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OREF3 related to GII/4 2006b. The 2008a genome (Hokkaido4/
2008/JP) was comprised of the ORF1 related to GII/4 2008b
(Hokkaido5/2008/JP) and as-yet-undefined classes of GII/4
and the ORF2 and ORF3 of GII/4 2006a and as-yet-undefined
classes of GII/4. The 2008b genome was made up of the ORF1
of 2008a and the ORF2 and ORF3 related to GII/4 2006b. We
also investigated possible genome mosaicism for the 2006a and
2006b subtypes, but we could not identify putative ancestral
sequences of ORF1, ORF2, and ORF3 that were genetically
closely related to 2006a and 2006b when we used the available
NoV sequences in the public database as references.

To define statistically the possible recombination break-
points of the 2004/05, 2007a, 2007b, 2008a, and 2008b ge-
nomes, we performed informative-site analysis (50) using the
same reference sequences used in the bootscanning-plot anal-
ysis. With this approach, we identified several patches of ge-
nome regions that were assigned with statistical significance as
putative recombination breakpoints. Notably, a putative break-
point located around the junction of ORF1 and ORF2 con-
stantly gave the highest statistical significance, i.e., maximum
x? values, in the 2004/05, 2007a, 2007b, 2008a, and 2008b
genomes (P = 0.000001) (Fig. 3B, arrows). The results were in
good agreement with the phylogenetic-tree and bootscanning-
plot analyses. These data consistently suggest that the new
GII/4 subtypes identified in Japan were mostly hybrid viruses
composed of viral protein elements from distinct genetic lin-
eages of NoVs.

We further assessed possible genome recombination events
using other tools included in the RDP3 software package (30).
The analysis again identified single recombination breakpoints
with the best or second-best confidence values around the
junction of ORF1 and ORF2 in the 2004/05, 2007a, 2007b,
2008a, and 2008b genomes (P < 0.001). The analysis also
identified additional putative breakpoints around the junction
of ORF2 and ORF3 of 2007a. However, we could not obtain
evidence for genome mosaicism with 2006a and 2006b using a
selected sequence data set of the NoV GII genotypes reported
to date (GII/1 to GII/19) (25, 65, 71) and GII/4 subtypes (7, 38,
53). Because information on the entire genome sequences of
NoV is very limited, it remains to be determined whether
2006a and 2006b also have mosaic genomes.

Isolation of NoV mosaic genome segments. To clarify the
presence of the mosaic viral genomes in nature, we cloned and
sequenced the genomes of the 2007a, 2007b, 2008a, and 2008b
subtypes. For this study, we cloned the genome segments, i.e.,
the 5.2-kb, 2.8-kb, and 1.0-kb genome segments, that presum-
ably contain a junction of putative recombination breakpoints
around the ORF1/ORF2 junction (Fig. 4). The subtype 2004/5
was not included in the cloning analysis because we did not
have sufficient amounts of clinical specimens for the cloning.
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Likewise, the subtypes 2006a and 2006b were not included
because the major parental sequences are not clear in the
present study. We successfully obtained the molecular clones
except for the 5.2-kb fragment of 2007a. We could amplify but
failed to clone the 5.2-kb fragment of 2007a. Although the
precise reason for the failure is unclear at present, it might be
due to the decreased cloning efficiency of the larger insert by
the TA-cloning method. Because the appropriate restriction
enzyme sites for the cloning were absent in the 2007a 5.2-kb
fragment, we did not include this fragment in further analyses.
Nucleotide sequences of the segments were used for the
bootscanning-plot analysis using the same sets of reference
sequences described in Fig. 3B, and the statistically significant
putative recombination breakpoints were assessed by informa-
tive-site analysis.

Figure 4 shows representative results of the bootscanning-
plot and informative-site analyses with the 5.2-, 1.0-, and 2.8-kb
segment clones. Importantly, all 11 clones from the 2007a,
2007b, 2008a, and 2008b stool specimens had the same puta-
tive recombination breakpoints, with the highest statistical sig-
nificance around the ORF1/ORF?2 junction region identified
with direct sequencing analyses (Fig. 4A and B, arrows). In
addition, the patterns of the bootscanning plots were almost
identical over the viral genomes examined between the se-
quences of the uncloned and cloned genome segment except
for the 5'-half region of the 2007b ORF1 (Fig. 3B and 4).
Although the precise reason for the discrepancy is unclear at
present, it might be due to the cloning of the minor population
of the 2007b quasispecies in the stool specimens. The overall
good agreement of the results by the two sequencing strategies
strongly suggests that the genome mosaicisms we found by
analysis of the direct sequencing data were intrinsic rather than
an artifact of the analysis. Taken together, these data indicate
that the NoV mosaic genomes were present in the human stool
specimens and that the ORF1/ORF2 junction region is the
common hot spot for generating the mosaic genomes in GII/4
subtypes in nature.

Amino acid signatures of the NoV GII/4 subtypes. We then
investigated sequential characteristics of the proteins of the 7
GI1/4 subtypes by searching for unique amino acid signatures
in viral proteins. The deduced amino acid sequences of ORF1,
ORF2, and ORF3 of a given subtype were aligned with refer-
ence sequences of the past GII/4 subtypes (38) that were iden-
tified before detection of the query subtype. Amino acids spe-
cific to the query subtype were extracted and referred to as
amino acid signatures of the new epidemic subtype. In the case
of the 2006b subtype, we also analyzed the changes in the
signatures in the capsid protein VP1 between 2006 and 2009,
because information on the structure and function is more
abundant for the capsid than for other viral proteins.

sequence in each tree but is shown only in the ORFI tree. In the ORF2 and ORF3 trees, the GII/12 sequence was located far apart from the GI1/4
cluster and is not shown for simplicity. (B) Bootscanning plots of nucleotide sequences of near-full-length NoV genomes. A query genome
sequence (2004/05, 2007a, 2007b, 2008a, or 2008b) was aligned with three reference sequences, two sequences that were positioned relatively
closely to the query sequence in the neighbor-joining trees and a sequence that was distantly related to the query sequence, using CLUSTAL W
software, version 1.4 (62). The bootstrap values are plotted for a window of 300 bp moving in increments of 10 bp along the alignment using the
program Simplot (48). Informative-site analyses (50) were performed using the same query and reference sequence set. Arrows indicate putative
recombination breakpoints with the highest statistical significance (P = 0.000001) in the informative-site analysis.
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FIG. 4. Isolation of NoV mosaic genome segments. Three genome segments (5.2, 1.0, and 2.8 kb) were amplified from the 2007a, 2007b, 2008a,
and 2008b stool specimens, cloned into plasmid vectors, and sequenced. Nucleotide sequences of the cloned segments were subjected to the
bootscanning-plot analysis using the same sets of reference sequences described in Fig. 3B, and the putative recombination breakpoints were
assessed by informative-site analysis. (A) Results for the 2.8-kb and 1.0-kb genome segment clones (2.8c and 1.0c). (B) Results for the 5.2
kb-genome segment clones (5.2c). Red bars indicate the ORF1/ORF2 bordering region. Arrows indicate the putative recombination breakpoints
with the highest statistical significance (P = 0.000001) in the informative-site analysis.
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FIG. 5. Amino acid signatures of the NoV GII/4 subtypes. The deduced amino acid sequences of ORF1, ORF2, and ORF3 of a given GII/4
subtype were aligned with the GII/4 sequences identified before the outbreak season of the subtype. Amino acids specific to each subtype at the
time of its first outbreak season were extracted and referred to as amino acid signatures of the new epidemic subtype. Asterisks illustrate
approximate locations of the amino acid signatures in ORF1, ORF2, and ORF3. A light-blue box denotes approximate locations of the capsid P2
domain in ORF2. A red bar indicates the ORF1/2 boundary region where the single putative recombination breakpoint was assigned for each
subtype genome by informative-site analyses (50). 1, ORF1s were similar to those for GII/12 (see Fig. 4, ORF2). 2004/05 and 2007a had 27 and
63 amino acid substitutions, respectively, in ORF1s compared to the two available complete ORF1 sequences of GII/12 (accession numbers
AB045603 and AB039775). #, ORF2s were classified as the same phylogenetic group (see Fig. 3A, ORF2). ##, ORF3s were classified as the same

phylogenetic group (see Fig. 3A, ORF3).

The amino acid signatures of the 7 GII/4 subtypes were
distributed throughout the three ORFs (Fig. 5, asterisks).
2004/5 and 2007a had more substitutions in ORF1 than the
others because their ORF1s seemed to have originated with
the GII/12 relatives (Fig. 3A and 4). When they were com-
pared with the two available complete ORF1 sequences of
GI1/12, they still had many amino acid substitutions (27 and 63
for 2004/05 and 2007a, respectively). 2007b and 2008b had
fewer substitutions in ORF2s and ORF3s than the others be-
cause these regions seemed to have originated from the 2006b
relatives. ,

As seen in the 2006b variants in the 2006/2007 season (38),
the capsid protein signatures were preferentially distributed on
the P2 domain in other GII/4 subtypes (Fig. 5, blue box). All 7
capsid signatures identified in the 2006b variants in the 2006/
2007 season were highly conserved during the 2006/2007 sea-
son, although two of them (P357 and N412) were gradually lost
in the 2006b variant population during 2007 and 2009. Instead,
other amino acid substitutions were sporadically accumulated
in the P2 domain of the later 2006b variants (data not shown).
The 7 signatures in the P2 domain were also well retained in
the 2007b and 2008b subtypes, whose genomes had capsid gene
segments from the 2006b relatives (Fig. 3B). These data indi-
cate that (i) all of the 7 GII/4 subtypes had unique amino acid
substitutions in viral capsid and replication proteins at the time
of their outbreaks in Japan, (ii) the dominant 2006b subtype
retained the capsid signatures during its persistence between
2006 and 2009, and (iii) some GII/4 subtypes acquired unique
mutation sets of the 2006b capsid P2 domain by putative ge-
nome recombination events.

3-D locations of the subtype-specific amino acids in the
capsid P domain dimer. To clarify 3-D locations of the capsid
signatures, we constructed structure models of the VP1 P-

121

domain dimer of the GII/4 subtypes by the homology modeling
method as described previously (38). The 2007b and 2008b
models were not included for the study because their capsid
proteins had no signature or a single signature in the P2 do-
main due to putative genome recombination with 2006b (Fig.
3, 4, and 5). The thermodynamically and sterically optimized
structural models of the P-domain dimer of the 2004/05, 2006a,
2006b, 2007a, and 2008a subtypes showed no major differences
in the folding of the main chains (Fig. 6). This result suggests
that the capsid amino acid substitutions primarily influenced
physicochemical properties around the substitution sites by
changing the size and chemical properties of the side chains.
These models were then used to map the 3-D locations of the
P2 domain mutations.

Importantly, the capsid P2 domain signatures were mostly
mapped on the outer surface loops in all of the GII/4 subtypes
examined (Fig. 6). These loops form an accessible protein
surface with which host proteins, such as a cellular receptor(s)
and antibodies, can directly interact. The P2 mutations are
often positioned near the putative functional sites for virus
entry into the cells: the fucose ring binding sites formed by the
P-domain dimer (8, 13) (blue-dotted ovals) and an RGD motif
(60) on the B2 sheet of the P domain (cyan chain). Notably, the
P2 mutations were more abundant in the widely prevalent
subtypes, 2004/05 and 2006b, than in the others (Fig. 2 and 6).
The 2008a subtype, which was detected most recently and
caused NoV epidemics at multiple sites in the 2008/2009 sea-
son, also had 5 unique substitutions in the P2 domain (Fig. 2
and 6). These data indicate that the GII/4 subtypes that were
dominant between 2004 and 2009 in Japan had a greater num-
ber of unique amino acids preferentially positioned on their
capsid surfaces at the time of their first outbreaks.
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FIG. 6. 3-D locations of the subtype-specific amino acids in the capsid P domain dimer. Structural models of the capsid P domain dimers of
recent NoV subtypes were constructed by homology modeling as described previously (38). The 2007b and 2008b capsid models were not included
because their ORF2s were classified as belonging to the same phylogenetic group as ORF2 of 2006b due to putative genome recombination (Fig.
3 and 4), and their capsid proteins had no signature or only a single signature in the P2 domain with 2006b (Fig. 5). Orange arrows and letters
indicate locations and types of the unique amino acids in each GII/4 subtype at the time of its first outbreak season. Putative functional sites for

virus entry into the cells are highlighted. Blue-dotted ovals, the fucose ring binding sites formed by the P domain

motif (60) on the B2 sheet of the P domain.

DISCUSSION

In this study, we have examined the possible involvement of
genome recombination in the generation of new outbreaks of
the NoV GII/4 variants. We first analyzed the evolutionary
lineage of the GII/4 variants that were present in Japan during
2006 to 2009 and clarified their temporal and geographical
distribution. We showed the following: (i) that at least 7 mono-
phyletic GII/4 subtypes were present in humans during the
3-year period, (ii) that 3 to 4 subtypes were cocirculated in
each NoV season, and (iii) that the 2006b subtype had spread
and persisted more effectively in human communities than the
other GII/4 subtypes during the study period (Fig. 1 and 2).
These and other findings on the recent GI1/4 subtypes (32, 38,
53, 54) consistently support the notion that the 2006b subtype
had some selective advantages over the other GII/4 subtypes,
which allowed it to quickly spread throughout human commu-
nities at the time of its initial appearance in the early winter of
2006. Our study additionally suggests that the possible advan-
tages of the 2006b subtype remained effective over the subse-
quent 2 years in Japan. However, we could not obtain evidence
for genome mosaicism with the 2006b subtype using the avail-
able sequence data set of the NoV genogroups, genotypes, and
subtypes reported to date (2, 7, 25, 38, 53, 65, 71). Therefore,
it is not clear whether genome recombination played a signif-
icant role in the generation of new large-scale outbreaks. Be-
cause information on the entire genome sequences of NoV is
very limited at present, further genome study of NoVs is nec-
essary to clarify this issue.

We then analyzed the GII/4 subtypes to determine whether
they showed genome mosaicisms. We demonstrated clearly
and for the first time that intersubtype genome recombination
is common in the new NoV GII/4 outbreaks: 4 of the 7 new
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dimer (8, 13); cyan chain, an RGD

GII/4 subtypes (2007a, 2007b, 2008a, and 2008b) were mosaics
comprised primarily of sequences of the recently prevalent
distinct GII/4 subtypes, and 1 (2004/05) was made up of GII/4
and GII/12 genotypes (Fig. 3 and 4). Because of the genome
mosaicism, the number of monophyletic clusters of the new
variants in the phylogenetic trees differed depending on the
region of the genome studied; the numbers of clusters were 7,
7,5, and 4 for the near-full-length genome, ORF1, ORF2, and
ORF3, respectively. Sequences of 11 randomly selected genome
segment clones all exhibited bootscanning-plot profiles identical
to those obtained with the direct sequencing data except in one
case, suggesting dominance of the specific mosaic genomes in the
corresponding stool specimens. Phylogenetic-tree, bootscanning-
plot, and informative-site analyses consistently provided the same
conclusions in regard to genome mosaicism: these virus genomes
encoded capsid proteins whose evolutionary lineages were dis-
tinct from those of nonstructural proteins. The good agreement of -
the results by the two sequencing strategies and by three evolu-
tionary methods strongly suggests that the mosaic genomes made
from multiple GII/4 subtypes were indeed constantly arising in
vivo and became the dominant species in infected individuals in
some of the NoV GII/4 outbreaks.

We failed to find evidence for the genome mosaicism of the
2006a and 2006b subtypes by using available NoV sequences.
These subtypes are unlikely to be the intergenotype or in-
tergenogroup recombinants, because their ORF1, ORF2, and
ORF3 sequences constantly showed the strong monophyly
within the GII/4 cluster out of the other genotypes and geno-
groups at their first (38) and successive outbreaks (Fig. 3A).
However, the possibility of intersubtype recombination among
as-yet-defined classes of GII/4 subtypes remains undetermined
for the 2006a and 2006b subtypes.
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Interestingly, the mosaic genomes that caused the new NoV
GII/4 outbreaks all had the putative recombination break-
points with the highest statistical significance in the ORF1/2
boundary region (P = 0.000001) (Fig. 3B and 4). This break-
point location is consistent with previous reports on intergeno-
group and intergenotype recombination (1, 10, 11, 17, 21, 22,
25, 40, 41, 44-46, 49, 57, 63, 64, 66), suggesting the presence of
a common hot spot for generation and survival of recombinant
NoVs in nature. To a lesser extent, a putative recombination
event around the ORF2/3 boundary was identified in 1 of 7
new variant subgroups (Fig. 4A, 2007a). A recombination
event around the ORF2/3 junction has also been reported for
GII/4 variants circulating in Cairo, Egypt, between 2006 and
2007 (24). The ORF1/2 boundary region is highly conserved in
NoV GII/4, as shown previously by very low scores of Shannon
entropy within the reported GII/4 sequences (38). This and our
present findings on the presence of the putative parent GII/4
sequences of the mosaic genomes suggest that the ORF1/2
mosaic genomes we identified were generated by homologous
recombination, as seen in other single-stranded, positive-sense
RNA viruses, including poliovirus (20), foot-and-mouth dis-
ease virus (36), brome mosaic virus (9, 39), turnip crinkle virus
(70), and tomato ringspot virus (52). If this were the case, the
intersubtype recombination at the ORF1/2 boundary region
would occur and generate variable recombinant viruses in vivo
more frequently than the intergenotype and intergenogroup
recombination would, because the boundary region and neigh-
boring sequences are more similar within the NoV subtype
than within the genotype and genogroup. Our results are con-
sistent with this possibility.

The presence of putative recombination at the ORF1/2
boundary region has a direct impact on the modes of NoV
subtype evolution in vivo. First, the presence of the breakpoint
at this region drives independent evolution of ORF1 and
ORF2/3 nucleotide sequences and thus of nonstructural and
capsid proteins (Fig. 3), leading to divergent evolution of the
NoV GII/4 genome (Fig. 1). Second, the presence of the break-
point allows concurrent acquisition of new mutation sets that
arise independently in ORF1 and ORF2/3 among distinct
GI1/4 subtypes. However, further study is necessary to clarify
whether the genome recombination indeed confers any fitness
advantage to the virus within a mixed NoV variant population
in nature.

The high levels of sequence homology of the ORF1/2
boundary region (38) also suggest that the region is function-
ally and/or structurally very important for NoV replication and
receives strong selective constraints against diversity for NoV
survival in nature. Consistently, this region is indicated to con-
tain an important functional motif that regulates capsid expres-
sion from a full-length genome in bovine NoV (37). Thus, the
ORF1/2 boundary region may be a multifunctional region crit-
ical for both replication and evolution of NoVs.

The relatively high detection frequency of the ORF1/2 mo-
saic genomes in the new GII/4 subtypes (5 of 7) was rather
unexpected, because multiple factors, such as retention of
virion stability, viral infectivity, and viral replication capabili-
ties in human cells, should restrict the generation of viable
hybrid viruses. The present findings therefore raise the possi-
bility of large-scale coinfections by distinct lineage groups of
NoVs and of natural selection for the particular ORF1/2 hy-

EVOLUTION OF NOROVIRUS BY GENOME RECOMBINATION

123

8095

brid viruses. The former possibility remains to be clarified but
is feasible (57) if one considers the high stability of the NoV
virion outside the host, as well as NoV transmission modes, i.e.,
ingestion of contaminated food and water, direct person-to-
person contact, and exposure to contaminated airborne vom-
itus droplets in a semiclosed community (15).

The latter possibility of natural selection also remains to be
clarified. However, it is possible that some of the unique mu-
tations identified in each ORF1/2 hybrid genome at the time of
their outbreaks (Fig. 5) may be involved in the survival of the
hybrid viruses. In this regard, it is noteworthy that the hybrid
viruses had multiple mutations in the N-term, NTPase, 3A-
like, Vpg, 3CP™, and 3DP°! proteins. These proteins are likely
to function primarily in NoV replication in host cells (19).
Therefore, acquisition of an appropriate mutation set in ORF1
might confer some advantages in replication of the hybrid
viruses in particular hosts. It should also be noted that the
2007b and 2008b subtypes encoded the VP1 and VP2 proteins
from 2006b (Fig. 3 and 4). VP1 plays critical roles in binding to
the putative infection receptors (8, 60, 61) and antibody neu-
tralization (33, 34). The VP2 protein is also essential for the
production of infectious virions in caliciviruses (56). Therefore,
acquisition of an appropriate mutation set in ORF2 and ORF
of 2006b might confer some advantages in infection and/or
immune escape of the hybrid viruses at some outbreaks.

Computer-assisted modeling studies provide a structural ba-
sis for addressing the potential selective advantages of the
capsids of the new GII/4 subtypes. We showed that unique
capsid amino acids of the 7 GII/4 subtypes identified in this
study were preferentially positioned on the outer surface loops
of the protruding P2 domain and were more abundant in the
dominant subtypes (Fig. 6). This is also a common character-
istic of the past epidemic GII/4 subtypes (32, 38, 53). These
findings suggest that physicochemical changes in the capsid
surface are a prerequisite for effective virus spread of NoV
GII/4 in humans. The specific mutations around the outer
surface loops of the protruding P2 domain can modulate the
local electrostatic environment and shape of the exposed cap-
sid surface by changing the chemical properties and the size of
side chains, respectively. Therefore, acquisition of an adequate
set of capsid P2 mutations might be able to decrease antibody
affinity without decreasing affinity to the infection receptors of
GII/4. This would confer an advantage to the variants that
would allow them to spread in human communities in the
presence of immunity against precirculated variants. To effec-
tively gain such a set of P2 domain mutations, as well as those
of nonstructural proteins, genetic recombination around the
ORF1/2 boundary region may be an ideal mechanism. Estab-
lishment of a tissue culture system to support effective repli-
cation of human NoVs, as well as a reverse genetics system to
study the roles of mutations in NoV infection and replication,
will be critical to clarify each of these possibilities.

It should be noted that despite the prolonged dominance of
the 2006b subtype, the magnitudes of NoV epidemics in Japan
have gradually declined since 2007: the total numbers of re-
ported NoV infection cases during October and March of
2007-2008 and 2008-2009 showed more than 2- and 5-fold
decreases, respectively, compared with the same period in
2006-2007 under the same surveillance system (Infectious Dis-
ease Surveillance Center [http://idsc.nih.go.jp/iasr/index
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.html]). These observations may imply that biological niches
within human communities that support replication of the
2006b subtype have gradually been shrinking in Japan since
2007. A possible explanation for this phenomenon is that
immunity against the 2006b subtype has been gradually
strengthened in human populations due to the persistence of
the 2006b infections in Japan. Nevertheless, none of the new
GI1/4 variant subtypes were able to replace the 2006b epidemic
in the 2007/2008 and 2008/2009 seasons. In addition, two of the
four new putative recombinants (2007b and 2008b), which
appeared in the 2007/2008 and 2008/2009 seasons, gained
ORF2/3 of 2006b. These observations may imply that 2006b
still had some selective advantages over other GII/4 variant
subgroups in the 2008/2009 seasons. Further follow-up study is
necessary to address these possibilities.

Our findings on genome mosaicism may have an impact on
epidemiological and virological studies of NoVs. For example,
mosaicism could influence the validity of NoV classification,
which is based on the sequences of parts of the NoV genome.
Because hybrid viruses that cause epidemics seem to share a
recombination breakpoint around the ORF1/2 boundary re-
gion, this junction segment may be useful for monitoring the
prevalence of hybrid NoVs in nature. The genome mosaicism
could also impact measurement of the mutation rates of NoVs
in nature: careful selection of the genome segments that con-
tain no recombination breakpoints would be critical to mea-
sure the nucleotide substitution rates. Continual accumulation
of information on the complete genome sequences of NoVs in
natural and living environments will provide genetic bases for
dealing with these issues and illustrate mechanisms by which
NoV evolves to generate and sustain new epidemics in human
populations.
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Porcine rotavirus B (RVB) has frequently been detected in diarrhoea of suckling and weaned pigs.
Moreover, epidemiological studies using ELISA have demonstrated high antibody prevalence in
sera from sows, indicating that RVB infections are widespread. Because it is difficult to propagate
RVBs serially in cell culture, genetic analysis of RNA segments of porcine RVBs other than those
encoding VP7 and NSP2 has been scarcely performed. We conducted sequence and
phylogenetic analyses focusing on non-structural protein 1 (NSP1), using 15 porcine RVB strains
isolated from diarrhoeic faeces collected around Japan. Sequence analysis showed that the
porcine NSP1 gene contains two overlapping ORFs. Especially, peptide 2 of NSP1 retains highly
conserved cysteine and histidine residues among RVBs. Comparison of NSP1 nucleotide and
deduced amino acid sequences from porcine RVB strains demonstrated low identities to those
from other RVB strains. Phylogenetic analysis of RVB NSP1 revealed the presence of murine,
human, ovine, bovine and porcine clusters. Furthermore, the NSP1 genes of porcine RVBs were
divided into three genotypes, suggesting the possibility that porcine species might be an original
host of RVB infection. Of nine strains common to those used in our previous study, only one strain
was classified into a different genotype from the others in the analysis of VP7, in contrast to the
analysis of NSP1, where all belonged to the same cluster. This fact suggests the occurrence of
gene reassortment among porcine RVBs. These findings should provide more beneficent
information to understand the evolution and functions of RVBs.

Accepted 8 Augkust‘ 2011

INTRODUCTION

Rotaviruses are a major cause of severe gastroenteritis in
humans. These viruses are also ubiquitous and responsible
for a significant proportion of neonatal diarrhoeal illness in
domestic animals, particularly in cattle and pigs. These
viruses belong to the family Reoviridae, with their genome
containing 11 segments of dsRNA. Six structural proteins
(VP1-4 and VP6-7) encapsidate the dsRNA to assemble
infectious triple-layered particles. Five (sometimes six)
non-structural proteins (NSP1-6) are associated primarily
with rotavirus dsRNA replication, transcription, cellular
pathology and virus-particle maturation (Pesavento et al.,
2006).

On the basis of genetic and antigenic studies, rotaviruses
are classified into seven species, commonly termed groups
(A~G). In addition, novel rotaviruses (ADRV-N, B219 and

The GenBank/EMBL/DDBJ accession numbers for the nucleotide
sequences of 15 porcine RVB strains determined in this study are
AB646350-AB646364.

A supplementary figure and table are available with the online version of
this paper.

J19) distinct from known rotaviruses A (RVA), B (RVB) or
C (RVC) were recently identified as the cause of an
outbreak of sporadic diarrhoea among adults (Yang et al.,
2004; Alam et al., 2007; Jiang et al., 2008). RVB infections
in humans have been reported in China, India, Bangladesh
and Myanmar (Hung et al, 1984; Chen er al, 1985;
Krishnan et al., 1999; Sanekata et al., 2003; Kelkar & Zade,
2004; Aung et al, 2009). These viruses have been also
isolated from a variety of animal species, including cattle,
pigs, rats and lambs (Chang et al., 1997; Shen et al., 1999;
Tsunemitsu et al., 1999; Barman et al., 2004; Ghosh et al.,
2007; Kuga et al., 2009). Bovine RVBs have been detected in
sporadic cases and outbreaks of diarrhoea in calves and adult
cows from India, Japan and the USA (Chang et al., 1997;
Tsunemitsu et al., 1999; Ghosh et al., 2007). On the other
hand, porcine RVBs have been identified in gastrointestinal
diseases of suckling and weaned pigs, and shown to cause
acute, transitory diarrhoea in experimentally inoculated
gnotobiotic pigs (Theil et al, 1985; Janke et al, 1990).
Furthermore, seroepidemiological surveys of RVB infections
using ELISA in cattle and pig farms in Japan and the UK
demonstrated high antibody prevalence in sera (Brown et al.,
1987; Tsunemitsu et al., 2005). RVBs are shed at a low level,
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