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ARTICLE INFO ABSTRACT

The tick-borne pathogen, Anaplasma phagocytophilum (A. phagocytophilum), the causative
agent of human granulocytic anaplasmaposis (HGA), is increasingly becoming a public
health concern as an aetiological agent for emerging infectious disease. We found A.
phagocytophilum infection in a pooled sample of field-collected Ixodes persulcatus (1.
persulcatus) ticks from one district in Hokkaido, Japan. Thus, to further investigate the
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Keywords: ) prevalence in field-collected ticks, we used PCR assays targeting the A. phagocytophilum

Anaplasma phagocytophilum gene encoding 44 kDa major outer membrane protein (p44) for screening of I. persulcatus

ﬁ:tltle ticks and samples from cattle from pastures. Out of the 281 I. persulcatus ticks, 20 (7.1%)
1

were found to harbor A. phagocytophilum DNA. The infection rate for A. phagocytophilum in
cattle was 3.4% (42/1251). In future studies, it will be necessary to investigate effects of the
infection in order to understand its pathogenesis of A. phagocytophilum in domestic
animals.

Crown Copyright © 2010 Published by Elsevier B.V. All rights reserved.

1. Introduction et al.,, 1997; Woldehiwet, 2006). Ixodes ticks are the main
vector hosts of A. phagocytophilum, with Ixodes scapularis (1.
scapularis) and I. pacificus harbouring the pathogen in USA,
I. ricinus in Europe and L. persulcatus in Russia and Japan
(Piesman and Eisen, 2008). In Japan, previous studies have
reported the presence of A. phagocytophilum from reser-
voirs and vectors (Inokuma et al., 2007; Kawahara et al.,

2006; Ohashi et al., 2005; Wuritu et al., 2009). In the

Anaplasma phagocytophilum (A. phagocytophilum) is a
tick-borne obligate intracellular bacterium that infects the
granulocytes of various mammals, including humans,
sheep, goats, horses, dogs, cattle, llamas, and rodents,
and first was identified as a human pathogen in 1994 (Chen
et al, 1994; Dumler et al., 2005). Clinical symptoms

include pyrexia, headache, respiratory symptoms and
gastrointestinal symptoms in humans, and abortion,
pyrexia and edema in cattle (Chen et al., 1994; Petrovec
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Japan. Tel.: +81 11 706 5215; fax: +81 11 706 5217.

E-mail address: okazu@vetmed.hokudai.ac.jp (K. Ohashi).

! The first two authors contributed equally to the report.

present study, we have assessed the prevalence of A.
phagocytophilum infections in ticks and cattle in the central
area of Hokkaido by molecular epidemiological methods.

2. Materials and methods
2.1. Detection of A. phagocytophilum in ticks

Host-seeking Ixodes adult ticks were collected by
flagging with cotton flannel at the central area of Hokkaido,

0378-1135/$ - see front matter. Crown Copyright © 2010 Published by Elsevier B.V. All rights reserved.

doi:10.1016/j.vetmic.2010.11.025
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Japan, as described previously (Konnai et al., 2008). The
ticks were transported alive to the laboratory and
mechanically disrupted using pipette tips to extract
DNA. As preliminary survey, a pooled salivary gland
sample of I persulcatus ticks (15 female ticks) was used
for the detection of A. phagocytophilum by PCR. PCR was
performed by using primers MSP2-3F (5-CCA GCG TTT
AGC AAG ATA AGA G-3') and MSP2-3R (5-GCC CAG TAA
CAA CAT CAT AAG C-3') as described previously (Massung
and Slater, 2003; Zeidner et al, 2000), which can
specifically amplify a 334 bp portion of the p44 gene of
A. phagocytophilum. To further investigate the prevalence
of A. phagocytophilum in ticks, a total of 325 unfed, host-
seeking . persulcatus and I. ovatus ticks were collected from
the same area, and individually analyzed for the presence
of A. phagocytophilum DNA. The detection of A. phagocy-
tophilum was conducted using 150ng of purified DNA
under the same PCR condition described above. To
determine the presence of DNA in the samples, PCR
amplification of the tick actin gene was performed using a
specific primer set (5'-TGG ATC GGC GGC TCC ATC CT-3/,
and 5'-GAA GCA CTT GCG GTG GAC AAT G-3'), as previously
described (Konnai et al., 2006).

2.2. Tested cattle

A total of 1251 bovine samples used for the detection of
A. phagocytophilum were obtained from the Veterinary
Teaching Hospital, Graduate School of Veterinary Medi-
cine, Hokkaido University (Sapporo, Japan) as aliquots of
DNA samples were used for the diagnostic tests for bovine
leukemia virus. All of the cattle for sampling were from
grazing pastures in the same district where A. phagocyto-
philum-infected ticks were found. Each bovine blood
sample was taken within one year before/after A.
phagocytophilum was detected in the ticks. Genomic
DNA was extracted from 0.5 ml of whole blood samples
using the Wizard™ genomic DNA kit (Promega Corp.,
Madison, W1, USA) according to the manufacturer's
instructions. The detection of A. phagocytophilum was
conducted using 150 ng of purified DNA under the same
PCR conditions described above. To determine the
presence of DNA in the samples, PCR amplification of
the bovine B-globin gene was performed using a specific
primer set, PCO3 (5/-ACA CAA CTG TGT TCA CTA GC-3') and
PCO4 (5'-CAA CTT CAT CCA CGT TCA CC-3'), as previously
described (Konnai et al., 2006).

M SG MG CA

500
300 pd4/msp2
%gg : Tick actin

Fig. 1. Detection of A. phagocytophilum in different tissues of ticks.
Predicted sizes of A. phagocytophilum p44 and tick actin genes are 334 bp
and 108 bp, respectively. The 100 bp molecular weight marker is in lane
M. Salivary gland (SG), Midgut (MG) and Carcass (CA) (remnants after
removal of SG and MG) were collected from 15 adult [, persulcatus female
ticks.
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Table 1
Detection of A. phagocytophilum in field-collected tick.
Species No. tested No. positive
1. persulcatus
Male 155 13 (8.4%)
Female 126 7 (5.6%)
(Total) 281 20(7.1%)
L ovatus
Male 19 0 (0%)
Female 25 0 (0%)
(Total) 44 0 (0%)
Total 325 20 (6.2%)
3. Results

3.1. Detection of A. phagocytophilum in field collected ticks

As preliminary survey, the detection of A. phagocyto-
philum infection was performed by a PCR method using
pooled samples. As shown in Fig. 1, A. phagocytophilum was
specifically detected in salivary glands of adult ticks, but
not in midguts and tick carcasses. Thus, to further
investigate the prevalence of A. phagocytophilum in ticks,
a total of 325 unfed, host-seeking I. persulcatus and I. ovatus
ticks were collected from the same area, and individually
analyzed for the presence of A. phagocytophilum DNA
(Table 1). Overall, among the I. persulcatus ticks, 7.1% (20/
281) were found to be infected with A. phagocytophilum.
The infection rates were 5.6% (7/126) and 8.4% (13/155) in
female and male ticks, respectively. In this study, A

Table 2
Detection of A. phagocytophilum in cattle.
Herd no. No. tested No. positive
A 7, 1(14.3%)
B 11 0 (0%)
C 34 1(2.9%)
D 14 1(7.1%)
E 3 0 (0%)
F 18 1(5.6%)
G 9 0 (0%)
H 13 1(7.7%)
{ 17 0 (0%)
] 10 1(10.0%)
K 125 7 (5.6%)
L 14 0 (0%)
M - 20 0 (0%)
N 5 0 (0%)
0] 11 0 (0%)
P 12 0 (0%)
Q 2 0 (0%)
R 18 0 (0%)
S 10 0 (0%)
T 1 0 (0%)
u 1 0 (0%)
\ 31 1(3.2%)
w 42 1(7.1%)
X 424 14 (3.3%)
Y 324 9 (2.8%)
Z 45 2 (4.4%)
AA 30 0 (0%)
Total 1251 42 (3.4%)




506

phagocytophilum was not detected from the 44 of I. ovatus
ticks, although the number of samples tested was limited.
The tick actin gene was amplified to check the integrity of
the template DNA and could be detected among all the
ticks sampled (data not shown).

3.2. Prevalence of A. phagocytophilum infection in cattle from
the district where infected ticks were detected

A total of 1,251 cattle from various sizes of herds were
individually analyzed for the presence of A. phagocytophi-
lum DNA (Table 2). Of the 1251 cattle DNA samples
analyzed, 42 (3.4%) were positive for A. phagocytophilum,
although the infection rates were different among the
herds (0-14.3%).

4. Discussion

The objectives of the present study were to assess the
prevalence of A. phagocytophilum in cattle and ticks. In
previous studies, molecular survey was conducted for L
persulcatus and I ovatus in Honshu, Japan. In Hokkaido,
however, molecular survey was mainly conducted for
Haemophysalis ticks. In this study, A. phagocytophilum was
found to be prevalent in I persulcatus ticks (7.2%) in the
surveyed area. In this surveillance, A. phagocytophilum was
not detected in I. ovatus ticks, although the number of ticks
tested was limited. In Japan, A. phagocytophilum has also
been detected in I ovatus ticks (Ohashi et al., 2005). Thus,
further investigation on the prevalence of A phagocyto-
philum in Ixodes ticks including [ ovatus is needed.
Recently, A. phagocytophilum was detected from larval
ticks (Yoshimoto et al., 2010). There were many reports
about the prevalence in adult ticks, but few reports on
nymphal and larval ticks, and further investigation in
nymphal and larval ticks is also needed to reveal the risk
for the public health.

A. phagocytophilum-infected ticks were mainly col-
lected from lower vegetation at the peripheral and inner
parts of grazing lands for dairy and beef cattle, suggesting
the possibility that the ticks could transmit the pathogen
to cattle or had become infected after feeding on these
cattle. To investigate this possibility, we examined the
prevalence of A. phagocytophilum infections in cattle from
the areas where A. phagocytophilum had been detected in
the ticks. In this study, the infection rate of cattle with A.
phagocytophilum was about 3.5% (42/1251), which was
consistent with a previous report on the prevalence of A.
phagocytophilumin cattle (1%, 1/78)at another area within
Hokkaido (Jilintai et al., 2009). In Hokkaido, 10% of wild
deer (Cervus nippon yesoensis) collected at 1975, 1989, and
1991 were infected with A. phagocytophilum (Kawahara
et al., 2006), while 46% of deer collected at 2006 and 2007
were infected (Jilintai et al., 2009). These findings raise the
possibility that, in Japan, A. phagocytophilum could be
more widely distributed to domestic animals via ticks
from wild animals than previously thought. A. phagocy-
tophilum is the aetiological agent for tick-borne fever
characterized by generalized edema and abortions in
domestic ruminants (Woldehiwet, 2010). In our study,
however, among the animals found to be infected, no
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specific disease symptoms were observed upon clinical
examination, that is consistent with a previous study
(Jilintai et al., 2009). In future studies, it will be necessary
to investigate effects of the infection in order to under-
stand its pathogenesis of A. phagocytophilum in domestic
animals. On the other hand, A. phagocytophilum is also
known as the causative agent of HGA, an emerging febrile
disease. Since 1994, there hasbeen an upswingin reported
cases of the disease in the US, partly because of improved
detection methods of the pathogen. Indeed, HGA is only
second to Lyme disease as a tick-borne zoonosis in the US,
and it is important to establish the extent of prevalence
and distribution of this pathogen in Japan. Although the
occurrence of HGA is still unknown in Japan including
Hokkaido, the overall infection rate (3.5% in cattle and
7.1% in ticks) might indicate a potential public health risk
of HGA in the studied area. Furthermore, it would be-
interesting to determine the level of virulence of the
Hokkaido isolates of A. phagocytophilum.

5. Conclusions

Although our study determined low prevalence rates
among ticks collected from the sampling sites, the
detection of infected cattle from the same areas indicates
that these ticks are highly efficient in transmission of A.
phagocytophilum, a significant finding given that this
pathogen is zoonotic. Studies utilizing larger sample size
and from different geographical regions would provide
further insight on the transmission dynamics of A
phagocytophilum in these areas.
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Cytokine-activated neutrophils are known to be essential for protection against group A
Streptococcus infections. However, during severe invasive group A Streptococcus infections
that are accompanied by neutropenia, it remains unclear which factors are protective against
such infections, and which cell population is the source of them. Here we show that mice
infected with severe invasive group A Streptococcus isolates, but not with non-invasive group A
Streptococcus isolates, exhibit high concentrations of plasma interferon-y during the early stage
of infection. Interferon-y is necessary to protect mice, and is produced by a novel population
of granulocyte-macrophage colony-stimulating factor-dependent immature myeloid cells with
ring-shaped nuclei. These interferon-y-producing immature myeloid cells express monocyte
and granulocyte markers, and also produce nitric oxide. The adoptive transfer of interferon-
Y-producing immature myeloid cells ameliorates infection in wild-type and interferon-
y-deficient mice. Our results indicate that interferon-y-producing immature myeloid cells have
a protective role during the early stage of severe invasive group A Streptococcus infections.
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treptococcus pyogenes (group A Streptococcus; GAS) is one of

the most common human pathogens. It causes a wide vari-

ety of infections, ranging from uncomplicated pharyngitis and
skin infections to severe and even life-threatening manifestations
such as streptococcal toxic shock syndrome (STSS) and necrotiz-
ing fasciitis. The mortality rates for STSS and necrotizing fasciitis
are high (30-70%), even following prompt antibiotic therapy and
debridement! .

[t is widely believed that myeloid cells including polymorphonu-
clear leukocytes (PMNs) have a central role in survival from GAS
infections, and interferon (IFN)-y is essential to full activation and
proper function of PMNs. Notably, IFN-y at the infection site is
thought to be critical for protection; however, its increased systemic
levels scem Lo be detrimental to survival after GAS infections.
Therefore, the appropriale regulation of cylokine-producing cells
may be critical for survival and host defense against severe invasive
GAS infections.

Myeloid cells with ring-shaped nuclei (ring cells) are present in
the peripheral blood of patients with myeloproliferative diseases,
but only rarely in healthy control subjects®”. Rin%1 cells are usually
referred to as PMNs. However, not only Gr-1M8h pMN-like ring
cells, but also Gr-1'% mononuclear cell-like ring cells are present in
the bone marrow, peripheral blood, and inflammatory infiltrates of
mice®. Morphologically, a part of myeloid-derived suppressor cells
(MDSCs) has ring-shaped nuclei®!?, MDSCs are potent suppressors
of T-cell immunity, and their presence is associated with a poor clin-
ical outcome in cancer. They are divided into 2 subtypes according
to morphology and surface markers: Ly-6G~ Ly-6CM8" monocytic
MDSCs and Ly-6G* Ly-6C°™ granulocytic MDSCs!112, Recent
studies have demonstrated the considerable suppressive potential
of MDSCs on T-cell immunity in autoimmune diseases, and also
in chronic infections with intracellular pathogens, such as
Salmonella typhimurium, Candida albicans, Trypanosoma cruzi, and
Toxoplasma gondii'3. However, the biological functions of ring cells
in infectious diseases, and also the relationship between ring cells
and MDSCs, remain largely unknown.

In the present study, IFN-y-producing immature myeloid cells
with ring-shaped nuclei (YIMCs), which originated from bone mar-
row precursor-like cells (BMPCs), are shown to be functionally and
phenotypically distinct from MDSCs. We demonstrate that YIMCs
have a protective role against severe invasive GAS infections, and
possibly compensate for neutropenia.

Results
Role of IFN-y in severe invasive GAS infections. To clarify the
types of cytokines involved in severe invasive GAS infections, we
first investigated the dynamics of cytokines in severe invasive and
non-invasive GAS infections. As a model of disseminated infection
in normally sterile sites, we intraperitonially (i.p.) infected GAS-
susceptible C3H/HeN mice!*"17 with either severe invasive (emm3
genotype rgg gene-mutated STSS strain, NIH34) or non-invasive
(emm3 genotype non-STSS (pharyngitis) strain, K33) GAS clinical
isolates'8, and measured the levels of plasma cytokines. We detected
no significant amount of plasma cytokines within 24 h of infection.
By contrast, in mice infected with severe invasive GAS isolates, but
not with non-invasive GAS isolates, we detected high levels of plasma
IFN-y; moreover, the levels increased rapidly at 48 h post-infection
(Fig. 1a). Other cytokines, such as IL-1o, IL-1B, IL-4, IL-5, IL-12
p70 and [L-17, were scarcely detected in the plasma of mice infected
with either severe invasive or non-invasive isolates. By contrast, in
mice infected with severe invasive GAS isolates, the levels of 1L-2,
[L-10, and TNF increased transiently at 36 h post-infection.
Further, we evaluated whether IFN-y is the host factor contrib-
uting to protection against severe invasive GAS infections, or to
deterioration of STSS through an augmented inflammatory process.
We i.p. administered mice with an anti-mouse [FN-y neutralizing
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Figure 1| IFN-v is a host defense factor in mice infected with severe
invasive GAS isolates. (a) C3H/HeN mice were i.p. inoculated with

S. pyogenes (emm3 genotype) clinical isolates (non-STSS, K33; STSS,
NIH34; 3.0x107 CFU per mouse), and plasma cytokine levels were
determined by FlowCytomix. Data are expressed as mean+s.d. for at

least 2 independent experiments, using a total of 6-10 mice for each
group. The differences compared with K33-infected mice were statistically
significant (*P<0.05, **P<0.01) as determined by Student's t-test.

(b) C3H/HeN mice were i.p. inoculated with NIH34 (3.0x107 CFU per
mouse) in the presence of an IFN-y neutralizing mAb (clone R4-6A2) (1mg
per mouse) or control rat1gG (1mg per mouse). Survival was observed for
4 days post-infection. Mortality differences compared with infected mice
in the presence of control IgG were statistically significant (‘P<0.05), as
determined by a log-rank test. Survival curves were generated from two
independent experiments, using a total of eight mice for each group

mAb (clone R4-6A2), on the day of infection with severe invasive
GAS isolates. At 72h post-infection, all of the mice administered
with the IFN-y neutralizing mAb died. By contrast, 50% of the mice
treated with rat IgG as a control survived (Fig. 1b). These results are
consistent with those of a previous study®, in which mice treated
with a different IFN-y neutralizing mAb (clone XMG1.2) and IFN-y
knockout (Ifing™/~) mice were more susceptible to lethal skin infec-
tion with the M-nontypeable GAS strain 64/14 than were control
IgG-administered mice and wild-type mice, respectively. Thus,
IFN-y may act as a host defense factor against severe invasive GAS
infections.

A source of IFN-y in severe invasive GAS infections. It is widely
believed that T cells are a main source of IFN-y in severe invasive
GAS infections!=2!. To identify the [FN-y-producing cell types in
mice infected with severe invasive GAS isolates, we used an in vivo
intracellular cytokine synthesis (ICS) assay>>%3 to assess splenic
IFN-y production at 48 h post-infection. Unexpectedly, we revealed
that Gr-1' CD11b" cells (but not TCR-8" TCR-y/&", CD4", or
CD8" Tcells, DX5 " NK/NKT cells,or CD11c' MHC-II* dendritic
cells) were a source of splenic IFN-y in superantigen-insensitive
C57BL/6 mice?*2%, and also in C3H/HeN mice (Fig. 2aand b). These
Gr-1" cells appeared in the spleen on day 1 post-infection, subse-
quently increased in number, and were the major source of IFN-y
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Figure 2| CD11b* Gr-1* cells are the source of IFN-y in severe invasive GAS infections. (a,b) C3H/HeN mice (a), C57BL per six mice (WT) (b), and
Rag1™/~ mice (b) with or without i.p. infection of NIH34 (3.0x107 CFU per mouse) for 42 h were i.v. injected with monensin. Six hours later, the mice
were sacrificed and their splenocytes were immediately stained for the indicated markers, and analysed by ICS assay. (a) The numbers (%) in the plots
represent the proportion of IFN-y* subsets to total splenocytes. (b) Lower panels show the cells gated on the IFN-y* population. Data are representative
of three independent experiments. (¢,d) WT and Ragl ™/~ mice were i.p. inoculated with NIH34 (3.0x107 CFU per mouse) in the absence (c) or presence
(d) of an IFN-y neutralizing mAb (clone R4-6A2) or control rat IgG (1mg per mouse) as in Fig. 1b. Survival (in days) was observed as indicated. Survival
curves were generated from 2 independent experiments, using a total of 12 mice for each group. (d) Mortality differences compared with infected mice in

the presence of control IgG were statistically significant (*P<0.05) as determined by a log-rank test.

throughout infection (Supplementary Fig. S1). By contrast, TCR-3*
T cells and DX5' or NKI1.1" NK cells, which are regarded as the
sources of [FN-y in GAS infections'*~!7, produced small amounts
of IFN-y during the late stage (days 3-5 post-infection) of severe
invasive GAS infections in C3H/HeN mice, but not in C57BL/6
mice. Notably, the accumulation of Gr-1" cells led to the clearance
of infection from the spleen. Additionally, the administration of
monensin, which blocks intracellular cytokine transport, did not
induce spontaneous splenic production of IFN-y (Fig. 2a and b;
Supplementary Fig. S1).

To exclude the involvement of T cells in protection against
severe invasive GAS infections, we investigated IFN-y production in
C57BL/6.RAG1 knockout (Rag]'/“) mice, which have no mature
B and T cells®®. The ICS assay revealed that the cellular source of
[FN-y during severe invasive GAS infections was Gr-1" CD11b"
cells in Ragl =/~ mice, and also in C57BL/6 wild-type (WT) mice
(Fig. 2b). We further examined the mortality of Ragl =/~ mice dur-
ing severe invasive GAS infections. We observed no significant
difference in mortalily between Ragl =/~ and WT mice infected
with severe invasive GAS isolates (Fig. 2¢). Furthermore, similar to
C3H/HeN mice (Fig. 1b), IFN-y neutralizing mAb (clone R4-6A2)-

NATURE COMMUNICATIO

treated Ragl~/~ mice were more susceptible to severe invasive
GAS infections than were control IgG-administered Ragl =/~ mice
(Fig. 2d). Our results indicate that mature B and T cells do not affect
the mortality of infected mice, and that T cells have no protective
effect during the early stage of severe invasive GAS infections.

Characterization of the early source of IFN-y. Anti-Gr-1mAb
detects Ly-6C* monocytes and Ly-6G ' PMNs. Therefore, to deter-
mine which subset of Gr-1* CD11b*" cells is responsible for IFN-y
production during severe invasive GAS infections, we investigated
the surface phenotype of IFN-y-producing cells isolated from the
spleens of mice at 48h post-infection. The ICS assay revealed that
IFN-y- producmﬂ cells had the phenotype of monon,ytcs (F4/801™
CX3CR1") and PMNs (Ly-6G' Ly-6C'°%) (Fig. 3). Additionally,
they expressed no lymphoid (CD27, IL-7Rat) or gr anulocyte lineage
(CCR3, Siglec-F, c-Kit, IL-5Ra (H7)) markers, but exhibited partic-
ular profiles of CCR2™ CD31' CD34~ CD38" CD44high CD49d !
CD62L* CD69* IL-5Ro. (T21)Migh Siglec-H ~ (Fig. 3; Supplemen-
tary Table S1). In this model, the most prominent GAS infection
was present in the kidney!®27. In accordance with the bacterial bur-
den in the peritoneal cavity, spleen and kidney, a higher proportion
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Figure 3 | IFN-y-producing cells exhibit monocyte and PMN phenotypes in severe invasive GAS infections. C3H/HeN mice with or without i.p.
infection of NIH34 (3.0x107 CFU per mouse) for 42h were i.v. injected with monensin. Six hours later, the mice were killed and their splenocytes were
immediately stained for the indicated markers, and analysed by the ICS assay. The numbers (%) in the plots represent the proportion of IFN-y" subsets to
total splenocytes. These data are representative of three independent experiments

of IFN-y-producing cells accumulated in the kidney of C3H/HeN
mice, and also C57BL/6 mice i.p. infected with NIH34 (Supplemen-
tary Fig. S2). By contrast, lower proportion of IFN-y-producing
cells existed at the sites of infection. A skin-infection model yielded
similar results (Supplementary Fig. $2). Furthermore, IFN-y-pro-
ducing cells were detected in the spleens from mice infected with
various STSS strains!®27 (Supplementary Fig. $3). These cells were
also detected in the peripheral blood and (in particularly high fre-
quency) the bone marrow from NIH34-infected mice (Fig. 4a-d;
Supplementary Fig. S4). Interestingly, Siglec-F " eosinophils (Eos)
stained with IL-5Rot (H7) and IL-5Re (T21), whereas IFN-y-pro-
ducing cells stained well with T21, but not with H7 (Fig. 4e), sug-
gesting that IFN-y-producing cells were phenotypically distinct
from Eos. IFN-y-producing cells were also phenotypically distinct
from Ly-6C!°" CD31~ PMNs (Fig. 4d). Moreover, the number and
proportion of PMNs were markedly reduced in the spleen, periph-
eral blood, and bone marrow at 48h post-infection (Fig. 4d and f),
as reported in human STSS cases?®,

Immature myeloid cells as an early source of IFN-y. The TFN-v-
producing cells expressed the phenotypic markers of monocytes/

macrophages (F4/80 and CX3CR1) and PMNs (Ly-6G). Thereflore,

4 NATURI

wesorted CD11b ' CD11c™ F4/801% Ly-6G ' cells from the spleens
of infected mice and morphologically analysed them with May-
Griinwald-Giemsa staining. The IFN-y-producing CD11b ' CD11c~
F4/801% Ly-6G* splenocytes were IMCs, but not monocytes/
macrophages or PMNs. These IFN-y-producing IMCs were large
cells containing ring-shaped, non-segmented nuclei, with a coarse
chrontatin pattern®® (Fig. 5a and b). The sorted cells were contami-
nated withasmall number of PMNs; however, immunohistochemical
analyses showed that IMCs, but not PMNs, were the source of IFN-y
(Fig. 5¢). The cells with ring-shaped nuclei were also observed in the
peritoneum, kidney, and spleen from i.p. infection model, and in the
skin from subcutaneous (s.c.) infection model, whereas such cells
were not observed in the spleen and kidney from non-infected or
non-invasive K33 strain-infected mice (Fig. 5d and e). To determine
whether [FN-y-producing IMCs (YIMCs) are committed to the gran-
ulocyte or monocyte lineage, we cultured sorted CD11b' CDl1lc™
F4/80l0w Ly-6G* yYIMCs in vitro, in the presence of G-CSF, M-CSF,
GM-CSF or IL-5. We observed that G-CSF, M-CSF and IL-5 failed
to promote differentiation and survival (Fig. 5f). By contrast, in the
presence of GM-CSE, differentiated YIMCs increased their expres-
sion of CD11c, F4/80, DX5 and Siglec-F (Fig. 5g) with the polymor-
phonuclear phenotype (Fig. 5h). Such granulocyte-like cells showed
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Figure 4 | IFN-y-producing cells are detected in the peripheral blood and the bone marrow of GAS-infected mice. (a-d) Non-infected C3H/HeN mice
or (a-e) mice i.p. infected with NIH34 (3.0x107 CFU per mouse) for 42 h were i.v. injected with monensin. Six hours later, the mice were killed and their
splenocytes (a-e), peripheral blood cells (a,b), and bone marrow cells (c,d) were immediately stained for the indicated markers, and analysed by ICS
assay. (a,c) The numbers (%) in the plots represent the proportion of IFN-y* subsets to total cells. (b,d,e) Lower panels show the cells gated on the
IFN-y* population. (d,e) Rectangle gates in the plot represent mature granulocytes (d) and Eos (e). The numbers (%) in the plots represent the
proportion of mature granulocytes (d) or IFN-y™ Eos (e) to total cells. Data are representative of three independent experiments. (f) The numbers of
PMNs in the bone marrow, peripheral blood, and spleen from non-infected or NIH34-infected mice at 48 h. Data are expressed as mean+s.d. (n=3).
The differences compared with non-infected mice were statistically significant (*P<0.05, **P<0.01) as determined by Student's t-test.

reduced ability to produce IFN-y (Fig. 5i), and were phenotypically
different from c-Kit H7* Siglec-F* bone marrow-derived Eos
and CCR3 ' H7 " Siglec-F ' splenic Eos®’; (Supplementary Fig. S5).
‘These results suggest that YIMCs are committed to the granulocyte
lineage, but do not exist in the steady state, and produce IFN-y
during a specific stage of differentiation.

Nitric oxide (NO) is considered to be a main mechanism for
controlling some infective agents. Myeloid cells are able to release
NO in response to IFN-y30=33; moreover, IFN-y and NO-producing
myeloid cells have been described in cancer**. Therefore, we inves-
tigated the ability of YIMCs to produce NO in response to GAS.
When stimulated by autocrine and/or paracrine IFN-y, yIMCs
(but not than PMNs and granulocyte-like cells differentiated from
YIMCs using GM-CSF) were able to produce NO, because their
NO production was significantly blocked in the presence of IFN-y
neutralizing mAb (Fig. 5j).

Differentiation of precursor-like cells into yIMCs. Bone marrow
contains the highest proportion of YIMCs (Fig. 4c and d). Therefore,
we attempted to identify the precursors of YIMCs in the bone mar-
row of mice infected with severe invasive GAS isolates. Interestingly,
analysis of the surface molecules revealed 2 distinct subsets of IFN-
y-producing cells (Fig. 6a): a minor and a major subset. The minor
subset constituted 6.9+3.2% of IFN-y-producing bone marrow cells
(Fig. 6b), and comprised CD11b* CD11c™ F4/80°% Ly-6G "' large
cells (Supplementary Fig. $6), containing ring-shaped nuclei (BM-
vIMCs) (Fig. 6¢). On the basis of morphology and surface pheno-
type, these cells corresponded to splenic YIMCs (Sp-yIMCs) (Fig. 5a
and b). Neither isolated BM-yIMCs nor Sp-yIMCs proliferated in
the presence of GM-CSF (Figs 5t and 6d). These cells diflered from
metamyelocytes and immature neutrophils in non-infected bone

marrow (Fig. 6¢). The major subset of IFN-y-producing cells com-
prised CD11b' CDI11cMW F4/80" Ly-6Gl% precursor-like cells
(BMPCs) (Fig. 6b; Supplementary Fig. S6), which constituted
74.8+£13.7% of IFN-y-producing cells (Fig. 6b). This subsel con-
sisted of ~10% monocyte-like ring cells and immature myeloid cells
(Fig. 6c), which are phenotypically different from CD11b™ Ly-6G~
cells such as granulocyte-monocyte progenitors, common myeloid
progenitors, and myelolymphoid progenitors®>. In the presence
of GM-CSE isolated BMPCs proliferated (Fig. 6d) and differenti-
ated into BM-yIMCs (Fig. 6¢ and e). Morcover, after 2 extra days of
incubation with GM-CSF, differentiated BM-yYIMCs increased their
expression of CD11¢, F4/80, DX5and Siglec-F (Fig. 6f). The polymor-
phonuclear and cell surface phenotype (Supplementary Fig. S6) was
similar to that of Sp-yIMCs cultured with GM-CSF (Fig. 5gand h). The
differentiation of BMPCs into BM-yIMCs was totally blocked in the
presence of IFN-y neutralizing mAb; by contrast, this cytokine was
dispensable for differentiation into granulocyte-like cells (Supple-
mentary Fig. $6). These results are in accordance with the absence of
Ly-6G " yIMCs in the spleen of GAS-infected C57BL6.Ifng ™'~ mice
(Supplementary Fig. S7). The expression level of Ty-6G in PMNs
was similar for WT and Ifng™/~ mice (Supplementary Fig. $7). As
with YIMCs and yIMC-difterentiated granulocyte-like cells (Fig. 5i),
the cells differentiated from BMPCs, after 2 extra days of incuba-
tion with GM-CSF, retained the ability to release IFN-y in response
to GAS; however, subsequent differentiation by GM-CST reduced
the ability to produce IFN-y (Fig. 6g). A few IFN-y-producing
cells in non-infected mice were recognized in the same fraction as
the BMPCs (Fig. 6a), and, therefore, it is possible that BMPCs exist
in the naive bone marrow. Our results suggest that IFN-y-producing
BMPCs are the precursors of YIMCs, and that their differentiation
is dependent on autocrine and/or paracrine pathways involving
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non-infected C3H/HeN mice, or COTb* CD11c™ F4/80'°% Ly-6G * YIMCs in splenocytes from mice infected with NIH34, were isolated by FACS

(b,c) Cytospin preparations of each sorted cell type were visualized with May-Griinwald-Giemsa staining (b), whereas intracellular IFN-y (green,

IFN-v; red, nuclei) was visualized with a confocal laser microscopy (c). Scale bars, 20 um. (d.e) Paraffin-embedded sections of peritoneum, from mice
i.p. infected with NIH34 and skin from mice subcutaneously (s.c.) infected with NIH34 for 48 h (d), and of spleen and kidney from mice i.p. infected
with or without K33 or NIH34 for 48 h, (e) were visualized with hematoxylin and eosin staining. The yellow arrows indicate the cells with ring-shaped
nuclei. Scale bars, 100 um. (f) Sorted IMCs were cultured with control medium (Med), G-CSF (50 ngml™1), M-CSF (10ng mI~1), GM-CSF (10 ngmi~,
or IL-5 (10ng mI™1) for 2-4 days, and their absolute numbers were counted on the indicated days. Data are expressed as the average (mean+s.d.) of
triplicate wells (n=3). The differences compared with Med were statistically significant ("*P<0.01) as determined by Student's t-test. (g) YIMCs (blue
line) and GM-CSF (2 days)-cultured YIMCs (GM2-AMCs: red line) were stained for the indicated markers. Data are representative of three independent
experiments. (h) Cytospin preparations of GM2-vIMCs were visualized with May-Griinwald-Giemsa staining. Scale bars, 20 um. (i,j) YyMCs and
GM2-1IMCs were cultured with erythromycin-treated NIH34 (MOI 100) in the presence of control rat IgG or an IFN-v neutralizing mAb (clone R4-6A2)
for 24 h. The levels of IFN-y (i) and NO> ™ (j) in the culture supernatants were measured by ELISA and Griess reagent system, respectively. The average
(meants.d.) of triplicate wells is shown. Statistical significance (**P<0.01) was determined by ANOVA

IEN-y. Notably, the BMPC-derived unclassified granulocyte-  yIMCs to suppress T-cell responses. As reported previously, in vitro-
lineage, such as YIMCs (but not immature PMNs), seems to appear  differentiated Ly-6C' Ly-6G% F4/80' MDSCs” spontaneously
during severe invasive GAS infections. produced IFN-v (Fig. 7a), and inhibited Ag-specific T-cell prolifera-

tion and [FN-y production from T cells (Fig. 7b). Conversely, puri-
Distinction between yIMCs and MDSCs. MDSCs are composed of  (ied YIMCs failed to inhibit T-cell responses (Fig. 7¢), suggesting that
F4/80~ or F4/80l0w granulocytic MDSCs with ring-shaped nuclei,  yIMCs are functionally distinct from MDSCs. Additionally, MDSCs
and F4/80" monocytic MDSCs!®!. They can produce TEN-y13, markedly decreased in number and lost the ability to produce [FN-y
Furthermore, granulocytic/monocytic MDSCs differentiale into  when cultured in vitro with severe invasive GAS isolates (Fig. 7a).
CDllc!' F4/80" Gr-1' cells'?, as do yIMCs (Fig. 5g). To identify  Furthermore, CCR2™ CX3CR1" CD31" YIMCs are phenotypically
the relationship between the types of YIMCs observed during severe  different from CCR2' CX3CR1~ CD31~ granulocytic MDSCs and
invasive GAS infections and MDSCs, we investigated the ability of ~ CCR2Mgh CX3CR1~ CD31°* monocytic MDSCs (Supplementary
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by Student'’s t-test

Table S1). Taken together, our results indicate that YIMCs, which
appear in association with severe invasive GAS infections, comprise
a novel subset of [FN-y-producing cells, but not MDSCs.

Role of yIMCs in severe invasive GAS infections. To elucidate
the protective role of YIMCs, we employed an adoptive transfer
system using WT or Ifug™/~ mice. CD11b" CD11c™ F4/80'% Ly-
6G" yIMCs were purified {rom the spleens of WT mice infected
with severe invasive GAS at day 2, and transferred into recipient
mice. These mice were infected with a lethal dose of severe invasive
GAS isolates (5x107 CFU (high dose)/WT mouse, 1x107 CFU (low
dose)/lfng‘/‘ mouse), and the bacterial loads (CFUs) in the blood
were quantified. At 24h post-infection, YIMC-recipients and [FN-
y-treated mice had significantly lower bacterial loads in the blood
than did control mice (Fig. 8a—c). Additionally, all control mice and
all IFN-y-treated mice died. By contrast, 100% of high dose-infected
WT recipients and low dose-infected Ifiig™/~ recipients of YIMCs,
and also low dose-infected WT mice, survived until 60h post-
infection (Fig. 8d-f). Our results indicate that [FN-y successfully
improved the bacterial clearance, but that systemic IFN-y treatment
was detrimental to survival following GAS infections (Fig. 8a,c,d
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and f). Thus, it appears that YIMCs have a protective role in severe
invasive GAS infections.

Discussion
Previous studies have indicated that T cells and NK cells may have a
role in the production of IFN-y during GAS infections> 13171921
In the present study, we have demonstrated for the first time that
YIMCs in the peritoneal cavity, skin, spleen, kidney, peripheral
blood and bone marrow (but not T cells or NK cells) produce [FN-
Y in vivo during the early stage of severe invasive GAS infections.
The intensity of TFN-y production is comparable among YIMCs,
T cells, and NK cells, but production by YIMCs takes place sooner
than that by T cells and NK cells. Moreover, throughout the course
of GAS infection, YIMCs are the main IFN-y-producing cells in
the spleen. We further observed that IFN-y neutralized Rag™/~
mice succumbed to severe GAS infection at a similar rate to WT
mice. Taken.together, our results indicate that yYIMCs comprise
the major source of IFN-y during the early stage of severe invasive
GAS infections, and that they have an important protective role.
Notably, IFN-y administration reduced the number of bacte-
ria in the blood, whereas the transfer of YIMCs, but not of IFN-v,
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triplicate. Mean+s.d. is shown. The differences compared with OT-I splenocytes alone were statistically significant (*P<0.05, ~*P< 0.01) as determined

by ANOVA. Data are representative of three independent experiments.

improved the survival rate of mice following GAS infection. There-
tore, IFN-y was necessary, but not sufficient, to protect mice from
severe invasive GAS infections. We propose that NO production
from yIMCs (which is restrictively controlled by IFN-y), perhaps
combined with that from other myeloid cells, may have a critical
defensive role during the early stage of infection. In systemic GAS
infection, YIMCs are deployed in various infected tissues; thus,
the derived IFN-y, NO, and/or as yet unidentified protective fac-
tors may promote the development of innate immune responses for
the activation of phagocytes. However, we were unable to exclude
the possibility that excessive quantities of IFN-y secreted by
T cells following superantigens stimulation, by NK cells, and even
by YIMCs at the late stage of infection, are detrimental to survival
following GAS infections, by exacerbaling inflammatory responses
and organ injury.

YIMCs express phenotypic markers of the monocyte/macrophage
and granulocyte lineages, and are phenotypically different from
other Ly-6C" cells, such as inflammatory and resident mono-
cytes! b3 Mature PMNs, immature PMNs, and their progenitors
proliferate or maintain their survival in the presence of G-CSF37.
By contrast, in the present study, YIMCs did not survive in the pres-
ence of G-CSE However, in the presence of GM-CSE they differen-
tiated into a PMN-like phenotype. Thus, YIMCs are distinct from
the PMN lineage that develops during steady-state hacmatopoiesis.
In the presence of GM-CSFE, YIMCs possessed the ability to express
a specific marker for Fos, Siglec-F. Nevertheless, based on staining
with H7 and T21, they were distinct from Siglec-F ' splenic Eos. Our
observation that YIMCs failed to proliferate in response to IL-5 are
consistent with the previous finding that T21 mAb may recognize
IL-5R0. and other myeloid cell surface protein(s)®®. Thus, YIMCs
are unlikely to be committed to an Eos lineage; similarly, they
arc phenotypically different from DX5* basophils and basophil
lineage-committed progenitors®’.

Granulocytic MDSCs are very similar to YIMCs in terms of sur-
face markers (CD11b, F4/80, Ly-6C, Ly-6G, CD44, CD49d, and
CD62L)1M dependency on a growth factor (GM-CSF)!2, and
cylokine production profile (IFN-y)!3. However, in the present

8 NATURE COMMUN

study, we reveal that MDSCs did not produce IFN-y in response to
in vitro GAS infections. This is consistent with the previous finding
that MDSCs from septic mice did not produce IFN-y*. MDSCs are
believed to originate from, or be accelerated by, the blockade of nor-
mal hacmatopoiesis during chronic inflammation or in a tumour
bearing state. YIMCs and MDSCs may therefore be closely related
cell populations, and their differentiation and function may be
regulated by the host circumstances.

On the basis of our present findings, we conclude that YIMCs
are commilled Lo an unclassified granulocyte lineage with an imma-
ture phenotype, and that such cells have the potential to replenish
granulocyte populations. Moreover, GM-CSF is essential for the
extraordinary state, such as severe systemic infection, but not for
normal haematopoiesis*!. The replacement of GM-CSF-dependent
YIMCs may be regarded as a marked shift to the left of the leuko-
cyte differential, with many immature granulocytes in automated
cell counting. This is a characteristic of severe invasive GAS infec-
tions in our mouse model and also in human diseases®*®. The role
of YIMCs in other infections and inflammatory discases remains (o
be elucidated.

In the present study, we reveal that YIMCs differentiate from a
subpopulation of CD11b* CD11c!Y F4/80 " Ly-6GY cells in the
bone marrow; this is known as a monocyte lineage. No yYIMCs were
detected in Ifng™/~ mice infected with GAS, and IFN-y-producing
BMPCs (but not yTMCs) failed to differentiate into granulocyte-like
cells in the presence of an IFN-y neutralizing mAb. These observa-
tions suggest that the generation of YIMCs depends on the produc-
tion of IFN-y by BMPCs themselves. IFN-y derived from BMPCs
and yYIMCs may be a key component of haematopoiesis during
innate and adaptive immune responses, as shown in cases of malaria
and Mycobacterium avium infection®>*2. In the steady state, a few
IFN-y-producing cells existed in the Ly-6C!o% CD31* fraction,
including mixed progenitors of bone marrow®3. Thus, we can-
not exclude the possibility that BMPCs exist in non-infected bone
marrow and have potential to produce IFN-y, and that a subset
of bone marrow cells can produce IFN-y for the reproduction of
haematopoietic stem cells*>.
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NIH34-infected WT mice (a) or NIH34-infected Ifng™/~ mice (b,c) were statistically significant (“P<0.05) as determined by the Mann-Whitney U-test.
(d,e.f) Survival was observed for 60 h post-infection. Data are representative of two independent experiments.

Ring cells are present in the blood and bone marrow of humans,
especially patients with chronic myeloproliferative diseases®=®
but only rarely in healthy control subjects’. Further investigations
of peripheral blood leukocytes or bone marrow cells from severe
invasive GAS patients are required, to clarify whether the human
counterpart of YIMCs is a major source of IFN-yin STSS patients.

PMNs are known to be essential for protection against non-
invasive streptococcal infections. Following infection with severe
invasive strains, PMNs are impaired by enhanced virulence factors
(for example, streptolysin 0)!%27, and therefore other protective
mechanisms are required for the recovery. The results of our present
study indicate that YIMCs, a novel class of differentiated granulocytic
ring cells, which comprise the major source of IFN-y during the early
phase of severe invasive GAS infections, may have an important role.
During the later stage of infection, IFN-y derived from T cells and
NK cells may be detrimental to the host. Nevertheless, we believe
that the orchestrated regulation of yYIMCs serves as a protective
mechanism against severe invasive bacterial infections.

Methods

Bacterial strains. The STSS criteria in this study are based on those proposed by
the Working Group on Severe Streptococcal Infections*!. The clinical isolates from
STSS (NIH34 (ermm3 genotype], NIH230 (emmi49 genotype), NIH186 (emm1 gen-
otype), and NIH202-2 (emm1 genotype)), and also from non-invasive infections
(K33 (emm3 genotype)), were collected by the Working Group for Beta-hemolytic
Streptococci in Japan'®27, .
Mice. All work performed using mice was carried out in accordance with the
guidelines for animal care approved by National Institute of Infectious Diseases.
C3H/HeN and C57BL/6 mice (male, 5-6-weeks-old) were purchased from SLC.
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C57BL/6.Ragl =/~ (ref. 26) and C57BL/6.1fng ™/~ (ref. 45) mice were purchased from
the Jackson Laboratory. All mice were maintained in a specific pathogen-{ree condition.

GAS infections in a mouse model. GAS were grown to late-log phase (ODgy =
0.75-0.95). Then, 1.0x107 CFU to 5.0x107 CFU GAS, suspended in 0.5ml PBS,
were i.p. inoculated into 6-8-week-old male mice. In some experiments, mice were
i.p. administered with I mg of an anti-mouse IFN-v neutralizing mAb (clone R4-
6A2) or control rat IgG, or 10 ng of recombinant mouse IFN-y (Wako Pure Chemi-
cal Industries) at infection. Plasma production of CXCL10 (an IFN-y-inducible
protein) at 24 h, after NTH34 infection, was used to assess the activity of inoculated
TEN-7 (10 ng per mouse) in Ifug™'~ recipients (Ifig™'~ mice, 230.1£58.2pgml
IFN-y-treated Ifng /"~ mice, 468.2= 147.2pgml ™~ *; C57BL/6 mice as positive
control, 460.6+126.9 pgml~'*). Data were expressed as mean=s.d. (n=5). The
differences compared with Ifng ™'~ mice were statistically significant (*P<0.05) as
determined by Student’s t-test. Survival curves were compared using a log-rank test.

Measurement of cytokines in plasma. The plasma cytokine levels were deter-
mined by FlowCytomix (eBioscience) using a FACSCalibur flow cytometer (Becton,
Dickinson and Company (BD)), according to the manufacturer’s instructions.

Flow cytometry analysis. For the in vivo ICS assay*2?, at day 2 post-infection,
mice were intravenously (i.v.) injected with 500l of a PBS solution containing
100 g monensin (Sigma-Aldrich) at 6h before collecting. Splenocytes, peripheral
blood cells, bone marrow cells, and leukocytes in the peritoneal cavity, kidney,

and skin were collected and rapidly processed on ice. Single-cell suspensions were
prepared, and red blood cells were removed using an ammonium chloride lysis
butfer. For the in vitro ICS assay, non-infected or infected cells were cultured with
10pgml~! brefeldin A (Sigma-Aldrich) for 3h. One million cells were stained
with Alexa Fluor 488-, FITC-, PE-, Alexa Fluor 647-, allophycocyanin (APC)-, or
Pacific Blue-conjugated Abs (clones and suppliers, Supplementary Table $2) at 4°C
for 15min. Nonspecific staining was blocked with an anti-mouse FcyR mAb (clone
2.4G2). Dead cells were excluded by 7-aminoactinomycin D (7-AAD; Sigma-
Aldrich) staining. After washing, cells were fixed in 2% paraformaldehyde/PBS for
10 min and then permeabilized in 0.5% saponin/0.5% BSA/PBS (permeabilization
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