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Chapter 10
Genetic Variants of the Dopaminergic System
in Humans and Model Organisms

Kouta Kanno and Shoichi Ishiura

10.1 Introduction

Human personality is shaped by both genetic and environmental factors. Molecular
genetics has begun to identify specific genes for quantitative traits. The first candi-
date genes investigated were components of the monoamine neurotransmitter path-
ways, such as serotonin and dopamine. The serotonergic system is involved in mood,
anxiety, and aggression. Temperamental predisposition and behavior are likely to be
influenced by genetic variations of serotonergic genes —i.e., serotonin-metabolizing
enzymes, tryptophan hydroxylase and monoamine oxidase (MAQ), catechol-O-
methyltransferase (COMT), 14 kinds of serotonin receptor (5-hydroxytryptamine, or
5HT) and serotonin transporter (SERT).

The dopaminergic system is involved in the brain’s reward system and addictive
behavior. Human or animal behavior is also influenced by dopaminergic genes such
as tyrosine hydroxylase (TH), dopamine receptors (DRD), and dopamine trans-
porter (DAT). Noradrenergic and y-aminobutyric acid (GABA)ergic genes are also
involved in behavior.

It has been reported that single nucleotide polymorphlsms (SNPs) and simple mic-
rosatellites in and around the coding regions of the dopamine- and serotonin-related
genes —e.g., DRD3, DRD4, DAT1 (SLC6A3), TH, COMT, brain-derived neurotrophic
factor (BDNF), SHT2A, MAOA, and SERT (5-HTT, SLC6A4) (D’Souza and Craig
2008) — are important factors in human neuropsychiatric disorders and behavior.
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Here, we primarily focus on the dopaminergic systems and review reports, including
our recent studies, on functional DAT1 polymorphisms.

The dopaminergic nervous system plays important roles in regulating locomotion,
cognition, reward, addiction, and hormone release (Jackson and Westlind-Danielson
1994; Missale et al. 1998; Bannon et al. 2001; Uhl 2003). Dopamine and its related
genes are thought to be involved in neuropsychiatric disorders and behavioral traits.
The human dopamine transporter (DATI) gene is involved in many dopamine-related
disorders. Levels of DAT are reduced in Parkinson’s disease (PD) and elevated in
attention deficit hyperactivity disorder (ADHD), Tourette’s syndrome, and major -
depression (Madras et al. 1998; Muller-Vahl et al. 2000; Brunswick et al. 2003;
Krause et al. 2003). Additionally, several psychoactive drugs, including cocaine,

‘amphetamine, and methylphenidate, are known to inhibit dopamine reuptake by the

‘DAT protein (Giros et al. 1991, 1992; Giros and Caron 1993; Kilty et al. 1991,
Shimada et al. 1991).

10.2 Functional Genetic Polymorphism of DATI:
The Variable-Number Tandem Repeat

The dopamine transporter, which is a major tuner of synaptic dopamine levels, is a
620-amino-acid protein belonging to the family of Na*/Cl--dependent neurotrans-
mitter transporters with 12 putative transmembrane domains and is located on axon
terminals (Uhl 2003). A functional genetic polymorphism exists in part of the
3'-noncoding region included in exon 15 of the DATI gene (Michelhaugh et al.
2001). As shown in Fig. 10.1, this 3'-UTR contains a 40-bp variable-number tandem
repeat (VNTR) polymorphism ranging from 3 to 11 repeats, with 9 and 10 repeats
being the most common alleles (Vandenbergh et al. 1992; Michelhaugh et al. 2001).
We identified 6-, 7-, 9-, 10-, and 11-repeat alleles and their sequences in a Japanese
population (Fuke et al. 2005) (Fig. 10.1). The repeats’ unit sequences with 9 and 10
repeats were the same as those reported by Mill et al.. (2005).

This VNTR polymorphism is known to be associated with many neuropsychiatric
disorders such as ADHD, PD, and drug abuse (Cook et al. 1995; Vandenbergh et al.
2000; Ueno 2003; D’Souza and Craig 2008). Many genetic studies have reported
significant associations between disorders and addictions with these genotypes.
However, discrepancies exist among the studies, although a recent meta-analysis
showed a small but significant association between the 10-repeat allele and ADHD
(Yang et al. 2007). \

If the VNTR is associated with these diseases, what is the mechanism? One pos-
sible answer is the different levels of DAT expression among the genotypes. In fact,
modified gene expression, depending on the genotype, was observed in vivo (Heinz
et al. 2000; Jacobsen et al. 2000; Martinez et al. 2001; Mill et al. 2002; D’Souza
and Craig, 2008). We first demonstrated modified gene expression in vitro in Cos-7
cells using the luciferase reporter assay (Fuke et al. 2001), and since then several groups
have confirmed the results in mammalian cell lines (Inoue-Murayama et al. 2002;
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Core Promoter

Variable Number of
v Tandem Repeats

exonts | - \TR 1

6repeat AIAIBI TIE]E

7 repeat AT IIEID 6
9repeat [ATARICIBI TIEIDIE]
10repeat [RIATBICTSIETR[DICTH]

11 repeat FATAIBIRICIBIE [EIDIGIE]

po Iy(A) signal
v

Repeat Units

(A)  AGGAGCETETCCTATCCCC6EACECATECAGGECCCECAC
(B) AGBAGCATGTCCTATCCCTEEACGCATECAGEECCCCCAC
(C) AGGAGCETETACTACCCCAGAACGCATECAGEGCCCCCAC
(D)  AGGAGCETETACTACCCCAGGACGCATECAGEECCCCCAC
(E) TGGAGCETGTACTACCCCAGGACGCATECAGGGCCCCCAC
(F) AGGAGCETGTCCTATCCCCGEA ~

CCEGACGCATECABGECCCCCAC
(6) AGGAGCGTETACTACCCCAGGATECATECABGGCCCCCAC
(H) AGGAGCETETACTACCCCAGGACECATECAGEECCCCCAT
(I) T6GAGCETETACTACCCCAGGATECATECAGEGCCCCCAC

Fig. 10.1 Genomic structure of the DATI gene and allelic variants of variable-number tandem
repeat (VNTR) polymorphism in exon 15. (a) Coding region (black box), noncoding region (open
boxes), VNTR, and constant repeat units (gray boxes) are shown. Exon 15 of the DAT] gene
contains a stop codon (black arrowhead) and polyadenylation signal (open arrowhead). Upstream
of the VNTR are six nucleotides, AATAAA, that resemble a polyadenylation signal. The allelic
variants of VNTR polymorphism indicate repeat units type (A-I) in each allele. (b) Nucleotide
sequence of each unit of VNTR polymorphism in the 3'-UTR of the DATI gene

Miller and Madras 2002; Greenwood and Kelsoe 2003; Mill et al. 2005; VanNess
et al. 2005; D’Souza and Craig 2008). However, these studies also generated con-
flicting results, both in vivo and in vitro. ,
For example, in in vivo single-photon emission computed tomography (SPECT)
studies in the striatum, Jacobsen et al. (2000) reported that DAT availability was
higher in the brain of the 9-repeat (r) group than in the 10r group, whereas Heinz
et al. (2000) reported that the value in the 10/10r group was higher than that in
10/9r. Martinez et al. (2001), on the other hand, detected no significant difference
among genotypes. In a study of postmortem brain tissue, reverse transcription poly-
merase chain reaction (RT-PCR) evaluation showed that DAT expression in the
samples of 10r was higher than that in 9r (Mill et al. 2002; Brookes et al. 2007).
In in vitro studies, possible reasons for these discrepancies include differences
in methodology, such as in the cell lines and promoters used in the reporter assay
and the location of the 3' untranslated region (UTR) in the reporter vectors. We
observed differing results depending on the cell lines used. The 3'-UTR, including
the VNTR, decreased luciferase activity with the DAT1 core promoter in SH-SY5Y,
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Neuro2A, and Cos-7 cells but did not do so in HEK293 cells (Fuke et al. 2005).
Such differences could be the result of differential expression of regulating factors
in each cell, but the molecular and neural bases remain unknown because no factor
interacting with the VNTR has yet been characterized, although it is expected that
proteins bind to the region (Michelhaugh et al. 2001).

10.3 HESRI1: A Protein Binding to the 3’-UTR'0f DAT

To clarify the molecular mechanism of DAT gene regulation via the VNTR, we
screened proteins that bound to the 3'-UTR using a yeast one-hybrid system and
identified HESR1 (the hairy/enhancer of split related transcriptional factor 1 with
YRPW motif) protein as a trans-acting factor through the 3'-UTR of the DATI gene
(Fuke et al. 2005). We then showed that HESR1 bound directly to the region by eléc-
trophoretic mobility shift assay (EMSA) and repressed expression of the endogenous
DATI gene in a mammalian cell line (by RT-PCR assay) (Fuke et al. 2006).

However, it is possible that other factors affect DAT gene expression via the
VNTR, as it is expected that more than one factor would bind to such a region
(Michelhaugh et al. 2001). The HESR family genes - HESRI, HESR2, HESR3 — were
characterized as a direct transcriptional target of the Notch signaling pathway
involved in neural development (Kokubo et al. 1999; Leimeister et al. 1999;
Nakagawa et al. 1999, 2000; Henderson et al. 2001; Iso et al. 2001, 2003; Wang et al.
2002; Sakamoto et al. 2003).

The HESR family genes encode a basic helix—loop-helix (bHLH) domain that is
essential for DNA binding, an Orange domain, and a YRPW motif. HESR proteins
bind to E boxes or N boxes, which are known bHLH-binding consensus sites, and
repress expression of target genes (Nakagawa et al. 2000; Iso et al. 2001, 2003). The
bHLH domain sequences among the HESR family are highly conserved (Steidl et al.
2000). In fact, human HESR1 and HESR2 (Belandia et al. 2005) and mouse Hesrl
and Hesr2 (Kokubo et al. 2007) repress gene expression at the same genome site in
reporter assay systems. Thus, not only HESR1, but also HESR2 and HESR3, may
be candidate regulating factors for DAT expression via the VNTR.

10.4 HESR Family Genes: Candidate Regulating Factors
for DAT Expression

Recently, we performed luciferase reporter assays to examine whether HESR2 and
HESR 3 could affect DAT gene expression via the 3'-UTR including the VNTR
region in human neuroblastoma SH-SY5Y cells (Kanno and Ishiura 2009). We found
that HESR1 and HESR?2 inhibited reporter gene expression via both the core pro-
moter and 3'-UTR, whereas HESR3 enhanced it only via the core promoter. We did
not expect the HESR family to affect the core promoter region because HESR1 was
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identified as a protein binding to the 3’-UTR, but the core promoter does also contain
an E box, known to be a bHLH consensus binding site. Additionally, a functional —67
A/T SNP in this promoter region has been reported to be associated with personality
traits such as ADHD and bipolar disorder (Greenwood and Kelsoe 2003; Ohadi et al.
2006, 2007; Shibuya et al. 2009). HESR family proteins may also interact with this
SNP. Only HESR3 increased reporter luciferase activity via the DAT core promoter.
We also found that HESR1, including the Leu94Met SNP in the second helix of the

'bHLH domain, lacked inhibitory activity (Fuke et al. 2005). The latest study demon-
strated that an SNP transformed HESR1 from an androgen receptor co-repressor to
an activator (Villaronga et al. 2009).

Furthermore, HESR1 and HESR2 may differentially alter DAT expression pat-
terns depending on VNTR alleles. Relatively strong inhibition of luciferase activity
with 10r was observed with HESRl In general our results in these reporter assays
showed a tendency for luc1ferase act1v1ty with 9r to be h1gher than that with 10r,
although the dttference was not statlstlcally 51gn1ﬁeant and the highest activity was
w1th T Human HESR2 but not mouse Hesr2 d1m1n1shed the d1fference in

studtes descrtbed ’above

105 BehavmralandNeurochemlcal Aspectsof the Hesr Family

We also reported increased expression of the DAT gene in the brains of Hesr! knockout
(KO) mice (Fuke et al. 2006) The KO mice showed decreased spontaneous locomotor
act1v1ty, reduced explorauon of novelty, and enhanced anx1ety-11ke behavior in the
open—ﬁeld test and the elevated plus-maze test (Fuke et al. 2006). This is consistent
with our in V1tro data because HESRI is thought to be an inhibitory factor for DAT.
Add1t1onally, the express1on of several dopamme receptor genes, D1, D2, D4, and D5,
the main targets of synaptlc dopannne responsweness ‘were enhanced in the Hesr! KO
mice. Although we did not dlrectly measure: synaptlc extracellular dopamine levels,
decreased activity and increased dopamine transporter and receptors seem to indicate
a low synaptic dopamme level in the KO mice. These phenomena are the opposite of
those in DAT KO mice (th 10.2). Mlce lacklng the DAT gene show decreased intra-
neural storage of dopamme, spontaneous hyperlocomotton and down-regulation of
several dopa:mme—related genes, such as dopamine receptor D1 and D2 (Giros et al.
1996; Caine 1998; Jaber et al. 1999; Fauchey et al. 2000;-Gainetdinov et al. 2002).
This indicates the importance of Hesr1 in the dopaminergic system in vivo.

We also conducted an immunohistochemical analysis to investigate the localiza-
tion of Hesr family proteins in the mouse midbrain dopaminergic region (Fig. 10.3).
Immunostaining for tyrosine hydroxylase (TH), a DA neuron marker, and each
Hesr were conducted from the anterior (—3.04 to —3.49 relative to bregma) to the
posterior part (—3.94 from bregma) of the midbrain dopaminergic regions: ventral
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High activity Dopathine receptor Low activity
Fig. 10.2 Synapses in DAT or Hesrl knockout (KO) mice. (a) DAT KO mouse. This indicates
increased synaptic extracellular dopamine and decreased dopamine receptors. (b) Wild-type
mouse. This indicates the normal synaptic state. (¢) Hesr/ KO mouse. This indicates possibly
decreased synaptic extracellular dopamine and increased dopamine receptors

Hesrl Hesr2

Fig. 10.3 Immunohistochemistry for tyrosine hydroxylase (TH) and Hesr family. TH (green,
Cy2); Hesr1/2 (red, Cy3); Hesr3 (magenta, Cy3); nucleus (blue; Hoechst 33342). VTA, ventral
tegmental area, SN, substantia nigra; RFF (RFF/AS8), retrorubral field and A8 DA cells; CLi, caudal

liner nucleus of raphe. Bars 500 um for immunoenzymatic staining for TH; 100 pum for immuno-
fluorescence staining
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tegmental area (VTA), substantia nigra (SN), retrorubral field and A8 DA cells
(RFF/ARB), caudal liner nucleus of raphe (CL1i). Each Hesr was expressed in almost
all dopaminergic neurons (TH-ir cells) in the mouse midbrain. Thus, Hesr family
proteins may affect DAT gene expression, as was observed in transfected cells.
Further mvestigation of the in vivo functions of Hesr family members, especially
Hesr2 and Hesr3, in the dopaminergic system is needed.

Unique dopamine neurons have recently been found in which DAT expression is
relatively low. Lammel et al. (2008) identified a type of dopaminergic neuron within
the mesocorticolimbic dopamine system with unconventional fast-firing properties
~and low DAT/TH mRNA expression ratios that selectively projects to the prefrontal
- cortex and nucleus accumbens core and medial shell as well as to the basolateral
amygdala. Could Hesr family proteins be involved in such a neuron, generating
diversity in dopaminergic neurons? Our immunohistochemical study found differen-
tial cellular localization between the Hesr family proteins. Hesrl and Hesr2 were
primarily expressed in the nucleus, whereas Hesr3 was cytoplasmic (Fig. 10.3).
Additionally, it is possible that cellular localization of Hesr1 is altered depending on
the hormonal state (Belandia et al. 2005). A combination of chemical, neuroanatomi-
cal, and molecular studies is needed to understand Hesr function in the brain. Such
studies may help explain conflicts in the previous in vivo neuroimaging studies
(Heinz et al. 2000; Jacobsen et al. 2000; Martinez et al. 2001) and ex vivo RT-PCR
analyses (Mill et al. 2002; Brookes et al. 2007).

Although it seems clear from transfection culture studies that the VNTR has a
role in regulating DAT1 expression, at the same time, discrepancies have been
noted in the differential effects of the various alleles. In the future, an in vivo
approach using transgenic mice (e.g., DAT-9r or DAT-10r knock-in mice) may pro-
vide a clearer and more direct approach to characterizing the mechanisms of DAT
transcriptional regulation. If such animals are generated, our data from luciferase
assays with the mouse Hesr family can add a molecular basis to the research.

Our recent findings of HESR family function regarding DAT may suggest new
strategies for the treatment of DAT-related disorders. Functional VNTR polymor-
phism also exists in the SERT gene located in intron 2, and two transcription factors,
Y box-binding protein 1 (YB-1) and CCTC-binding factor (CTCF), were found to
be responsible for the modulation of VNTR function (Klenova et al. 2004). YB-1
and CTCF are targets of lithium (LiCl), a mood stabilizer (Roberts et al. 2007).
LiCl modified the levels of CTCF and YB-1 mRNA and protein. HESR proteins
may also be a target of drugs.

10.6 Conclusions

Our studies and others indicate that the VNTR in the 3'-UTR of the DAT gene
affects gene expression. Ex vivo RT-PCR studies and in vivo human neuroimaging
studies have demonstrated differential DAT expression depending on the alleles,
primarily focusing on 9r and 10r, although the results are conflicting.
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More genetic and personality studies combined with neuroimaging should be done
to clarify the relation between psychological and neurological states, especially DAT
expression levels or function. Further molecular biological studies are also necessary
to clarify the mechanism of modification of DAT expression and its signaling path-
way, which may also help find new neuropsychological drug targets.
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