
infected with M. tuberculosis at different moi for 6 h. Whole-cell
lysates were subjected to SDS-PAGE, followed by immunoblot
analysis using the indicated antibodies.

B. The band intensity for LC3-1l per Rab7 at each condition to that
in the macrophage without infection is shown. The data represent
the mean and SD of three independent experiments. N.S., not
significant (paired Student's ttest); MTB, M. tuberculosis, Sc,
scrambled; Coro, Corola.

Fig. S2. Phagocytosis of latex beads and infection by
M. tuberculosis in Corola KD macrophage. Raw264.7 mac-
rophages were transfected with Corola-specific or scrambled
SiRNA for 48 h. Transfected macrophages were phagocytosed
by FITC-labelled latex beads or DsRed-expressing M. tubercu-
losis. The rate of phagocytosed or infected macrophages
were analysed by flow cytometry or fluorescent microscopy
respectively. The data represent the mean and SD of
three independent experiments. N.S., not significant (paired
Student's ttest); MTB, M. tuberculosis; Sc, scrambled; Coro,
Corota.

Fig. S3. LC3 recruitment to mycobacterial phagosomes in mac-
rophages treated with calcineurin inhibitors. Macrophages stably
expressing EGFP-LC3 were treated with FK506 (0.5 uM) or
cyclosporine A (0.1 uM) for 1 h, and then infected with DsRed-
expressing M. tuberculosis for 6 h. Cells were fixed and observed
with LSCM. The number of LC3-positive M. tuberculosis phago-
somes was counted. Data represent the mean and SD of three
independent experiments in which more than 200 phagosomes
were counted for each condition. N.S., not significant (unpaired
Student’s fttest); FK, FK506; Cyc, cyclosporine A; MTB, M.
tuberculosis.

Fig. S4. Bcl-2 expression in Corota KD macrophages.
Raw264.7 macrophages were transfected with Corola-specific
siRNA for 48 h. Whole-cell lysates were subjected to SDS-PAGE,
followed by immunoblot analysis using anti-Bcl-2 or anti-Corola
antibodies. Bec1, Beclin1; Sc, scrambled; Coro, Coro1a.

Please note: Wiley-Blackwell are not responsible for the content
or functionality of any supporting materials supplied by the
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directed to the corresponding author for the article.
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Abstract

Mycobacterium tuberculosis is an intracellular bacterium that can replicate within infected
macrophages. The intracellular parasitism by M. tuberculosis results from arresting phago-
some maturation and inhibiting phagolysosome biogenesis in infected macrophages. It has
been thought that M. tuberculosis arrests the maturation of its phagosome at the early stage.
Several reports attended to the localization of Rab GTPases on mycobacterial phagosomes.
Rab GTPases regulate membrane trafficking, but details of how Rab GTPases regulate
phagosome maturation and how M. tuberculosis modulates their activities during inhibiting
phagolysosome biogenesis remains elusive. Here, we introduce the new findings that
M. tuberculosis alters the localization of Rab GTPases regulating phagosome maturation

during inhibiting phagolysosome biogenesis.

Key words: Mycobacterium tuberculosis, macrophage, phagosome, phagolysosome
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