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Fig. 4. Production of pro-inflammatory cytokines by macrophages infected with recombinant M. smegmatis, Peritoneal exudate
macrophages (a~d) or bone marrow-derived macrophages (e, f) were infected with Ms_ppe87 or Ms_vec at an m.o.i. of 20.
Culture supematants were harvested after 24 h of infection and the concentrations of TNF-g (a, &), IL-6 (b, f), IL-12p70 {c) and
IL-14 (d) were determined. Data are shown as means % sD of triplicate wells. *, P<0.05 by Student's two-tailed #-test. Similar
results were obtained in three independent experiments. (g) Peritoneal exudate macrophages were infected with Ms_ppe37 or
Ms_vec at an m.o.i. of 20. At 3, 6, 9, 12 and 18 h after infection, macrophages were washed and total RNA was extracted. Equal
amounts of total RNA were subjected to RT-PCR in equal reaction volumes. DNA bands were visualized by ethidium bromide
staining after equal volumes of PCR mixture had been electrophoresed. Similar results were obtained in two independent

experiments. n.i,, No infection.

macrophages infected with Ms_vec. The differential
cytokine levels were due to lower transcriptional activation
of the cytokine genes, which probably resulted from
reduced activation of NE-«B, ERK and p38.

To the best of our knowledge, PPE1S is the only other PPE
protein that has been reported to exhibit the property of
interfering with the pro-inflammatory cytokine response in
infected macrophages (Nair ef al, 2009). In the study by
Nair et al. (2009), phorbol myristate acetate-differentiated
THP-1 macrophages were infected with either a recom-
binant M. smegmatis strain that expressed PPEI8 or a
control strain that harboured the vector alone. It was
shown that IL-12p40 production was significantly lower in
macrophages after infection with the PPE18-expressing
strain than after infection with the control strain. Nair ef al.
(2009) concluded that the decrease in the level of IL-12p40

was due to the anti-inflammatory activity of IL-10. A
significantly higher production of IL-10 was concurrently
found in macrophages after infection with the PPEI18-
expressing strain. In contrast to our study, we observed
very low levels of 1L-10 and found no significant difference
in the concentration of 1L-10 after infection with Ms_vec
and Ms_ppe37 (data not shown). Using a purified
recombinant protein, Nair ef al (2009) showed that
PPE18 stimulated the macrophages to secrete IL-10 by
binding to Toll-like receptor 2 (TLR2). A consequence of
this binding was an early and sustained activation of p38
MAPK, which has been shown to be critical for the
induction of IL-10. Similarly, our findings also implied the
involvement of MAPKs. However, our study suggests that
the mechanism by which PPE37 might interfere with the
pro-inflammatory cytokine response in infected macro-
phages involves reduced transcriptional activation of the
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Fig. 5. Expressien of cell-surface markers on macrophages
infected with recombinant M. smegmatis. Peritoneal exudate
macrophages were infected with Ms_ppe37 or Ms_vec at an
m.oi. of 20. After 24 h of infection, the macrophages were
harvested and the expression levels of MHC-I, MHC-ll, CD88,
CD80 and CD40 were analysed by flow cytometry. Grey-shaded
areas represent the basal fluorescent intensity in macrophages
stained with isotype control IgG2a. n.i, No infection.

cytokine genes. This in turn is probably due in part to
reduced activation of NF-«B, ERK and p38.

Although both PPE18 and PPE37 exhibit the similar
property of interfering with the pro-inflammatory cytokine
response in infected macrophages, there appear to be
differences in the mechanisms. This is indicated by the
discrepancy in the production of IL-10 and also in the
pattern of MAPK activation. One of the possible contri-
buting factors may be attributed to a difference in the
intrinsic properties of PPE37 and PPE18. Analysis of their
amino acid sequences has led to further classification of
PPE37 and PPEI8 into the PPE-PPW and PPE-SVP
subfamilies, respectively (Adindla & Guruprasad, 2003;
Gey van Pittius et al, 2006; Gordon et al, 1999). PPE
proteins of the subfamily PPE-PPW are characterized by a
conserved 44 aa residue region in the C terminus, which
comprises highly conserved Gly-Phe-X-Gly-Thr and Pro-X-
X-Pro-X-X-Trp sequence motifs (Adindla & Guruprasad,
2003; Gey van Pittius et al.,, 2006). Members of the PPE-SVP
subfamily, on the other hand, contain the motif Gly-X-X-
Ser-Val-Pro-X-X-Trp between position 300 and 350 in their
amino acid sequence (Gey van Pittius et al., 2006; Gordon ef
al., 1999). A systematic functional comparison has yet to be
made, but these amino acd sequence motifs may confer
distinct properties on the respective PPE proteins.

The other factor that may have contributed to the distinct
features in the effect of PPEI8 and PPE37 on IL-10
production and the pattern of MAPK activation may stem
from differences in the responses between mouse perito-
neal macrophages and the human monocytic leukaemia
cell line THP-1. Differences in MAPK activation are found
to differ considerably depending on the cell type used (Rao,
2001). This has led to the assertion that signalling events
associated with MAPK activation cannot be extrapolated
from one cell type to another (Rao, 2001). In addition to
cell type, it has also been reported that the level of cell
maturity also affects the activation of MAPK. Indeed, it was
shown that, upon infection with M. tuberculosis, the
kinetics of p38 MAPK activation in human alveolar
macrophages was faster than in human blood monocytes
(Surewicz et al., 2004).

Our study showed that the phosphorylation levels of ERK,
p38 and NF-«B p65 were lower in macrophages infected
with Ms_ppe37. This suggests that PPE37 may be
interfering with or inhibiting the activation of these
molecules. How does PPE37 achieve this, considering that
ERK, p38 and NF-«B p65 are three different proteins, each
associating with three different signalling pathways? A
possible mechanism as to how PPE37 might inhibit or
interfere with the activation of ERK, p38 and NF-xB p65 is
by inhibiting or interacting with a molecule that is involved
in the common activation of these three different proteins.
Although the MAPK and NF-«B signalling pathways are
distinct, they are not mutually exclusive. For example, they
are known to share some common stretches of the
signalling pathways when the TLRs are stimulated (Akira
et al., 2003). Among the TLRs, TLR2 is most frequently
involved in the recognition of various pathogen-associated
molecular patterns isolated from Mycobacterium spp. (Jo
et al., 2007). Therefore, in the innate immune response to
Mycobacterium spp. including M. smegmatis, the activation
of MAPKs and NF-«B may occur most commonly through
the stimulation of TLR2. In general, the stimulation of
most TLRs results in the recruitment of the adaptor protein
MyD88 to the receptor complex, where it promotes the
subsequent interaction of JL-1R-associated kinase with
TNF receptor-associated factor 6 (TRAF6). The signalling
pathways from TRAF6 then branch out, with one leading
to the MAPK pathway and another to the NF-xB pathway
(Akira ef al, 2003). This thus makes it very tempting to
speculate on the possibility that PPE37 interacts with one
of these molecules, including TLR2, that are involved in the
common activation of the MAPK and NF-kB signalling
pathways. Although the results shown in Fig. 1(c)
suggested that PPE37 is not a secretory protein, computa-
tional analysis of the amino acid sequence predicted the
subcellular localization of PPE37 to be on the bacterial
cytoplasmic membrane (Gardy & Brinkman, 2006; http:/
www.psort.org/psortb/). In line with this, as TLR2 is a cell-
surface receptor molecule, it may be more likely to interact
with PPE37 than with other molecules in the TLR2
signalling pathways that are involved in the common
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Fig. 6. Phosphorylation of the NF-xB p65 subunit, ERK and p38 in macrophages infected with recombinant M. smegmatis.
(a—c) Peritoneal exudate macrophages were infected with Ms_ppe37 or Ms_vec at an m.o.i. of 20. Macrophages were washed
and lysed after 0.5, 1, 2, 4, 6, 7 and 8 h of infection. Lysates were subjected to Western blot analyses to detect the
phosphorylated NF-xB p85 subunit (p-p65) (a), phosphorylated ERK (p-ERK) (b) and phosphorylated p38 (p-p38) (¢} with
specific antibodies. Detection of S-actin, total ERK and total p38 indicated equal protein loading. Similar results were obtained
in three independent experiments. n.i, No infection. (d, ) Peritoneal exudate macrophages were treated with U01286 (a MEK1/2
inhibitor) or SB202190 (a p38 inhibitor) at the indicated concentrations. Treatment with DMSO served as a control for the

inhibitor treatments. After 1 h, the macrophages were infecte

d with Ms_vec at an m.o.i. of 20. Culture supernatants were

harvested after 24 h of infection and the concentrations of TNF-2 {d) and IL-8 (e} in the culture supernatants were determined.
Data are shown as means s of triplicate wells, *, P<0.05 by Student's two-tailed i-test. Similar results were obtained in three
independent experiments. —, No infection or reatment; +, with infection or treatment.

activation of MAPKs and NF-xB. However, TLR2 is not the
only candidate receptor with the possibility of interacting
with PPE37, as the common activation of the MAPK and
NE-«B signalling pathways is not limited to this receptor
alone.

In the context of M. tuberculosis infection, the possible role
of PPE37 in interfering with the pro-inflammatory
cytokine response in infected macrophages might also be
applicable. Manca et al. (1999) reported that infection of
human monocytes with M. tuberculosis clinical isolate
CDC1551 induced a higher level of TNF-o, IL-6 and IL-12
than infection with the M. tuberculosis laboratory strain
H37Rv. It may be possible that this vigorous pro-
inflammatory cytokine response induced by CDC1551
was due in part to the loss of PPE37 function. Comparative
genome analysis between CDCI1551 and H37Rv has
revealed that the ppe37 gene is deleted from the genome
of CDC1551 (Gey van Pittius ef al., 2006).

In conclusion, the present study suggests that the M.
tuberculosis PPE37 may have a role in interfering with the

pro-inflammatory cytokine response in macrophages
infected with M. smegmatis. It is established that pro-
inflammatory cytokines such as TNF-x (Elbek et al., 2009;
Flynn et al., 1995; Jacobs et al., 2007; Lin et al., 2007; Wolfe
et al, 2004) are critical to host immune responses in
containing M. tuberculosis infection. Subversion and
modulation of the host inflammatory response can thus
be an advantageous pathogenic strategy for M. tuberculosis.
In light of the possible role of PPE37 suggested by our
study, a hypothesis of the possible contribution of PPE37
to such a pathogenesis strategy is presented. Our results
thus provide a basis to investigate and characterize further
the role of PPE37 in the context of M. tuberculosis
infection. Future studies that are needed include the
construction and testing of knockout genes in M.
tuberculosis.
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