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Protein O-linked mannose betal, 2-N-acetylglucosaminyltransferase 1 (POMGnT1) is an enzyme that
catalyzes the transfer of N-acetylglucosamine to O-mannose of glycoproteins. Alpha-dystroglycan, a substrate
of POMGnT1, is concentrated around the blood vessels, in the outer plexiform layer (OPL), and in the inner
limiting membrane (ILM) of the retina. Mutations of the POMGnT1 gene in humans cause muscle-eye-brain
(MEB) disease. Several ocular abnormalities including retinal dysplasia, ERG abnormalities, and retinal
detachments have been reported in patients with MEB. We have analyzed the eyes of POMGnT1-deficient

Keywords:
Meisde_eye_bmm disease mice, generated by standard gene targeting technique, to study the retinal abnormalities. Clinical examination
Dystroglycan of adult mutant mice revealed a high incidence (81% by 12-months-of-age) of retinal detachments. Sheathing

Retinal detachment of the retinal vessels and the presence of ectopic fibrous tissues around the optic nerve head were also found.
Histological examinations showed focal retinal detachment associated with GFAP immunopositivity. The ILM
of the mutant mice was disrupted with ectopic cells near the disruptions. The expression of Dp71, a shorter
isoform of dystrophin, was severely reduced in the ILM and around retinal blood vessels of POMGnT1-
deficient mice. The expression of Dp427, Dp260, Dp140 were also reduced in the OPL of the mutant mice.
Electroretinographic (ERG) analyses showed reduced a- and b-wave amplitudes. Examinations of flat mounts
revealed abnormal vascular network associated with highly irregular astrocytic processes. In addition, ER-
TR7-positive fibrous tissue was found closely associated with reactive astrocytes especially around the optic
nerve head. Our results suggest that altered glycosylation of alpha-DG may be responsible for the reactive
gliosis and reticular fibrosis in the retina, and the subsequent developments of retinal dysplasia, abnormal
ERGs, and retinal detachment in the mutant mice.

© 2011 Elsevier Inc. All rights reserved.

Introduction and ocular abnormalities. To date, mutations in six known or putative

glycosyitransferase genes, viz., POMT1, POMT2, Fukutin, FKRP, LARGE, and

Protein O-linked mannose betal, 2-N-acetylglucosaminyltransfer-
ase 1 (POMGnT1) is an enzyme that catalyzes the transfer of N-
acetylglucosamine to O-mannose of glycoproteins (Yoshida et al,, 2001).
Mutations of the POMGnTI gene cause muscle-eye-brain (MEB)
disease, one of a family of dystroglycanopathies, in humans (Yoshida
et al, 2001). The dystroglycanopathies include a group of muscular
dystrophies including Walker-Warburg syndrome (WWS), Fukuyama-
type congenital muscular dystrophy (FCMD), congenital muscular
dystrophy (MDC) 1C/D, limb-girdle muscular dystrophy (LGMD) 2I/K/
M/N, and MEB. This group of disorders is clinically characterized by
various combinations of severe muscular dystrophy, mental retardation,

* Corresponding author. Fax: + 81 476 99 1923.
E-mail address: shuheik@nms.acjp (S. Kameya).

1044-7431/$ ~ see front matter © 2011 Elsevier Inc. Al rights reserved.
doi:10.1016/j.mcn.2011.03.006

POMGnTI, have been identified to be associated with these disorders
(Beltrdn-Valero de Bernabé et al, 2002; van Reeuwijk et al, 2005:
Kobayashi et al., 1998; Brockington et al., 2001; Longman et al,, 2003). A
common molecular defect for the dystroglycanopathies is the post-
translational modification or hypoglycosylation of alpha-dystroglycan
(alpha-DG).

Dystroglycan (DG) is encoded by a single gene and is cleaved into
two proteins, alpha-DG and beta-DG, by post-translational processing
(Ibraghimov-Beskrovnaya et al, 1992). Alpha-DG is a heavily glycosy-
lated glycoprotein and is a central component of the dystrophin
glycoprotein complex (DGC). A major function of the DGC is to link
cytoskeletal actin to the basal lamina which maintains the structural
integrity of skeletal muscles (Ervasti and Campbell, 1993). Mutations in
the components of DGC cause various forms of muscular dystrophies
(Straub and Campbeli, 1997).
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DG and other components of DGC are widely expressed in the CNS
and the retina (Henry and Campbell, 1999; Blake and Kroger, 2000).
Alpha-DG functions as a cell surface receptor for laminin, perlecan,
agrin, neurexin, and pikachurin in a variety of tissues (Ervasti and
Campbell, 1993; Gee et al, 1994; Peng et al,, 1998; Sugita et al., 2001;
Sato et al,, 2008).

In the retina, alpha-DG is concentrated in the inner limiting
membrane (ILM), around blood vessels, and in the outer plexiform
layer (OPL; Blake and Kroger, 2000). The alpha-DG in the IIM is
concentrated at the endfeet of the Miiller cells, and that in the blood
vessels in the perivasular astrocytes (Montanaro et al., 1995; Claudepierre
et al, 1999). The alpha-DG in the OPL is localized around the site of
expression of ribbon synapses of rod and cone photoreceptor terminals
(Ueda et al, 1995; Montanaro et al., 1995).

Abnormal electroretinograms (ERGs) have been recorded from
patients with MEB disease (Pihko et al., 1995; Fahnehjelm et al., 2001),
and have frequently been recorded from individuals with Duchenne and
Becker muscular dystrophies (Pillers et al,, 1999). The findings in several
mouse models with disruption of dystrophin, Large® and fukutin
indicated that DGC is associated with the normal physiology of the
retina (Pillers et al,, 1995; Kameya et al,, 1997; Lee et al., 2005; Takeda
et al, 2003). Abnormal ERGs in mice with a targeted disruption of
pikachurin, an extracellular ligand of alpha-dystroglycan at ribbon
synapses, also support the idea that DGC must be present in the OPL for
normal retinal physiology (Sato et al., 2008).

It was recently shown that inactivation of glial specific dystroglycan,
located in the endfeet of Miiller cells and perivascular astrocytes, led to a
reduction of the b-wave of the ERG. This suggested that glial specific

dystroglycan also plays an important role in the normal physiology of
the retina (Satz et al., 2009).

Patients with MEB have a variety of ocular abnormalities including
myopia, glaucoma, anterior chamber malformation, microphthalmia,
buphthalmus, nystagmus, strabismus, cataract, chorioretinal atrophy,
retinal dysplasia, and retinal detachment (Cormand et al, 2001;
Mercuri et al., 2009). The purpose of this study was to determine the
effect of altered glycosylation of alpha-DG caused by inactivation of
POMGnTT1 in the retina. To accomplish this, we studied mice with
targeted disruption of the POMGnTI gene. We shall show that
POMGnT1-deficient mice have a high incidence of retinal detachment
with reactive gliosis of the Miiller glial cells and the perivascular
astrocytes. Our results suggest that altered glycosylation of alpha-DG
may be responsible for the retinal dysplasia, abnormal ERGs, and
retinal detachment in humans with MEB.

Results
Retinal detachment in POMGnT1-deficient mice

At 6-weeks-of-age, the retinal vessels of all POMGnT1-deficient
mice were tortuous but none of the mice had a retinal detachment
(Fig. 1B). These mutant mice also had fibrous tissue over the retina
especially around the optic nerve head (Fig. 1B). Fibrous tissues were
not observed in any of the wild type mice.

By 6-months-of-age, the retinal vessels were sheathed, and focal and
extensive retinal detachments were present in the areas of the sheathed
vessels (Fig. 1C). The retinal detachment of some of the mice covered

Fig. 1. Fundus photograph of wild-type and POMGnTI-deficient mice. A. Six-week-old wild type mouse. B. Retinal vessel tortuosity can be seen in this 6-week-old POMGnT1-
deficient mouse. Arrows point to ectopic fibrous tissue surrounding the optic nerve head. C. Six-month-old POMGnT1-deficient mouse showing sheathing of the retinal vessels.

D. Retinal detachment (arrowheads) in a 6-month-old POMGnT1-deficient mouse.
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Fig. 2. Histological observations of the retina of wild-type and POMGnT1-deficient mice. A. and B. Sections of 15-week-old wild-type retinas stained with hematoxylin and eosin.
C. and D. Sections of 15-week-old POMGnT1-deficient retinas stained with hematoxylin and eosin. In (C), focal retinal detachments can be seen in several regions. There are some
connective tissue-like materials beneath the detached retina (arrowhead), indicating the retinal detachments are not embedding or sectioning artifacts. In (D), ectopic cells and
vitreal fibroplasia can be seen on the ILM of POMGnT1-deficient retina (arrows). Scale bars represent 200 um in A, C and 100 ym in B, D E and F. Quantification of the retinal
thickness-measurements of wild-type, Heterozygous and Homozygous POMGnT1-deficient mice. Animals used for this study ranged from 18-week-old to 28-week-old. The average
of each 5 animals is plotted. There was no significant difference in the whole retinal thickness (E), but significant thinning of the OPL was observed in POMGnT1-deficient mice

compared to wild-type mice (10.12:1.34 pm [SD] vs. 5.84 = 1.13 pm; P =0.045) (F).

more than a quadrant of the retina (Fig. 1D). By 12-months-of-age, 13 of
16 mutant eyes (81%) showed obvious retinal detachments.
Histological examination of 15-week-old mutant mice showed
focal retinal detachments (Fig. 2C). Ectopic cells and vitreal fibroplasia
were found on the inner limiting membrane (ILM; Fig. 2D) as was
found in Large"™ mice (Lee et al., 2005). There were no significant
difference in the whole retinal thickness, but significant thinning of
the OPL was observed in POMGnT1-deficient mice compared to wild-
type mice (Figs. 2E and F). This fibroplasia was immunopositive for
glial fibrillary acidic protein (GFAP; Figs. 3C and D). Because GFAP
expression is a reliable early marker of reactive gliosis of the
astrocytes and Miiller glial cells (Lewis and Fisher, 2003), an up-
regulation of GFAP staining of the ILM and the radial immunoreac-
tivity in the mutant mice indicated the development of reactive gliosis
of the Miiller cells. Quantitative analysis revealed that GFAP
immunoreactivity was significantly elevated in the retina of
POMGnT1-deficient mice (Fig. 3E). To confirm if elevated immuno-
reactivity of GFAP is truly associated with gliosis, we have also
characterized the retina of POMGnT1-deficient mice using anti-
vimentin antibody that is other cellular marker associated with
gliosis. The vimentin immunoreactivity of POMGnT1-deficient mice
along with ILM and radial morphology of Miiller cells are also
upregulated compared to that of wild-type mice (Figs. 4A and B). We
have applied another celtular markers to characterize the different cell
types in the anatomical regions. Immunoreactivity for both anti-
syntaxin antibody and anti-PKC antibody, cellular markers for
amacrine cells and bipolar cells, revealed no obvious differences
between POMGnT1-deficient and wild-type mice (Figs. 4C-F). These
data indicate that the up-regulation of GFAP and vimentin immuno-

reactivity is specifically associated with gliosis of Miiller cells of the
POMGnT1-deficient mice in the region.

Electroretinographic findings of POMGnTI-deficient mice

To examine the function of the retina of POMGnT1-deficient mice,
ERGs were recorded from 4-month-old wild type and POMGnT1-
deficient mice. The mixed rod-cone ERGs recorded from POMGnT1-
deficient mice at higher stimulus intensities had a negative waveform
with the amplitude of the b-wave smaller than that of the a-wave
(Fig. 5A). Amplitudes of the a-wave and b-wave of mixed rod-cone
ERGs obtained from POMGnT1-deficient mice are reduced signifi-
cantly compared to wild-type mice (Figs. 5B and C). The amplitudes of
the scotopic b-wave elicited by lower stimulus intensities were also
reduced in POMGnT1-deficient mice (Fig. 5D). The amplitude of the
b-wave of photopic ERGs of POMGnT1-deficient mice was also reduced
and significantly smaller than that of wild-type mice (Fig. 5E).

Expression of alpha-DG and dystrophin in retina of POMGnT1-deficient
mice

To confirm that the retina of POMGnT1-deficient mice completely
lacked POMGnT1 enzyme activity, we used a monoclonal antibody,
VIA4-1, that reacts against the sugar moiety of alpha-DG. Our findings
showed that VIA4-1 immunoreactivity was present on the ILM, around
blood vessels, and in the OPL of the retina of the wild type mice but was
completely absent in the POMGnT1-deficient mice (Figs. 6A and B). It
has been clearly shown that at the OPL there are three DMD gene
products, Dp427 (or full length dystrophin), Dp260 and Dp140 and at
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Fig. 3. GFAP staining of paraffin sections from wild-type and POMGnT1-deficient mice. A. and B. Sections of 18-week-old wild-type retinas with GFAP staining. C. and D, Sections of 18-
week-old POMGnTi-deficient retinas. There was an up-regulation of GFAP staining in the ILM. Scale bars represent 100 pm in A, C and 50 pm in B, D and E. Quantification of GFAP
immunoreactivity in paraffin sections from wild-type and POMGnT1-deficient mice. Animals used for this study ranged from 18-week-old to 28-week-old. The average of each 3 animals is
plotted. Intensity Index for GFAP immunoreactivity was significantly elevated in the retina of POMGnT1-deficient mice compared to wild-type mice (3.90 4 0.54 [SD] vs. 20.61 4 5.65;

P=0.003).

the Miiller cells only Dp71 is found (Dalloz et al.,, 2003 and Fort et al.,,
2008). The expression of Dp71 in the ILM and around retinal blood
vessels of POMGnT1-deficient mice was severely reduced (Fig. 6D). The
expression of Dp427, Dp260, Dp140 were also reduced in the OPL of the
mutant mice (Fig. 6D).

Glial proliferation closely associated with ER-TR7-positive fibrous tissue
around abnormal retinal vessels in POMGnT1-deficient mice

Two mouse models with aberrant glycosylation of alpha-DG have
been reported to have reactive gliosis with an up-regulation of GFAP
expression in the retina and the brain. One of these is the Large"™ mice,
which has a disorganization of astrocytic processes in the retina (Lee
et al.,, 2005). The second mutant is the POMGnT1-disrupted mouse,
which has reactive gliosis in the cerebral cortex (Yang et al., 2007). To
further characterize the glial proliferation and associated vascular
abnormalities in the retina of our POMGnTI1-deficient mice, we
examined flat mounts of the retina of 4-month-old wild type and
POMGnT1-deficient mice.

In flat mounts of POMGnT1-deficient mice retina, the GFAP
staining of astrocytes was highly irregular especially around the
retinal vasculature (Figs. 7E and K). Retinal vascular staining derived
from perfusion of FITC-dextran showed disorganization of the normal
pattern of the vascular networks (Figs. 7D and ). Double staining for
GFAP and FITC-dextran showed that abnormal retinal vasculature was
highly co-localized with the irregular astrocytic processes (Figs. 7F
and L). Quantitative analysis for GFAP immunoreactivity and
vascularization stained by FITC dextran perfusion showed significant
elevation of intensity index in both central and peripheral retina of
POMGnT1-deficient mice compared to wild-type mice (Fig. 8).

In POMGnT1-deficient mice, it was also reported that most of the
GFAP-positive reactive astrocytes in the brain were in close contact
with ectopic fibroblasts, suggesting that they were induced by the
fibroblasts (Yang et al., 2007). To confirm that our POMGnT1-deficient
mice also showed fibrosis associated with the GFAP-positive reactive
astrocytes in the retina, we examined flat mounts of 4-month-old
wild type and POMGnT1-deficient mice using the ER-TR7 antibody.
Although the antigen of the ER-TR7 antibody has not been fully
characterized, it is known to detect an antigen present in and
produced by reticular fibroblasts. Reticular fibers are synthesized by a
family of collagen proteins, and the fibers are made by reticular
fibroblasts.

In the flat mount preparations, ER-TR7-positive fibrous tissue was
found closely associated with GFAP-positive reactive astrocytes
especially around the optic nerve head (Figs. 9D-F). An up-regulation
of ER-TR7-positive fibrous tissue was also found in the peripheral
retina associated with the irregular retinal vasculature (Figs. 9J-L).

Discussion

Patients with MEB show a variety of ocular abnormalities, and at
least six cases with retinal detachment have been reported (Cormand
et al,, 2001; Matsumoto et al.,, 2005; Godfrey et al., 2007; Demir et al,,
2009). Although an involvement of the retina has been frequently
described in MEB patients, many patients without any retinal
abnormalities have also been reported (Mercuri et al, 2009). A
broader phenotypic spectrum was reported for MEB disease world-
wide, and no consistent genotype-phenotype correlation has been
established (Hehr et al.,, 2007). Thus, Finnish patients homozygous for
the founder mutation showed a wide variation in their phenotype
(Diesen et al., 2004).
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Fig. 4. Immunchistochemical observations of several markers for different cell types of the regions from 18-week-old wild-type and 20-week-old POMGnT1-deficient mice. A. and B.
Sections of retina labeled with anti-vimentin antibody. The vimentin immunoreactivity of POMGnT1-deficient mice along with ILM and radial morphology of Miiller cells were
upregulated compared to that of wild-type mice. C. and D. Sections of retina labeled with anti-PKC antibody for bipolar cells. There were no significant differences between the retina
of wild-type and POMGnT1-deficient mice. E. and F. Sections of retina labeled with anti-Syntaxin antibody for amacrine cells. There were no significant differences between the

retina of wild-type and POMGnT1-deficient mice. Scale bars represent 50 pm in A-F.

Two mouse models with mutations of the POMGnTI gene have
been reported including our model (Liu et al,, 2006 and Hu et al,
2010; Miyagoe-Suzuki et al., 2009). These two mouse models have
different phenotypes and different location of the POMGnT1 gene
mutation. Our model was produced by standard gene targeting
techniques with disruption of exon 18, while the other model was
generated by gene trapping with a retroviral vector inserted into exon
2 of the POMGnT1 gene. Our model has a milder muscle phenotype
and a lower survival rate than the other model, but had frequent
retinal detachment which was not described in the other model.
Homozygous mutants of our mouse model are sterile, and homozy-
gous mutants are obtained by heterozygote matings. However, the
homozygous offsprings have a very low survival rate (Miyagoe-Suzuki
et al., 2009).

A spectrum of retinal abnormalities was observed in our
POMGnT1-deficient mice, although all of these mice had the same
POMGnT1 gene mutation. These findings are consistent with earlier

hypotheses that factors other than the activity of POMGnTI gene, e.g.,
environmental factors, play a role in determining the severity of the
mutation (Diesen et al., 2004; Matsumoto et al., 2005).

Abnormal ERGs are found in patients and mice with a mutation in
the DGC component (Pillers et al., 1993; Pihko et al., 1995; Kameya
et al, 1997). These findings suggest an involvement of the DGC
localized in the OPL for signal transduction at the ribbon synapse of
photoreceptor terminals. Mice with targeted disruption with pika-
churin gene support this hypothesis. The reduced ERG b-waves in
pikachurin-deficient mice suggest an involvement of DGC and
pikachurin in retinal signal transduction at the ribbon synapses of
photoreceptors (Sato et al., 2008). Recently, mice with a conditional
deletion of dystroglycan in the CNS were generated by Satz et al. These
mice showed that an inactivation of the glial specific dystroglycan
located in the glial endfeet of Miiller cells and perivascular astrocytes
was sufficient to reduce the amplitude of the ERG b-wave (Satz et al.,
2009).
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Fig. 5. Electroretinograms of wild-type and POMGnT1-deficient mice. Animals used for this study ranged from 11-week-old to 19-week-old. A. Combined rod-cone ERGs obtained
from POMGnT1-deficient mouse showing negative-type ERG with decreased amplitude of a-wave and b-wave. B. and C. Amplitudes of the a-wave and b-wave of combined rod-cone
ERGs obtained from POMGnT1-deficient mice are reduced significantly compared to wild-type mice. The average of each 3 animals is plotted. D. and E. Amplitudes of the h-wave of
scotopic and photopic ERGs obtained from POMGnT1-deficient mice are also decreased compared to wild-type mice.

The abnormal ERGs of POMGnT1-deficient mice could be explained
by several mechanisms. They could arise from an inactivation of glial
specific alpha-DG, or disturbed Pikachurin-DG interaction at the ribbon
synapse, or dysfunction of retina caused by vascular network abnor-
malities, or the retinal detachments.

POMGnT1-deficient mice showed decreased expression of dystro-
phin in the ILM similar to that observed in the mice with conditional
deletion of dystroglycan in the CNS, suggesting inactivation or
dysfunction of alpha-DG caused by hypogycosylation.

Pikachurin is necessary for the apposition of presynaptic and
postsynaptic terminals in the photoreceptor ribbon synapses because
Pikachurin is an extracellular ligand of alpha-dystroglycan at ribbon
synapses (Sato et al,, 2008). A recent study using the same POMGnT1-
deficient model clearly showed that the degree of pikachurin immnor-
eactivity in the ribbon synapse of the mutant mice is reduced
(Kanagawa et al.; 2010). Because a proper localization of pikachurin at
the ribbon synapse supported by functionally mature DG plays

important roles in the physiology of the retina, reduced expression of
pikachurin in the mutant mice caused by disturbed pikacurin-DG
interaction could be one of the cause of abnormal ERG of POMGnT1-
deficient mice.

The vascular networks in the mutant retina were grossly disorga-
nized associated with GFAP-positive irregular astrocytic processes
compared to that of wild-type mice. The dysfunction of the mutant
retina caused by the disorganization of retinal vascular network might
be one of the causes of abnormal ERGs of mutant mice.

We have obtained the ERG data from the mice without gross
retinal detachment, because retinal detachment is generally known to
cause abnormal ERGs. However, we cannot rule out the possibility
that these mice had shallow and focal retinal detachment associated
with sheathed retinal vessels caused by the reactive gliosis.

In the retina, reactive gliosis can result from retinal injury and
disease, including retinal trauma, choroidal neovascularization, retinal
detachment, and diabetic retinopathy (MaclLaren, 1996; Caicedo et al,,
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Fig. 6. Immunohistochemical observations of the dystrophin-glycoprotein complex in the retina from 18-week-old wild-type and 20-week-old POMGnT1-deficient mice. A. Sections
of wild-type retina labeled with the VIA4-1 antibody for alpha-dystroglycan. VIA4-1 staining was found in ILM, around blood vessels, and in the OPL. B. VIA4-1 immunoreactivity was
completely absent in POMGnT1-deficient retina. C. Sections of wild-type retinas labeled with the MAB1694 antibody for Dystrophin. Expression of Dystrophin can be seen in ILM,
around blood vessels, and in the OPL. D. In the retina of POMGnT1-deficient mice, expression of Dystrophin was reduced in ILM, around the blood vessels and OPL. Scale bars

represent 50 pm in A-D.

2005; Lewis et al., 1995; Mizutani et al,, 1998). Secondary complications
induced by the reactive gliosis of the Miiller cells and astrocytes are the
development of fibrosis and proliferative vitreoretinopathy (PVR; Fisher
and Lewis, 2003). The POMGnT1-deficient mice showed highly reactive
gliosis with strong up-regulation of GFAP expression.

Flat mount preparations of the mutant mice also showed
connective tissue-like ER-TR7-positive fibrosis. The high incidence
of retinal detachments in POMGnT1-deficient mice may be caused by
the PVR preceding the reactive gliosis and reticular fibrosis in the
perivascular astrocytes and Miiller cells. In POMGnT1-deficient mice,
it was shown that repetitive injury caused more fibrosis and fatty
infiltration in the tibiaris anterior muscles (Miyagoe-Suzuki et al,,
2009). Reactive gliosis with increased numbers of fibroblasts closely
associated with capillaries in the cerebral cortex has been reported in
POMGnT1-deficient mice (Yang et al, 2007). Large'™ mice with
disruption of glycosyltransferase have abnormal retinal vessels with
highly irregular GFAP staining similar to those observed in our mice
(Lee et al., 2005). Our mutant mice also had ER-TR7-positive fibrosis
associated with reactive astrocytes around both the optic nerve head
and peripheral retina. These findings suggest that aberrant glycosyl-
ation of alpha-DG can cause fibroblast proliferation in the muscle, eye,
and brain of these mice, and also reactive gliosis in the eye and brain.

On the other hand, mice with a complete loss of dystroglycan from
the glial endfeet did not have abnormal retinal vasculature or gliosis
(Satz et al, 2009). These results suggest that hypoglycosylation or
incomplete glycosylation of alpha-DG rather than the absence of alpha-
DG may play a role in reactive gliosis of perivascular astrocytes in the
retina.

In conclusion, our findings indicate that POMGnT1-deficient mice
may be a good model of human MEB. The reactive gliosis and reticular
fibrosis in the perivascular astrocytes and Miiller glial cells caused by

hypoglycosylation or incomplete glycosylation of alpha-DG may be
associated with the mechanisms of retinal dysplasia, abnormal ERG
and retinal detachment in human MEB. The phenotypic variability of
the mutant mice may be useful to determine other factors than
POMGnT1-deficiency in determining the severity of human MEB.

Experimental methods
Experimental animals

The generation of POMGnT1-deficient mice on C57BL/6 back-
ground was described in detail by Miyagoe-Suzuki et al. (2009). For
our study, normal C57BL/6] mice were used as wild type control and
were purchased from CLEA Japan, Inc. The procedures used in these
experiments were approved by the Animal Care and Use Committee of
the Nippon Medical School and conformed to the ARVO statement for
the use of animals in ophthalmic and vision research.

Clinical examination of retina

The pupils of the mice were dilated with tropicamide and
phenylephrine hydrochloride for indirect ophthalmoscopy with a 90
diopter aspheric lens. Fundus photographs were taken with a Kowa
GENESIS-D fundus camera (Kowa Co., Japan) for small animals using a
90 diopter aspheric lens.

Histology and immunohistochemistry
Eyes from POMGnT1-deficient and C57BL/6] mice were enucleated

and fixed in SuperFix (Kurabo, Osaka, Japan) overnight. They were
then embedded in paraffin, and 7 pm thickness sections were stained
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Fig. 7. Vascular network of flat mounted retinas stained by FITC-dextran perfusion and immunohistochemical staining for GFAP from wild-type and POMGnT1-deficient mice. Each
animals are 10-week-old. A. D. G. and ]. Flat mount retinal preparations from wild-type and POMGnT1-deficient mice perfused with FITC-dextran. B. E. H. and K. GFAP staining of
astrocytes in flat mount retinal preparations from wild-type and POMGnTI-deficient mice. C. F. L and L. Merged images are shown. Regions of central retinas (A-F) and peripheral
retinas (G-L) are shown respectively. GFAP staining of astrocytes in POMGnT1-deficient retina is highly irregular especially around retinal vasculature (Eand K). Retinal vascular
staining derived from perfusion of FITC-dextran showed disorganization of normal pattern of vascular network (D and J). Double staining of GFAP and FITC-dextran showed that
abnormal retinal vasculature was associated with highly irregular astrocytic processes (F and L). Scale bars represent 100 um in A-L

with hematoxylin and eosin (H&E). For statistical analysis, measure-
ments of retinal thickness were made at peripheral retina ~1.0-
1.2 mm from the optic nerve head (Chi et al., 2010). For immunohis-
tochemical analyses, the enucleated eyes were embedded in optimal
cutting temperature compound (OCT, Miles Inc.) and frozen in liquid
nitrogen before 6 pm sections were cut. After blocking the sections
with 5% normal goat serum, sections were incubated overnight with

rabbit polyclonal anti-glial fibrillary acidic protein (GFAP; Dako), anti-
vimentin antibody (V9; Dako), anti-PKC antibody (MC5; Sigma), anti-
Syntaxin antibody (HPC-1; Sigma), anti-alpha-dystroglycan antibody
(VIA4-1; Upstate Biotechnology), or anti-dystrophin antibody (Dys2;
Novocastra). The secondary antibodies were anti-mouse antibody
conjugated with Alexa Fluor 488 (Molecular Probes) for vimentin,
Syntaxin, alpha-dystroglycan, dystrophin, and anti-rabbit antibody
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Fig. 8. Quantification of GFAP immunoreactivity and vascularization stained by FITC-dextran perfusion in flat mounted retinas from wild-type and POMGnT1-deficient mice. Animals
used for this study ranged from 10-week-old to 12-week-old. The average of each 3 animals is plotted. A. and B. Intensity Index for GFAP immunoreactivity was significantly elevated
in the central retina of POMGnT1-deficient mice compared to wild-type mice (8.33-2.00 [SD] vs. 2023 4 6.22; P=:0.003) (A) and also in the peripheral retina of POMGnT1-
deficient mice compared to wild-type mice (9.0242.54 [SD] vs. 20.70 £ 2.55; P=0.005) (B). C. and D. Intensity Index for vascularization stained by FITC-dextran perfusion was
significantly elevated in the central retina of POMGnT1-deficient mice compared to wild-type mice (10.50:2.39 [SD] vs. 32.18 +:6.04; P=0.004) (C) and also in the peripheral
retina of POMGnT1-deficient mice compared to wild-type mice (14.601.35 [SD] vs. 34.2949.30; P= 0.002) (D).

conjugated with Alexa Fluor 488 (Molecular Probes) for GFAP, PKC.
The immunostained sections were photographed with a confocal laser
scanning microscope (TCSSP™, Leica Microsystems Japan).

Electroretinograms (ERGs)

ERGs were recorded from mice anesthesized with an intramuscular
injection of ketamine (80 mg/kg) and xylazine (10 mg/kg), and the
pupils were dilated with a mixture of tropicamide and phenylephrine.
After overnight dark adaptation (>12 h), white light-emitting diodes
embedded contact lens electrode was placed on the cornea under dim
red light, this electrode was translucent to diffuse the stimulus and
background lights. The stimulus intensity and duration were controlled
by an electronic stimulator (LS-W; Mayo Co., Nagoya, Japan). The
indifferent electrode was a needle inserted subcutaneously on the nasal
bone, and a needle electrode on the neck served as the ground electrode.
During recording, body temperature was kept to 33 °C with small
animals heat controller (ATC-101B, Unique Medical, Tokyo, Japan).

Responses were amplified by a preamplifier (MEG-5200, Nihon
Koden, Tokyo, Japan) with band pass between 1 and 300 Hz, and eight
responses were recorded with the Power Lab system (AD Instruments
Japan Inc,, Nagoya, Japan). Stimulus intensity was calibrated by photo
sensor built in LS-W. The stimulus intensity to elicit scotopic ERGs was

0.009 cds/m?, and that to elicit the mixed rod-cone ERGs was 3.0 cds/m®.
Photopic ERGs were recorded after 10 min of light adaptation with
31.6 cd/m? and the photopic ERGs were elicited with a stimulus intensity
of 3.0 cds/m?. The interstimulus interval was 10 s for scotopic ERGs, 15 s
for combined rod-cone ERGs, and 2 s for the photopic ERGs.

Retinal flat mounts

Anesthetized mice were perfused with 40 ml of PBS through the heart
followed by 5 ml of 4% paraformaldehyde in PBS. Then, 2 ml of a mixture
of fluorescein-isothiocyanate (FITC)-conjugated high-molecular-weight
dextran (molecular weights: 2x 10° and 4 x 10* Da in a proportion of 2:1
and a concentration of 10 mg/ml; Sigma, St. Louis, MO) was perfused
through the heart. The eyes were enucleated and placed in 4%
paraformaldehyde overnight at 4 °C. The anterior segment was removed,
and four radial incisions were made in the remaining sclera-choroid-
neurosensory retina complex. The isolated retinas were placed in ice-cold
methanol for 15 min and transferred to PBS. After two 15 min washes in
PBS at room temperature (RT), the retinas were transferred into a
blocking solution of 10% fetal bovine serum (FBS) and 10% normal goat
serum (NGS) for 1h at RT. The retinas were incubated with rabbit
polyclonal anti-glial fibrillary acidic protein (GFAP; Dako) or reticular
fibroblasts and reticular fibers antibody (ER-TR7: Santa Cruz
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Fig. 8. Immunohistochemical staining for ER-TR7 antigen and GFAP in flat mount retinal preparations from wild-type and POMGnT1-deficient mice. Each animals are 10-week-old.
A.D. G. and ]. ER-TR7 staining in flat mount retinal preparations from wild-type and POMGnT1-deficient mice. B. E. H. and K. GFAP staining of astrocytes in flat mount retinal
preparations from wild-type and POMGnT1-deficient mice. C. F. I. and L Merged images are shown. Regions of central retinas (A-F) and peripheral retinas (G-L) are shown
respectively. ER-TR7-positive fibrous tissues were found closely associated with reactive astrocytes around optic nerve head (D) and peripheral vasculature (I). Note that ER-TR7 and

GFAP staining are not identical (arrows). Scale bars represent 100 pm in A-L.

Biotechnology) in 10% FBS and 10% NGS in PBS for 18 h at 4 °C. Retinas
were incubated with anti-rabbit antibody conjugated with Alexa Fluor
568 (Molecular Probes) for GFAP, and anti-rat antibody conjugated with
Alexa Fluor 488 (Molecular Probes) for ER-TR7 in 10% FBS and 10% NGS in
PBS for 25 h at room temperature. The flat mounted retinas were
photographed with a confocal laser scanning microscope system TCSSP™
(Leica).

Intensity index calculation

GFAP and FITC-dextran stained images were analyzed with Image]
software (Version 1.44, NIH, Bethesda, MD). Each images were
captured using the same camera settings for power, gain, iris aperture
size. Data was obtained for the relative area of each region of interest
with pixel intensity above a set threshold, and averaged across three
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images for both of wild-type and mutant mice. Thus, the index of
intensity is defined as the relative area of supra-threshold pixels in
each region of interest averaged for both of wild-type and mutant
mice (Feilchenfeld et al., 2008). All quantitation was performed with
the experimenter blinded to the condition.

Statistical comparisons

All data were expressed as the mean--standard deviation. For
statistical comparisons of retinal thickness and amplitudes of a- and b-
wave of ERGs, two-tailed Mann-Whitney nonparametric tests were
used. For statistical comparisons of Intensity Index for GFAP immuno-
reactivity, unpaired t-tests were used. In all statistical comparisons, a P-
value less than 0.05 was considered statistically significant.
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