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Most viruses use host mucosal surfaces as their initial portals of
infection. The respiratory tract has the body’s second-largest
mucosal surface area after the digestive tract. An
understanding of the unique nature of the mucosal immune
system of respiratory organs is therefore extremely important
for the development of new-generation vaccines and novel
methods of preventing and treating respiratory infectious
diseases, including viral infections.
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Introduction

T'he respiratory, digestive, and reproductive tissucs arc
located inside the body but are continuously cxposed to
the outside world. Thus they serve as gatcways with a
surveillance function for the acceptance of beneficial
antigens from the outside environment and an immuno-
logical function for the rcjection of non-beneficial anti-
gens [1]. When the host takes in oxygen via the
respiratory tract, cssential nutrients via the digestive tract,
or (in the case of females) spermatozoa via the reproduc-
tive tract, the organs in these tracts arc at high risk of the
invasion of pathogenic microorganisms. Mucosal cpi-
thelial cell layers cover the surfaces of these organs in
the same way as skin covers the outside of the body, and
they form physical and immunological barricrs that pre-
vent the invasion of harmful non-sclf materials. In
addition, most of these mucosa-associated organs, apart
from thc lower respiratory tract (i.c. the lungs) possess
‘resident flora,” which peaccfully cohabit with the host
and create a mutually beneficial environment. Therefore,
the mucosa nceds to distinguish not only bencficial and
detrimental materials, but also resident and pathogenic
bacteria. Beneficial materials or resident bacteria need to
be actively taken up, whereas detrimental matcrials or

harmful bacteria need to be sclectively excluded. T'his
mechanism is controlled by the mucosal immune system
(MIS) [1]. In this review, we focus on the unique nature of
mucosal immunity in the respiratory tract and its contri-
bution to the control of viral infection, with an cmphasis
on the influenza virus as an example of viruscs that invade
via the respiratory mucosa.

Anatomical uniqueness and physical barrier
function of the airways

Mammalian respiratory systems are divided mainly into
upper (from the nasal and oral cavities to the throat) and
lower (trachea and lung) systems. The two airway com-
partments arc environmentally separated by the glottis,
and in healthy pcople the lower respiratory tract is essen-
tially sterile. T'herefore, once microbes colonize the lower
tract and grow there, inflammatory responscs that can lead
to pncumonia arc induced. In contrast, the upper respir-
atory tract is the entrance way for oxygen inhaled in the
ambicent air, and the mucosal surfaces in this part of the
system arc consistently exposed not only to resident or
opportunistic microorganisms (c.g. Streptococcus pneumo-
niae and Haemophilus influenzae) [2], and pathogenic
microorganisms (c.g. Corynebacterium diphtheriae and influ-
enza virus) [3,4], but also to forcign environmental sub-
stances such as various kinds of chemical materials (c.g.
tobacco smoke) and allergen particulates (c.g. pollen and
housc dust).

T'he luminal side of the respiratory tract is physically
protected by layers of cpithelial cells that are adhered
tightly to cach other at tight junctions by occludin and
various members of the claudin family, and at adherens
junctions by E-cadherin [5,6]. The cpithelial cclls have
well-developed cilia and produce mucus composcd prim-
arily of polysaccharides such as mucin (MUC) [7]. Of the
different members of the MUC family, MUCI, 4, and 16
arc membranc bound and MUC2, 5AC, 5B, and 19 arc
scereted-type mucins associated with the respiratory tract
[8]. Expression of MUCSAC and 5B is increcased in
respiratory discases such as asthma and chronic obstruc-
tive pulmonary discase via IL-13 and STAT6 signaling
pathways [9]. At the bronchi, mucus and movement of
cilia act cooperatively to prevent large forcign bodies
(>5 wm) from drifting into the alveoli. Foreign bodics
that do become trapped arc carried toward the mouth by
ciliary movement and cxpelled by coughing. This mech-
anism is called mucociliary clearance and is important in
phylaxis [10]. However, in general, small foreign bodics,
including most pathogens, can casily escape the physical
barricr systcm and arrive at the pulmonary alveoli by
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inhalation. A highly developed and orchestrated immuno-
logical defensc system is therefore needed in the airways.

Induction and regulation of acquired immunity
via the MIS

In general, the MIS consists of inductive and cffector sites
[11]. The inductive tissue consists of secondary mucosa-
associated lymphoid tissuc (MALD), represcnted by
Peyer’s patches (PPs) in the small intestine and nasophar-
ynx-associated lymphoid tissuc (NALT) in the rodents
nasal cavity [11,12]. In the inductive tissuc, mucosally
introduccd antigens are taken up from the luminal to the
basolateral side of the cpithclium by antigen-sampling
cells. They arc then processed and presented by antigen-
presenting cells (APCs) such as dendritic cclls (DCs) to
immunocompctent cells including naive lymphocytes.
The DCs migrate to the T-ccll region of the MALT
and then present the peptide form of the uptaken antigen
to the naive T cells. In the B-cell region, germinal center
formation and antibody class switching occur [13]. A class
switch to [gA predominantly occurs in the MAL'T" by the
action of the IgA-associated cytokine family of T'GF(,
IL.-2, 114, IL-5, IL-6, and IL-10 [14,15]. Post-switched
IgA* B cclls cgress from the MALT through cfferent
lymph vesscls under the control of the sphingosine-1
phosphate system, a lipid mecdiator; they then cnter

Figure 1

the body circulatory system [13,16]. Finally, these cells
migrate to the mucosal layer of the cffector tissuc and
form the nccessary cellular network among "T'hi, ThZ,
Th17, Treg, and cytotoxic T cells, B cells, and DGs,
together with epithelial cells, to provide the appropriatc
dcfensive responses.

T'he MIS thus consists of a unique lymphocyte migration
system. For example, IgA™ B cells class-switched in the
MALT usually express CCR10 on their surfaces [17], and
these cells can migrate independently along antigen
administration routes such as pcroral and transnasal to
various tissues, such as distant mucosal epithelia, in which
the specific ligand molecule for CCR10, the chemokine
CCL28, is produced. Thus mucosal immunization can
inducc similar immune responses at both local sites of
antigen deposition and distal sites [18-20]. Nasal immu-
nization can thercfore cffectively induce an antigen-
specific mucosal immune response in the reproductive
tissue in addition to thc respiratory tract [21,22].
Recently, Cha er a/. have demonstrated that intranasal
immunization with adjuvant or virus itsclf accelerates
CCL28 expression in both the uterus and the nasal cavity
[23°]. This immunological interconnccted circulation
pathway of lymphocytes is often called the common
mucosal immune system (CMIS); it is peculiar to the
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Assembly of IgA in IgA plasma cells, and epithelial transcytosis of plgA by pIgR. IgA™ B cells, which arrive at the effector tissue, proliferate and
differentiate into IgA plasma cells in response to the indicated cytokines. In the IgA plasma cells, migA and a J-chain are assembled to form plgA just
before its externalization. The J-chain is required for the interaction between plgA and plgR, which are expressed on the basolateral surfaces of
adjacent epithelial cells. The plgA-pIgR complexes move to the apical surfaces of the epithelial cells by transcytosis and are then released to the
luminal side by digestion of part of pIgR. There are at least three mechanisms of virus neutralization: (1) S-IgA recognizes the viral epitope and inhibits
attachment to the epithelial cells; (2) plgA can sense and then eliminate viruses that invade the lamina propria; or (3) Viruses that have invaded the cell

can be recognized by plgA-plgR complexes during their transcytosis.
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MIS and is not found in other immune systems [24]. An
undcrstanding of the CMIS that bridges the respiratory
and reproductive immune systems is very important for
the development of mucosal vaccines against sexually
transmitted infectious discascs, including papilloma virus
and HIV.

When the IgA™ B cells arrive at the effector tissue, they
arc finally differentiated into IgA-producing plasma cells
[14]. In the IgA plasma cells, monomeric forms of IgA arc
tied together by J-chains to form polymeric (pIgA) IgA
(Figure 1) [1,25]. pIgA is transported to the luminal side
of the cpithelial cells by making a complex with poly Ig
receptors (plgR) expressed on the basal membrane side of
the epithelial cells [26]. Part of the pIgR is digested on the
luminal sidc, Icading to the formation of sccretory IgA (S-
IgA), which is then released into the lumen (Figure 1)
[26]. S-IgA binds to critical viral cpitopes that have
infected the mucous membranc and then necutralizes
their biological activity; this leads to strong inhibition
of viral growth both 7z vitro and iz vive [27]. For example,
S-IgA and plgA to hemagglutinin, which is a major
component of the viral surface including the influenza
virus, inhibit cellular attachment and internalization, and
intraccllular replication of virus, respectively. An iz vitro

Figure 2

cxperiment has suggested that, in addition to the extra-
cellular virus ncutralization activity of secreted plgA,
plgA can ncutralize intracellular viruses, including influ-
cnza virus, during plgR-mediated transport (Figure 1)

[27].

The airway MIS: uniqueness of the secondary
MALT and antigen-uptake system

Rodent NALT is located on both sides of the nasophar-
yngeal duct, dorsal to the cartilaginous soft palate. NALT
is considered to be a counterpart of the human Waldeyer’s
ring, which includes the palatal tonsils and adcnoids, and
it has an important role in the induction and modulation
of mucosal immunity in the upper respiratory tract
[11,28].

Unlike the peripheral lymph nodes, MAL'T, including
NALT', does not have afferent vessels [29]. Instead,
antigens arc usually taken in directly from the luminal
side of the acrodigestive tract and are instantly captured
by DCs waiting immediately bencath the cpithelial
layers. Although intestinal and lung alveolar DCs, which
express CX3CR1 and CD103, respectively, on their
surfaces, can dircctly recognize antigens by extending
their dendrites through the tight junctions between the
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Microfold cells (M cells) specialize in antigen uptake and their presence in the respiratory mucosal immune system. The cilia of M cells are shorter than
those of conventional epithelium cells. On its basal side, the M cell develops a pocket-like structure that can hold immunocompetent cells. M cells, like
macrophages, function in active antigen uptake. Because lysosome development in M cells is poor, in most cases the incorporated antigens are just
passed through the M cells unmodified and then taken up by DCs. In addition to M cells, DCs that are located in the pulmonary alveoli and express
CD103, or in the intestine and express CX3CR1, can directly take up luminal antigens by extending their dendrites. M cells can be found in three
different locations in the respiratory tract namely the NALT FAE, the respiratory epithelium, and the iBALT FAE.
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epithclial cclls to reach the lumen [30,31], antigen is
taken up mainly via specialized antigen-sampling cclls
called microfold cells (M cells) that usc a transcytosis
apparatus (Figure 2) [32,33]. M cclls arc found in the
folliclc-associated epithclium (FAE) covering the
MALT and have short cilia that arc less well developed
than those of neighboring ciliated epithcelial cells [34]. In
addition, on their basolateral side, M cells have a pocket
structure that holds DCs and/or lymphocytes, making
this antigen-sampling systcm able to speedily and effec-
tively deliver antigens to DCs without any antigen modi-
fications [34]. M cclls located in the NAL'l' FAE can
scrve as invasion and sampling sites for not only respir-
atory pathogens (e.g. group A Streprococcus (GAS) [33]),
but also intestinal pathogens (e.g. reovirus [35]).

Recently, we discovered cells in the murine nasal cavity
epithelium that resembled M cells morphologically and
functionally [36°]. Because these cells have the hallmark
characteristics of classical M cells but arc anatomically
located away from the NALT cpithclium (c.g. in the
turbinate cpithelium of the nasal cavity), we named the
cells ‘respiratory M cells’. Unlike the NAL'T M cells the
respiratory M cclls have no pocket structure, but CD11c”
DCs, which are distributed throughout the nasal passages
in the resting state, migrate to the arca underneath the
respiratory M cells to receive antigens after intranasal
GAS infection [36°].

The number of respiratory M cells per individual nasal
cavity is 5-10 times the number of NAL'T M cclls, the
average numbcer of which is 200-300 per mousc. This
difference might just be a reflection of the large surface
arca of the nasal turbinates and the relatively small arca of
the NAL'T" FAE.

Interestingly, the same numbers of respiratory M cclls as
in wild-type mice exist in [d2-deficient mice, which lack
almost all sccondary lymphoid tissucs, including NAL'T
[36°,37], when compared with wild-type mice. In
addition, Id2-deficient and wild-type mice show cquiv-
alent levels of antigen-specific scrum IgG and nasal IgA
production in response to nasal infection with Sa/monella
typhimurinm or GAS [36°]. Thesc findings indicatc that
the upper respiratory MIS consists of NAL'T-dependent
and NALT-independent induction pathways for the
gencration  of  antigen-specific  mucosal  immune
responses.

In addition to the presence of M cells in the upper
respiratory tract, there have been a few reports of the
existence of pulmonary M cells. Teitelbaum ez @/. have
shown that Mycobacterium tuberculosis rapidly cnters
through M cells, which might be present on inducible
bronchus-associated lymphoid tissue (iBALL: scec latcr
scction) [38]. T'he respiratory epithelium therefore has at
lcast three distinct pathogen-invasion and/or antigen-

sampling sites: respiratory and NAL'T" M cells in the
upper respiratory tract, and pulmonary M cclls in the
lower respiratory tract. It may be possible that various
respiratory pathogens have their own preferred entry
sites: for example, the upper respiratory tract M cclls
for GAS and the pulmonary M cells for M. tuberculosis. In
support of this speculation, one human study found that a
human influcnza virus rcceptor that posscsses sialic acid
linked to galactosc by an a-2,6 linkage (SAa2,6Gal) is
dominantly expressed on nasal cpithclial cells, whereas a
receptor for avian influenza viruses, including H5NT1, is
found only on alveolar type-II cells in the lower respir-
atory tract [39]. It is an important future task to cxten-
sively characterize the use of the various influenza virus
receptors among the different M cells located in the
upper and lower respiratory tracts.

Unique characteristics of NALT
organogenesis

The organogenesis mechanisms for peripheral lymph
nodes and PPs, which are the representatives of MAL'T
in the intestinal tract, are well studied [40]. Organogen-
esis of these tissues starts during the fetal period with the
inflow of Iymphoid tissuc inducer (LT1) cclls to the
respective lymph node anlagen [41,42]. L'I'i cells, the
development of which depends on two key transcription
factors, Id2 and ROR~t, have a common phcnotype
represented by CD37CD4"CD45". PP inducer (PPi) cells
initially develop in the fetal liver with the expression of
IL-7R, a4B1 integrin, and CXCRS5 [43,44]. Becausc the
stromal cells around PP anlagen express CXCL13, which
is a ligand for CXCRS, PPi cells specifically migrate to the
anlagen sitc and then interact with the stromal cells
[45,46]. T'he PPi cclls are then stimulated by [L-7 pro-
duced by intestinal stromal and/or epithclial cells, lcading
to the expression of lymphotoxin (L'T)-a1B2, which is a
ligand for L'TBR cxpressed on the stromal cells [47-49].
"I'he bidircctional interaction between PPi cells and anla-
gen cells is thus a key step for the initiation of PP tissue
gcnesis. When the stromal cells are activated via the
LTalB2-L'IBR, an intracellular NIK-IKKa—p52/RelB
signaling cascadc is turned on to increase the production
of lymphoid chemokine cocktails of CXCL13, CCL19,
and CCL21 around the arca of the PP anlagen and thus
continuously recruit inducer cells and immunocompetent
cells expressing CCR7—the receptor for CCL19 and
CCL21—for the development of PPs [50].

NAL'I" organogenecsis has scveral developmental features
distinct from those of PP tissuc genesis (Figure 3) [11].
First, the NAL'I" organogenesis program starts after birth,
whereas PP tissuc genesis is initiated and complcted
during the embryonic period. Sccond, in the case of PP
genesis, the interaction of L'T'a1B2 and L'I'BR is the most
important step, but the NAL'I structurc is found in both
L'T'a-deficient and NIK-deficient mice, indicating that
NAL'T is developed by a mechanism independent of
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Figure 3
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Distinct differences in organogenesis programs between PPs and NALT. Peyer’s patch (PP) genesis is initiated at the embryonic stage by migration of
afew CD3 CD4"I"CD45"CXCR5* PP inducer cells (PPi) to organizable stromal cells. This migration is controlled by the CXCR5-CXCL13 axis. CXCR5
signals induce a structural change in a481 integrin, enabling it to interact strongly with VCAM-1 on the stromal cells. The PPi are then activated by IL-7,
leading to expression of the membrane type of lymphotoxin (LT)-a182. This LTa1B2 activates a non-canonical NF-kB pathway in the stromal cells via
the LTB-receptor (LTBR), NIK, and IKKa. The activation of NF-kB induces the expression of lymphoid chemokines such as CCL19, CCL21, and
CXCL13 and of adhesion molecules such as VCAM-1 and ICAM-1. In response to the expression of these chemokines, immunocompetent cells,
including T and B cells, and DCs, which express CCR7 (a receptor for CCL19 and CCL21), and additional PPi are accumulated at the site of PP
formation. Therefore, all of the above-mentioned molecules are essential for PP organogenesis. In contrast to PP genesis, NALT genesis is initiated
postnatally and is completely independent of IL-7R, LT, LTBR, and NIK-signaling. Whereas PPi require 1d2 and RORvyt transcription factors for their

development from CD3~CD4~CD45" initiator cells, differentiation of CD3~CD4'°CD45" NALT inducer cells does not require RORyt.

LTalB2-LTBR signaling. In addition, NAL'I" genesis is
found in RORvyt-deficient [51], but not in Id2-dcficient
mice [37]. These observations suggest that the unique-
ness of NAL'T organogencsis stems from the uniquencss
of NAL'I" inducer cells.

Inducible bronchus-associated lymphoid
tissue for protective immunity
Bronchus-associated lymphoid tissuc (BALT) was
initially described as a family member of MAL'T located
in the lower respiratory tract [52]. Well-developed BAL'T
is found in a rabbit and fcline lung as a region covered by
the FAE including M cclls similar to PP and NAL'T;
however, BALT is not usually found in the lower respir-
atory tract of humans and mice [52-54]. In these specices,
the BAL'T" structure is induced by inflammatory stimu-
lation resulting from influenza virus infection or pncu-
monia. Therefore, this lymphoid structure belonging to
the tertiary lymphoid tissues is often called inducible

BALT 1BAL'T") in humans and micc [55]. 'T'he functional
and structural characteristics of iBALT resemble thosc of
conventional BALI' after influenza infection [55]. In
addition, influenza-induced iBAL'T" has thc potential
to prime influenza-specific T and B cells and to clear
virus with the aid of CD8" 'I" cells, without support from
other lymphoid tissues [55]. Although the mechanism of
iBAL'I" formation is poorly understood, these studics
have also indicated that LT cells and L'TalB2-LTBER
signaling arc not required for iBALT formation, becausc
both L'T'a-dcficient and RORyt-deficient mice develop
iBALT after influenza infection. It was recently reported
that LPS-induced IL-17 produced by CD4" ‘T" cclls
induces the production of CXCL13 and CCL19 in an
L'Ti cells-independent and lymphotoxin-independent
manncr, resulting in initiation of the first step for the
recruitment of lymphocytes at the anlagen site of iBALT
[56°,57]. T'o develop novel influenza vaccines it might be
uscful to consider the critical role of IBAL'L" in the
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induction of protcctive immunity. An interesting
strategy might be to develop a vaccine that supports
the induction of iBAL'T generation simultaneously with
the classical induction of influenza-specific S-IgA and
cytotoxic 'I'-lymphocytes.

Contribution of respiratory innate immune
responses in the initial phase of infection
Mucosally induced S-IgA antibodies arc a critical arm of
acquired immunity for protecting the host from infection,
but it takes scveral days to gencrate the necessary anti-
gen-specific S-IgA at the sites of invasion and replication
of an infcctious agent. During that time, the innatc
immune responsc, which can respond promptly but func-
tions in an antigen non-spccific manner, confronts the
pathogen by producing inflammatory cytokines and type I
IFNs [58,59°]. Because some inflammatory cytokines
(e.g. IL-6, IL-12, and 'I'NFa) arc nceded for the induc-
tion of antigen-specific 1" and B cells, the innate immunc
responsc is  also extremely important for inducing
acquircd immunity [58].

In the case of influenza virus infection, the virus attaches
to respiratory mucosal cpithcelial cells and then invades
the cytoplasm by endocytosis [60]. Fusion of the endo-
somal membranes of the cpithelial cell with the viral
envclopc is then observed. This fusion makes a gatc pore
linking endosome and cytoplasm; thus single-strand RNA
(ssRNA) representing the genome of the influenza virus is
released into the cytoplasmic region of the epithelial cell
[60]. It has been well known that ssSRNA virusces including
influcnza virus arc recognized by two kinds of innate
immunc receptor. Toll-like receptor (I'LR)7 (and also
TLRS8 in humans) is located on the cndosome, and its
ligand-binding sitc is turned toward the inside of the
endosome [59]. T'LR7/8 can secnsc ssRNA rcleased into
the endosome [61,62]. RIG-I reccognizes genomic RNA
released into the cytoplasmic region of infected cells
[63,64]. 'TLR7/8 and RIG-I activated by ssRNA trigger
intracellular signal transductions leading finally to prompt
production of type I IFNs and inflammatory cytokines via
activation of the transcription factors IRF3/7 and NF-«B
[59]. In addition to these above-described receptors that
recognize ssRNA, it has recently been reported that
NLRP3 inflammasome rccognizes the M2 protein of
influcnza virus and activates caspasc-1, leading to the
production of IL-1@, IL-18, and IL-33 [65%].

Murinc NKp46 (NKp44 in humans), which is a common
natural killer (NK) cell-surface marker, can recognize
hemagglutinin, which is a major component of the sur-
faces of viruses, including the influcnza virus [66,67].
T'herefore, when hemagglutinin is expressed on the sur-
face of the infected host cell, NK cclls recognize the
infected cells immediately and are activated; the sub-
sequent cytotoxic activity can control the growth of the
virus. In the lung, the ratio of NK cells to all lymphocytes

(CD45-positive cells) is about 10%—markedly higher
than in other organs [68]. In mice depleted in NK cells,
the mortality rate from influenza infection of the lower
respiratory tract is increased [69,70], indicating that the
pulmonary NK cells play an important role in the phylaxis
of influcnza virus infection.

Concluding remarks

In recent years, anxicty over cpidemics of emerging and
re-emerging infectious discases—especially respiratory
tract infections such as scasonal and pandemic influenza,
SARS, and tubcrculosis—has increased worldwide, and
cffective methods of prevention and therapy need to be
developed. In particular, the threat of pandemics of novel
strains of highly pathogenic avian influenza has become a
major social problem. Although there are some antiviral
drugs that target NA and M2 proteins, for maximum
prevention of infections with this virus we nced to
develop an effective vaccine with cross-reactivity. To
achicve this, molecular- and ccllular-level understanding
of the mucosal immunity of the respiratory tract is very
important, and continuous analysis will bec nceded in
futurc.

Acknowledgements

Our work is supported by grants from: the Ministry of Education, Culture,
Sports, Scicnee and ‘Technology of Japan (Grant-in-Aid for challenging
Exploratory Research [23659199 to S.S.], for Scientific Rescarch S
[23229004 to H.K.]); the Global Center of Excellence Program of the
Center of Education and Research for Advanced Genome-based Medicine
(to H.K.) and the Core Rescarch for Evolutional Science and T'echnology
Program of the Japan Science and T'echnology Agency (to H.K.).

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

o of special interest

1. Mayer L, Walker WA: Development and physiology of mucosal
defense: an introduction. In Mucosal Immunology, edn 3. Edited
by Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR,
Mayer L.Elsevier; 2005:5-18.

2. Murphy TF, Bakaletz LO, Smeesters PR: Microbial interactions in
the respiratory tract. Pediatr Infect Dis J 2009, 28:5121-S126.

3. Hadfield TL, McEvoy P, Polotsky Y, Tzinserling VA, Yakoviev AA:
The pathology of diphtheria. J Infect Dis 2000, 181(Suppl. 1):
S116-S120.

4. Broadbent AJ, Subbarao K: Influenza virus vaccines: lessons
from the 2009 H1N1 pandemic. Curr Opin Virol 2011, 1:254-262.

5. Tsukita S, Yamazaki Y, Katsuno T, Tamura A: Tight junction-
based epithelial microenvironment and cell proliferation.
Oncogene 2008, 27:6930-6938.

6. Yonemura S: Cadherin-actin interactions at adherens
junctions. Curr Opin Cell Biol 2011, 23:515-522.

7. Thornton DJ, Rousseau K, McGuckin MA: Structure and function
of the polymeric mucins in airways mucus. Annu Rev Physiol
2008, 70:459-486.

8. Evans CM, Koo JS: Airway mucus: the good, the bad, the sticky.
Pharmacol Ther 2009, 121:332-348.

9. Turner J, Jones CE: Regulation of mucin expression in
respiratory diseases. Biochem Soc Trans 2009, 37:877-881.

Current Opinion in Virology 2012, 2:1-8

www.sciencedirect.com

Please cite this article in press as: Sato S, Kiyono H. The mucosal immune system of the respiratory trace, Curr Opin Virol (2012), hrep://dx.doi-org/10.1016/j.coviro.2012.05.009 J




