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Abstract

Although etiological studies have shown genetic disorders to be a common cause of congenital/early-onset sensorineural
hearing loss, there have been no detailed multicenter studies based on genetic testing. In the present report, 264 Japanese
patients with bilateral sensorineural hearing loss from 33 ENT departments nationwide participated. For these patients, we
first applied the Invader assay for screening 47 known mutations of 13 known deafness genes, followed by direct
sequencing as necessary. A total of 78 (29.5%) subjects had at least one deafness gene mutation. Mutations were more
frequently found in the patients with congenital or early-onset hearing loss, i.e,, in those with an awareness age of 0-6
years, mutations were significantly higher (41.8%) than in patients with an older age of awareness (16.0%). Among the 13
genes, mutations in GJB2 and SLC26A4 were mainly found in congenital or early-onset patients, in contrast with
mitochondrial mutations (12S rRNA m.1555A>G, tRNA(Leu(UUR)) m.3243A>@G), which were predominantly found in older-
onset patients. The present method of simultaneous screening of multiple deafness mutations by Invader assay followed by
direct sequencing will enable us to detect deafness mutations in an efficient and practical manner for clinical use.
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Introduction

From a series of etiological studies, 60-70% of childhood hearing
loss has been estimated to be of genetic etiology, with the rest due to
environmental causes, including newborn delivery trouble, acoustic
trauma, ototoxic drug use, and prenatal/postnatal infection [1].
However, until now, there has been no multicenter study based on
genetic testing. Along with early discovery of hearing loss by
newborn hearing screening programs and subsequent intervention
programs, much attention has been paid to the determination of the
hearing loss etiology. Therefore, genetic testing has become more
important for highly accurate diagnosis, prediction of severity of
hearing loss, estimation of associated abnormalities, selection of
appropriate habilitation options, prevention of hearing loss, and
better genetic counseling. Although more than one hundred loci
have been mapped and 46 genes reported to be responsible for
hereditary hearing loss (Hereditary Hearing Homepage; http://
webhOl.ua.ac.be/hhh/), many may cause similar phenotypes
without any abnormality other than hearing loss. This genetic
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heterogeneity has made clinical application difficult, in spite of the
considerable advances in discovery of deafness genes. We have
previously established a screening strategy focusing on recurrent
mutations and demonstrated its benefits for clinical application [2].
We carried out the current multicenter study to determine 1)
whether the simultaneous screening of the multiple deafness
mutations by Invader assay is applicable for clinical use, 2) whether
the genetic etiology is truly prevalent among hearing loss patients
and 3) whether genetic causes differ by ages.

Materials and Methods

Subjects and clinical status

As summarized in Table 1, two hundred sixty-four Japanese
patients with bilateral sensorineural hearing loss from 33 ENT
departments nationwide participated in the present study. We first
applied the Invader assay for screening forty-seven known
mutations of 13 known deafness genes, followed by direct
sequencing as necessary.
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Table 1. Clinical features of subjects in this study.

Total Early onset Late onset
(n=264) (n=141) (n=100)
Severity of HL : L o .
ndrma! - moderate 148 58 78
severe — profound 95t g0 21
unknown 21 13‘ 1
inheritance. .

AD or Mitochondrial
AR or Sporadic

unknown

Other dlinical feature

inner ear malformations
EVA :

goiter

diabetes mellitus

HL: Hearing loss.

AD: Autosomal dominant.

AR: Autosomal recessive.

EVA: Enlarged vestibular aqueduct.
doi:10.1371/journal.pone.0031276.t001

Hearing loss was evaluated using pure-tone audiometry (PTA)
classified by a pure-tone average over 500, 1000, 2000 and 4000 Hz
in the better hearing ears. For children who were unable to be tested
by PTA, we used an average over 500, 1000, 2000 Hz in either
auditory steady-stem response (ASSR) or conditioned oriented
reflex audiometry (COR), or the response threshold (dB) from
auditory brainstem response (ABR). Computed tomography (CT)
scans were performed to check for congenital inner ear anomalies.

Status of hearing loss in the 264 patients was: mild (21-40 dB)
in 39 patients (14.7%), moderate (41-70 dB) in 84 (31.8%), severe
(71-94 dB) in 39 (14.8%) and profound (>95 dB) in 56 patients
(21.2%). Twenty-four subjects were classified as having normal
hearing due to a specific audiogram with hearing loss only in the
high or low frequency portions. With regard to onset age (the age
of awareness), 141 patients had carly onset deafness (below 6 y.0.),
100 had late onset deafness, and the rest had unknown onset ages.

The inheritance composition of the subjects was as follows: 38
subjects from autosomal dominant or mitochondrial inherited
families (two or more generations affected); 119 subjects from
autosomal recessive families (parents with normal hearing and two
or more affected siblings) or subjects with sporadic deafness (also
compatible with recessive inheritance or non-genetic hearing loss).
None of the patients had an X-linked pattern of inheritance. The
numbers of patients with other manifestations were inner ear
malformations (52), enlarged vestibular aqueduct (EVA) (30),
goiter (8), and diabetes mellitus (14). None of the patients had
typical clinical features of Usher syndrome or BOR syndrome.

All subjects gave prior informed consent for participation in the
project and the Ethical Committee of Shinshu University as well as
the relevant bodies of the participating institutions of the Deafness
Gene Study Consortium approved the study.

Invader assay

Invader technology is convenient for mutation genotyping,
offering a simple diagnostic platform to detect single nucleotide
changes with high specificity and sensitivity from unamplified
genomic DNA.
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We applied the Invader assay for screening forty-seven known
mutations of 13 known deafness genes [G7B2(NM_004004.5),
SLC2644NM_000441.1), COCHINM_001135058.1), KCNQANM_
172163.2), MYO74AINM_000260.3), TECTANM_005422.2), CRYM
(NM_001888.3), POU3F4INM_000307.3), EYAI(NM_172060.2), mi-
tochondrial 12 s ribosomal RNA, mitochondrial tRNA(Leu), mito-
chondrial tRNA(Ser), and mitochondrial (RNA(Lys)] (Table 2).
Mutations were selected on the basis of a mutation/gene database
established in the Japanese deafness population. The detailed
methodological protocol was described elsewhere [2]. In brief, 1.2 ul
of primary probe/Invader oligonucleotides mixture (containing
0.5 umol/1 wild type primary probes, 0.5 umol/l mutant primary
probe, 0.05 umol/I Invader oligonucleotide, and 10 mmol/l MOPS)
were poured into each well of 384-well plates. Fluorescent resonance
energy transfer (FRET)/Cleavase mixture (Third Wave Technologies,
Madison, WI) was added to the probe/Invader oligonucleotide-
containing plates. Then, 3 ul of 5-100 fmol/l synthetic target
oligonucleotides (positive control), 10 ug/ml yeast tRNA (no target
control), and denatured genomic DNA samples (>15 ng/ul) were
added. Next, 6 ul of mineral oil (Sigma, St. Louis, MO) were overlayed
into all reaction wells and incubated at 63°C for 4 hour. After
incubation fluorescence was measured by a Cyto Fluor 4000
fluorescent micro plate reader (Applied Biosystems, Foster CA). The
heteroplasmy rate for mitochondrial mutations was quantfied by
detection of fluorescently labeled and digested PCR products through a
fluorescence imaging system [2].

Direct sequencing

Dominant mutations and mitochondrial mutations are them-
selves diagnostic criteria for molecular diagnosis. But a hallmark of
recessive mutations, in GJB2 and SLC2644 for example, is the
detection of two mutations in the paternal and maternal alleles. In
this study, direct sequencing was further carried out as follows: 1)
GFB2 mutation analysis for all subjects, because the authors
wanted to clarify whether the number of mutations on the invader
panel are enough (saturated) or not. 2) SLC2644 mutation analysis
for all the subjects with EVA, 3) SLC2644 mutation analysis for
heterozygous patients for these genes. DNA fragments containing
the entire coding region were sequenced as described elsewhere

[3,4].

Results

The mutations found by Invader assay and direct sequencing in
this study are summarized in Table 2 and 3.

Invader Assay

A total of 74 (28.0%) hearing-impaired subjects (n = 264) were
found to have at least one deafness gene mutation. Among the
deafness genes situated on the present diagnostic panel, mutations
were most frequently found in the GFB2 gene. Screening of G7B2
showed mutations of one or both alleles of the gene in 43 (43/264;
16.2%) samples from the subjects, of which 13 cases had only a
single mutation, and 30 cases were compound heterozygotes or
homozygotes, confirmed by segregation analysis (Table 4). The
most common mutation was ¢.235delC, accounting for nearly
67% (29/43) of all GFB2 mutated patients. On the other hand, the
GJjB2: ¢.35delG mutation, which is known to be the most common
mutation in Caucasian or other ethnic populations, was not found
in this group. The second most common group of G7B2 mutations
consisted of p.[G45E; Y136X], p.V371, and ¢.299_300del. These
mutations were detected in more than 5 patients each, and their
allele frequencies were relatively high. Three mutations (p.T86R,
p.-R143W, and ¢.176_191del) were observed in more than one
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Table 2. Mutation list of Invader based genetic screening test.

Frequency of mutant Number of patients with
Gene Exon Codon location Nucleotide change alleles (n=528) mutations (n =264)

exon 2 p.v371 c.109G>A 7 (1.3%) 6 (2.3%)

exon 2 p.G59fs 176_191del 3 (0.6%) O 3(4%)

GJB2 exon 2

c257C>G

exon 2 pI71T €212T>C 0 0

c.35delG

SLC26A4 int 7/exon 8 splice site c919-2A>G 2 (0.4%) 2 (0.8%)
sLe26

SLC26A4 exon 7 p.V306fs €.917insG 0 0

SLC26A4 exon 8/int 8 c1001+1G>A 0 0

SLC26A4 exon 5 p.M147V c439A>G 1 (0.2%)

SLC26A4 1 ‘ 1(02%)

SLC26A4

SLC26A4 exon 19

SLC26A4 exon 4 p.P123S €367C>T 0 0

SLC26A4 exon 17 p.S610X c.1829C>A 0 0

EYAT exon 12 p.D396G c.1187A>G 0 0

EYAT exon 7 p.Y193X c.579C>G 0 0

KCNQ4 exon 5 p.W2765 €.827G>C 0 0

TECTA exon 16 p.R1773X ¢5318C>T 0 0

Mitochondrial 125 rfRNA m.1555A>G -

Mitochondrial tRNASer m.7445A>G - 0

CRYM exon 8 pK314T 941 A>C 0 [¢]

doi:10.1371/journal.pone.0031276.t002
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Table 3. Mutation list found by direct sequencing analysis.

Frequency of mutant Number of patients with
Codon location Nucleotide change alleles (n=528) mutations (n =264)

p.K12fs ‘ ¢.35insG
- ; -

pA1 71fs c.511insAACG
i G> 0.2%)
1595G>T 2 (0.4%)  2(08%

2 (0.8%)

SLC26A4 exon 17 p.V659L c.1975G>C 2 (0.4%) 2 (0.8%)

SLC26A4 exon 15/int 15 splice site c.19314+5 G>A 5 {0.9%)

doi:10.1371/journal.pone.0031276.t003

patient. p.F191L, p.I71T, p.A49V and ¢.35delG mutations were in high allele frequency (4.1%). All of the patients with SLC2644
not found. One pair of p.[G45E; Y136X] mutations was detected mutations had EVA, which has been demonstrated to be a result of
among 10 persons in a heterozygous state. Subsequent parental the mutations of this gene. SLC2644 mutations were detected by
DNA segregation study through direct sequencing indicated two Invader assay in 63.6% of the patients with EVA.

mutations were in cs. The p.T123N mutation was found in 4 Mitochondrial m.1555A>G mutations were found in 1.9% (5/
subjects but, based on our recent study, is not likely to be a 264) of the patients and the m.3243A>G mutation was identified
pathologic mutation [5]. in 2.3% (6/264).

The second most frequent gene with mutations was the SLC2644 Mutations in nine deafness genes (COCH, KCNQ4, MYO7A,

gene (23/264; 8.7%). Five cases were homozygotes of p.H723R, TECTA, CRYM, POUSF4, EYAI, mitochondrial tRINA(Lys)
one was a homozygote of p.T410M, 3 were compound heterozy- m.8296A>G, mitochondrial tRNA(Ser) m.7445A>G) were not
gotes, and 14 had only one mutation of SLC2644 (Table 4). Of the identified in any patients (Table 2).

19 SLC2644 mutations, 12 (c.917insG, p.T721M, c.1001+1G>A, Notably, 4 subjects were found to have double gene mutations.
p-A372V, c.601-1G>A, p.C565Y, p.S666F, c.322delC, p.P123S, Two cases were SLC2644 compound heterozygous or homozy-
p-N392Y, p.S610X, and p.S657N) were not found in any samples, gous mutations with a GFB2 heterozygous mutation. One case
but the remaining 7 SLC2644 mutations were confirmed in more was a compound heterozygous - of GFB2 with a SLC2644
than one subject. Especially, the p.H723R mutation was found to be heterozygous mutation and the remaining case was a GjB2

Table 4. Diagnostic efficiency of Invader assay alone and Invader assay and direct sequencing.

Total (n=264) Early onset (n=141) Late onset (n=100)

30 (11.4%) 29 (20.6%)

9 (3.4%)

.5 (1.9%j

16 (16.0%)

invader assay and direct sequencing
GJB2 homozygote/compound heterozygote
i3 hakorosyan

33 (12.5%) 31 (21.9%) 2 (2.0%)

18 (6.8%) 18 (12.7%)

Mitochondria A1555G . 5 (1.9%) 2 (1.4%) 2 (2.0%)

Total 78 (29.5%)** 59 (41.8%)** 16 (16.0%)

*Three cases carried double mutations (cases 1 to 3 in Table 5).
**Four cases carried double mutations shown in Table 5.
doi:10.1371/journal.pone.0031276.t004
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Table 5. Double mutation cases found in simultaneous
mutation screening.

Patients Number

Genotype

GJBZ:p.V37ILV37I]: Mito

GJB2:c.[235delCl;p.[R143W]

doi:10.1371/journal.pone.0031276.t005

homozygous mutation with a mitochondrial 1555A>G mutation
(Table 5). :

The detection rate of mutations was 40.4% for the patients with
congenital or early-onset hearing loss, i.e. in those with an awareness
age of 0~6 years. The rate in congenital hearing loss patients also
increased when restricting to the patients with moderate or more
severe hearing loss (>>50 dB; 40.7%) or severe hearing loss
(>70 dB; 44.3%) (Fig. 1). In contrast, the detection rate was only
16.0% in the patients with an older age of onset/awareness (Fig. 1).
Among the 13 included genes, mutations is GFB2 and SLC26A44
were mainly found in congenital patients or early-onset patients, in
contrast with mitochondrial mutations, such as 12S rRNA
m.1555A>G or tRNALeu(UUR)) m.3243A>G, which were
predominantly found in older-onset patients (Table 4). The
p-V371 mutation in the GFB2 gene was also found in older-onset
patients (data not shown).

With regard to the relationship between radiographic findings
and genetic testing, the mutation detection rate was elevated when
restricting to the patients with inner ear anomaly (50.0%) and
EVA (63.6%) (Fig. 2).

(%)

Simultaneous Screening of Hearing Loss Mutations

Direct sequencing

Direct sequencing identified 9 mutations in 15 cases which were
not included in the Invader assay panel and improved the mutation
detection/diagnostic rate obtained by Invader assay analysis
(28.0%/18.6%) to 29.5%/22.7%. (Fig. 1). Combining direct
sequencing with invader screening enhanced the diagnostic rate
notably but not the mutation detection rate. In detail, direct
sequencing identified additional mutations in three cases with single
GFB2 mutations by Invader assay that were finally diagnosed as
compound heterozygous mutations of G¥B2 (p.[T86R]; c.[51lin-
sAACG], p[T8M];[V37I] and c.[35insG];[235delC]).

In 7 cases only a single SLC2644 mutation was found by invader
assay, and additional mutations were found by direct sequencing
(two cases of p.[H723R];c[1931+5G>A] and one each cases of
p-[R581S];[H723R], p.[V659L];[H723R], p.[S532I]; c.[211 1linsG-
CTGG], p.[T410M]; c.[1931+5G>A] and p.[K396E];[S5321]).
Two cases carried EVA but without any mutations found in Invader
assay, c[193145G>A]; [1931+5G>A] and p.[V659L];c[1219
delCT] compound heterozygous mutations were found by direct
sequencing. With the combination of Invader assay and direct
sequencing, and restriction to patients with EVA, the mutation
detection rate was elevated to 17/22 cases (77.3%, Fig. 2). Fifteen of
them carried homozygous or compound heterozygous SLG2644
mutations.

Discussion

We previously reported that simultaneous detection of
common deafness gene mutations has excellent sensitivity and
accuracy [2]. In this study, using samples from patients at 33
institutions nationwide from northern to southern Japan, we
confirmed that the Invader assay based on the Japanese deafness
gene mutation database works efficiently in the clinical base to
detect the responsible gene mutations from the patients with

Bl Diagnostic rate of invader assay

(n=100)

Total Early onset Early onset Earlyonset Late onset
(n=264) (n=141) moderate — severe —
profound profound
(n=108) (n=70)

Figure 1. Detection rate by onset/awareness age and severity of hearing loss. Diagnostic rates and detection rates of this simultaneous
multiple mutations screening and direct sequencing for biallelic mutations in autosominal recessive genes or mitochondrial mutations increased
when restricted to congenital/early-onset hearing loss, and moderate or severe hearing loss. Combined direct sequence and invader screening

enhanced the diagnostic rate but not the mutation detection rate.
doi:10.1371/journal.pone.0031276.g001
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72.7
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60} 58.3 63.6
sok 50.0

41.8

i i { ]

Early onset Early onset

Prelingual
(n=141) innner ear EVA
malformation (n=22)
(n=036)
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. Diagnostic rate of invader assay
| IMutation detection rate of invader assay

7~ Mutations detected with direct sequence

Figure 2. Radiographic findings and detection rate. Detection rate was elevated when subjects were restricted to those with inner ear
anomaly or EVA. Combined direct sequence and invader screening enhanced the diagnostic rate but not the mutation detection rate.

doi:10.1371/journal.pone.0031276.g002

various onset/awareness ages. We detected mutations in 29.5%
overall, and the 41.8% detection rate for congenital or early onset
sensorineural hearing loss was especially remarkable. A series of
epidemiological studies have demonstrated that genetic disorders
are common causes of congenital deafness and it is estimated that
60-70% of the etiology may be caused by genetic factors [1].
Genetic testing is crucial to diagnose the etiology, but more than
100 genes are estimated to be involved and such genetic
heterogeneiety has hampered the genetic testing for deafness as
a routine clinical test. The present detection rate; i.e., 41.8%, is a
strikingly good rate for a clinical application, and it is expected
that clinical deafness mutation screening will greatly improve
medical management and facilitate extensive genetic counseling
for hearing impairment. Additional direct sequencing, as well as a
new version of the screening panel which includes novel identified
mutations, will likely improve the detection rate. For the older
ages of onset, the detection rate was comparatively low (16.0%).
Probably this is due to the panel mainly including responsible
genes for congenital deafness but not the responsible genes for
late onset hearing loss. An alternative explanation may be that
environmental factors may be involved in this group of deafness
patients.

The present study confirmed that mutations in three genes,
GFB2, SLC2644, and the mitochondrial 12 s rRNA, are so far the
major known causes of hereditary hearing loss nationwide in
Japanese [6], and thus much attention should be paid to these
genes when performing genetic testing of hearing loss patients.

The most frequently found were mutations in the G7B2 gene.
This gene is so far the most common responsible gene for
congenital deafness worldwide [7]. The detection rates (17.4% for
all, 27.0% for congenital) are in accordance with our previous data
of 15% in the overall deafness population and 25% in congenital
deafness patients [5]. The mutation spectrum found in this study is
also in accordance with our previous results [2,4,5]. In G7B2
screening, 46 (17.4%) samples from deafness subjects had
mutations of one or both alleles of the G7B2 gene. As expected
from the above reports, the ¢.235delC mutation was found to be
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the most prevalent mutation in our screening, accounting for
10.9% (29 of 264) of the hearing-impaired persons. Fourteen
patients were ¢.235delC homozygotes and 11 were compound
heterozygotes having ¢.235delC, confirmed by segregation anal-
ysis, and 4 patients were ¢.235delC heterozygotes without a second
mutation. Direct sequencing identified novel mutations (p.T8M,
¢.35insG, p.F106Y, p.C174S and ¢.512insAACG) in the patients
with a single mutation detected by Invader assay (Table 3).

Many benefits of G7B2 gene genetic testing have been pointed
out. There have been general rules that inactivating mutations
(deletion mutations and stop mutations) show more severe
phenotypes compared to those caused by non-inactivating
mutations (missense mutations) [5,8,9]. As well as a highly
accurate diagnosis, these genotype-phenotype correlation data
could provide prognostic information to help decide the strategy of
intervention with hearing, i.e., whether a child should receive
cochlear implantation or hearing aids. For the patients with severe
phenotypes who have GFB2 mutations, genetic information would
aid decision-making regarding cochlear implantation, because
their hearing loss is of cochlear origin and they therefore are good
candidates for implantation. In fact, cochlear implantation has
resulted in remarkable improvement in auditory skills and
development of speech production for patients with profound
hearing loss associated with G7B2 mutations [10].

In the SLC26A4 gene, 7 cases were homozygotes, 11 cases were
compound heterozygotes, and 7 cases had only one mutation
(Table 4). Of the 19 SLC2644 mutations, 12 were not found in any
samples, but the remaining 7 mutations were all confirmed in
more than one patient. Especially, the p.H723R mutation was
found to be in high allele frequency (4.1%). Direct sequencing
identified novel mutations (c.1931+5G>A, p.§532I, p.R581S,
p-V659L) in the patients with a single mutation by Invader assay
and c.1219delCT mutation in a patient with EVA (Table 3).

As in our previous study [2], SLC2644 mutations were found
only in the patients with EVA, suggesting a phenotype of hearing
loss with EVA can be a diagnostic indicator of this category of
disease.

February 2012 | Volume 7 | Issue 2 | e31276



Fluctuation and progressiveness of hearing loss are character-
istic of hearing loss associated with EVA [11,12] and the early
detection of SLC2644 mutations enables prediction of these
clinical symptoms. Genetic testing is also useful in estimating
associated abnormalities (goiter), selection of appropriate habilita-
tion options, and better genetic counseling. In some cases, goiter is
evident during the teen years [12]. In this study, 8 patients had
hearing loss and goiter and 4 of them carried homozygous or
compound heterozygous SLC2644 mutations.

In recessive mutations such as GfB2 and SLC2644, detection of
two mutations in the paternal and maternal alleles is a hallmark. In
the present “two step” screening method Invader assay is first
performed followed by direct sequencing. As seen in Figs. 1 and 2,
most of the mutadons were successfully detected by the first
Invader screening and the additional direct sequencing improved
the “diagnostic” rate. This is very important to find the first
mutation for identifying the responsible gene and the results
indicate this screening is technically efficient. Difficult cases of a
heterozygous state without a second mutation are also seen
[4,5,13,14]. As previously reported, in a substantial proportion of
patients our Invader techniques and additional direct sequencing
revealed only one mutant GjB2 or SLG2644 allele causing
deafness by recessive pattern. We believe that there is one more
occult mutation somewhere because the frequency of heterozygous
patients was much higher than that of mutation frequency in the
control population. Another explanation may be the high
frequency of carriers in the population. But given the carrier
frequency in normal controls, the number of heterozygous
deafness cases was greater than would be expected. Second
mutations may be present in the same gene or genes in the same
chromosomal region. Recent statistical analysis has shown that
one allele mutation of GJB2 and SLC2644 is more likely to be a
pathological status than a carrier status [15] and indeed, patients
with one SLC26A44 mutation are associated with EVA, therefore it
is strongly likely that there is a second mutation within this gene.
Another possibility is that mutations in the regulatory region may
be involved in phenotypic expression [16].

The m.1555A>G mutation in the mitochondrial 12S5rRINA
gene, which was found in 5 4 subjects, was mainly found in those
with older onset age. This mutation has been reported to be
associated with aminoglycoside injection and found in 3% of the
patients who visited the outpatient clinic [17,18]. The current
findings are compatible with our previous report that this mutation
is a frequenty encountered cause for postlingual deafness in
patients who received cochlear implantation [18]. This mutation
was also found in the congenital or early onset age group as well,
in line with our previous study [2]. It is likely that there is a
considerably large high-risk population worldwide and a rapid
screening method as well as careful counseling should be
established to prevent aminoglycoside-induced hearing loss in this
group.

The m.3243A>G mutation in the tRNA(Leu (UUR)) gene was
found in 6 patients in the older-onset group. This mutation was
first reported at a high frequently in the patients with clinical
manifestations of MELAS [19], and has also been found in
diabetes mellitus patients [20]. Tt is known to be commonly
associated with hearing loss patients (especially with diabetes
mellitus) [21]. The hearing loss is adult onset, symmetric high
frequency involved [22]. In this study, all 6 patients with this
mutation were associated with diabetes mellitus and progressive
hearing loss. Five patients had maternally inherited hearing loss
(the mother also had hearing loss), but one subject was a sporadic
case (the mother did not have hearing loss from the anamnestic
evaluation) and therefore is unlikely to be a mitochondrial
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candidate from clinical evaluation. The present multigene
screening is also unexpectedly efficient for such atypical cases.

Heteroplasmy is one of the significant factors determining the
expression of mitochondrial disease. The Invader assay is
comparatively accurate at detecting the heteroplasmic rate [2],
and the present two patients with the 3243 mutation showed 3%
and 24% heteroplasmic rates.

In contrast to the three genes discussed above, mutations of the
COCH, KCNQ4, MY074, TECTA, CRYM, POU3F4 and EYAI
genes were not found in the present deaf subjects in line with our
previous study [2]. This is likely due to them being very rare and
usually independent mutations found in only one family. Although
analysis for these mutations should be performed to identify the
molecular nature of deafness as the first deafness screening step, a
different strategy may be necessary for screening for them.

In conclusion, the simultaneous examination of the multiple
deafness mutations by Invader assay followed by direct sequencing
if necessary, will enable us to detect deafness mutations in an
efficient and practical manner for clinical use. This screening
strategy will facilitate more precise clinical genetic diagnosis,
appropriate genetic counseling and proper medical management
for auditory disorders. Against this background, since 2008 the
Ministry of Health and Welfare of Japan has allowed this
screening to be performed as an advanced medical technology.

A Japanese summary of this article has been provided as
Supporting Information (Japanese summary S1).

Supporting Information

Japanese Summary S1 Simultaneous Screening of Mul-
tiple Mutations by Invader Assay. The present method of
simultaneous screening of multiple deafhess mutations by Invader
assay followed by direct sequencing will enable us to detect
deafness mutations in an efficient and practical manner for clinical
use.

(PDF)
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Different cortical metabolic activation by visual stimuli possibly due to
different time courses of hearing loss in patients with GJB2 and SLC26A44
mutations

HIDEAKI MOTEKI’, YASUSHI NAITO?, KEIZO FUJIWARAZ RYOSUKE KITOH!,
SHIN-YA NISHIO!, KAZUHIRO OGUCHI’, YUTAKA TAKUMI' & SHIN-ICHI USAMI!

' Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, *Department of
Otorhinolaryngology, Kobe Ciry Medical Center General Hospital, Kobe and 3 Positron Imaging Center, Aizawa Hospital,
Maztsumoro, Fapan

Abstract

Conclusion. We have demonstrated differences in cortical activation with language-related visual stimuli in patients who were
profoundly deafened due to genetic mutations in GJB2 and SLC26A44. The differences in cortical processing patterns between
these two cases may have been influenced by the differing clinical courses and pathogenesis of hearing loss due to genetic
mutations. Our results suggest the importance of hearing during early childhood for the development of a normal cortical
language network. Objectives. To investigate the cortical activation with language-related visual stimuli in patients who were
profoundly deafened due to genetic mutations in G¥B2 and SLC26A44. Methods: The cortical activity of two adult patients with
known genetic mutations (G¥B2, SLC26A44) was evaluated with fluorodeoxyglucose-positron emission tomography (FDG-
PET) with a visual language task and compared with that of normal-hearing controls. Resulzs: A patient with a G¥B2 mutation
showed activation in the right auditory association area [BA21, BA22], and the left auditory association area [BA42] even with
visual language task; in contrast, a patient with an SLC2644 mutation showed no significant activation in the corresponding
area.

Keywords: FDG-PET, visual language task, functional brain imaging

Introduction

Functional brain imaging is an effective method for
investigating the cortical processing of language,
which has provided much evidence for the plasticity
of the central auditory pathway following a profound
loss of hearing [1-4]. Many previous studies showed
that there is a capacity of the auditory cortex for
cross-modal plasticity after auditory deprivation of
the brain. Cerebral glucose metabolism in the pri-
mary auditory and related cortices in individuals
with prelingual deafness was shown to decrease in
younger patients, but to increase as they aged and,
in fact, recover fully or even exceed the normal
level of activation [5-7]. Children with prelingual

deafness can acquire spoken language by cochlear
implantation, but its efficacy decreases with age. The
development of the auditory cortex is believed to
depend on the patient’s auditory experience within
‘critical periods’ in the early lifetime. Adults who
had severe congenital hearing loss in their childhood
may take advantage of hearing with cochlear
implants if they had exploited residual hearing
with hearing aids. It has been shown that low
glucose metabolism in the temporal auditory cortex
predicts a good cochlear implant outcome in
prelingually deafened children, which suggests that
low metabolism in the auditory cortex may indi-
cate its potential of plasticity for spoken language
acquisition [7].
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Meanwhile, several etiological studies suggest that
at least 60% of congenital hearing loss has genetic
causes. Recent advances in molecular genetics have
made genetic diagnosis possible [8]. The identifica-
tion of the mutation responsible for hearing loss may
provide some information as to cochlear damage, and
help predict the time course and manifestations of
hearing loss. Genetic testing can therefore be useful in
decision-making regarding cochlear implantation and
other necessary treatment.

Evaluation of brain function and diagnosing accu-
rate etiology of hearing loss may be the keys to
personalizing post-cochlear implantation habilitation
programs and predicting the outcomes thereof.

In this study, we used 18 F-fluorodeoxyglucose
(FDQG) positron emission tomography (PET) to mea-
sure cortical glucose metabolism with a visual lan-
guage task before cochlear implantation in profoundly
deaf patients whose etiologies were identified by
genetic testing.

Material and methods
Genetic diagnosis

Genetic screening was performed in two cases using
an Invader assay to screen for 41 known hearing loss-
related mutations [9] and direct sequencing for G¥B2
and SLC26A44 mutations [10,11].

FDG-PET scanning and image analysis

FDG-PET scanning and image analysis were per-
formed using the method described by Fujiwara
et al. [12]. During the time period between the
intravenous injection of 370 MBq 18 F-FDG (the
dose was adjusted according to the body weight of
each subject) and the PET scanning of the brain, the
patients were instructed to watch a video of the face of
a speaking person reading a children’s book. The
video lasted for 30 min, and several stll illustrations
taken from the book were inserted (for a few seconds
each) to help the subjects to follow the story. The
subjects were video-recorded to confirm that they
were watching the task video. PET images were
acquired with a GE ADVANCE NXi system (General
Electric Medical Systems, Milwaukee, WI, USA).
Spatial preprocessing and statistical analysis were
performed with SPM2 (Institute of Neurology, Uni-
versity College of London, UK) implemented in
Matlab (Mathworks, MA, USA). The cortical radio-
activity of each deaf patient was compared with that of
a control group of normal-hearing adults by a z test in
the basic model of SPM2. The statistical significance
level was set at p < 0.001 (uncorrected).
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This study was approved by the Ethics Committee
of Shinshu University School of Medicine and written
consent was obtained from each participant.

Control group

The control group consisted of six normal-
hearing right-handed adult subjects. The average
(mean = standard deviation) age of the normal-
hearing subjects was 27.5 + 3.8 years. The pure-
tone average hearing levels were within 20 dB HL
for all.

Case 1

A right-handed 22-year-old female with a G¥B2
mutation (235 delC homozygous) had hearing
impairment that was noticed by her parents when
she was 2 years old. She had used hearing aids ever
since, but with insufficient hearing amplification. She
used lip-reading and some sign language, and her
speech was not intelligible to hearing people. Com-
puted tomography (CT) findings of the middle and
inner ear were normal. Her average pure-tone hearing
levels were 102.5 dB for the right ear and 95 dB for the
left ear (Figure 1A).

Case 2

A right-handed 26-year-old male with an SLC2644
mutation (H723R homozygous) had hearing impair-
ment that was noticed by his parents when he was
2 years old, from which time he had used hearing aids
bilaterally. He did not use lip-reading or sign language
during the acquisition age for language. He obtained
spoken language with hearing aids but had progressive
hearing loss, and sometimes suffered vertigo attacks.
His pronunciation was clear, and his speech was
almost completely intelligible. CT findings exhibited
an enlarged vestibular aqueduct on each side. His
average pure-tone hearing levels were 106.2 dB for the
right ear and 100 dB for left ear (Figure 1B).

Results

Figure 2 shows transaxial PET images of each
participant’s brain. The visual stimuli resulted in
bilateral activation of the superior temporal gyrus,
including Heschl’s gyrus in case 1 with G¥B2 muta-
tion (Figure 2A, white arrowhead). In contrast, in
case 2 with SLC26A4 mutation, the activation of
the superior temporal gyrus was much lower than
in case 1 (Figure 2B, white arrowhead).

Figure 3 shows supra-threshold clusters in each
case. In case 1, activation higher than normal controls
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Figure 1. Pure-tone audiograms: (A) a 22-year-old female with a G¥B2 mutation; (B) a 26-year-old male with an SLC26A44 mutation. There

were no clear differences in hearing thresholds in these two cases.

was observed in the right auditory association area
[BA21, BA22], and the left auditory association area
[BA42] (p < 0.001). In case 2, the right superior
frontal gyrus [BA9], and the middle temporal gyrus
[BA20], showed higher activation than normal con-
trols (p < 0.001).

Discussion

More than half of congenital hearing loss has been
estimated to be from genetic causes, and phenotypes
are affected by genetic mutations. There have been no

reports of the influence of phenotype on brain func-
tion associated with hearing. This is the first report on
evaluation of cortical processing of language in
patients with genetic mutations as a main etiology
of hearing loss. The auditory association area was
activated bilaterally in case 1 (G¥B2 mutation), but
not activated in case 2 (SLC26A4A4 mutation).
A previous study indicated that the temporal lobe is
activated during speech-reading in normal subjects
[13] and another study found that the temporal lobe is
not activated when reading fluent speech from a
talking face [14]. For the present study we used a

Figure 2. Transaxial PET images of each participant’s brain: activation (arrowheads) of the superior temporal gyrus with visual language
stimuli in each case. (A) Case 1 (G¥B2 mutation). The superior temporal gyri were strongly activated bilaterally. (B) Case 2 (SLC26A44
mutation). The superior temporal gyri exhibited less activation than in case 1.
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Figure 3. Cortical activation by language-related visual stimuli in
the two profoundly deafened cases. Case 1 (G¥B2 mutation)
showed significant activation in the right middle temporal gyrus
[BA21] (1), superior temporal gyrus [BA22] (2), and left superior
temporal gyrus [BA42] (3), and left cerebellum (4), while case
2 (SLC26A44 mutation) exhibited significant activation in the right
superior frontal gyrus [BA9] (1), and middle temporal gyrus
[BA20] (2) (SPM2, p < 0.001, uncorrected).

fluent speech-reading task, similar to that described
by Hall et al. [14]. Fujiwara et al. in a FDG-
PET study using the same methods and task as the
present study, showed that subjects with better spoken
language skills had less temporal lobe activation [12].

To summarize these reports, the patients with
hearing aids with better spoken language skills have
less temporal lobe activation with a visual language
task. Otherwise, Nishimura et al. [15] reported a sign
language activation of the bilateral auditory associa-
tion areas in a congenitally deafened subject. How-
ever, detailed clinical data for the subject — including
his hearing levels, time course of hearing loss, and the
cause of deafness — were not described. The different
visual language activation patterns in the auditory
cortices revealed in the current two profoundly deaf-
ened subjects with different genetic etiologies and
hearing loss progressions may, thus, add further
knowledge of the cross-modal plasticity brought
about in the superior temporal association areas by
lack of hearing.

The differences in cortical processing patterns
between cases 1 and 2 — who both had hearing loss
of cochlear origin — may have been influenced by the
differing clinical courses of hearing loss. G¥B2 is
currently known to be the most prevalent gene
responsible for congenital hearing loss worldwide.
Patients with severe phenotypes who have G¥B2
mutations are good candidates for implantation,
because their hearing loss is of cochlear origin and
non-progressive [16,17]. SLC26A4 is known as a
commonly found gene and is associated with enlarged
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vestibular aquaduct [11]. This phenotype includes
congenital and progressive hearing loss, usually asso-
ciated with vertigo [18]. In most cases hearing
remains in low frequencies, enabling the understand-
ing of spoken language with hearing aids. Cochlear
implantation has resulted in remarkable improve-
ments in auditory skills and speech perception for
patients with profound hearing loss associated with
SLC26A4 mutations as well as G¥B2.

Comparing case 1 (G¥B2 mutation) with case 2
(SLC26A4 mutation), the crucial importance of the
use of hearing aids during childhood up to age 6 years
for acquisition of better hearing is evident. In case 1,
even though she was able to hear sound with the use of
hearing aids, she was unable to recognize enough
speech language due to insufficient hearing amplifi-
cation during the critical periods in her childhood.
She therefore used lip-reading and some sign lan-
guage in addition to hearing aids. Increased metab-
olism was observed by FDG-PET in the auditory
association area, where no significant activation was
found in the normal-hearing controls. In contrast, in
case 2, a 26-year-old patient with an SLC26A44 muta-
tion, there was no significant activation in the corre-
sponding area. He obtained rather hearing ability and
spoken language by hearing aids with residual hearing
at lower frequencies during his childhood. His hearing
was supposed to be better than case 1, because 1) he
did not use lip-reading or sign language during the
acquisition age for language from anamnestic evalu-
ation; 2) his pronunciation was clear, indicating better
hearing (at least 40-50 dB) during the acquisition age
for language; 3) from an etiological point of view,
patients with SLC26A4 mutation usually have mild to
moderate hearing loss during childhood and this
shows a progressive nature [18]. He had progressive
hearing loss in the natural history as a phenotype of
SLC26A4 mutation. The difference in activation pat-
terns in the cases with G¥B2 and SLC26A44 mutations
was clearly demonstrated by statistical processing with
SPM, as well as in the PET scans. These results
suggest the importance of hearing during early child-
hood for the development of a normal cortical lan-
guage network, and that reorganization had occurred
in the auditory cortex of the patient with a G¥B2
mutation; i.e. processing visual aspects of language
in the superior temporal gyri. This implies that cross-
modal plasticity as a consequence of the lack of
hearing during the critical period for spoken language
acquisition in early childhood was influenced by the
time course of hearing loss characterized by genetic
mutations.

Previous studies have suggested that auditory areas
presented high accumulation of FDG with deafness of
early onset, and plastic changes in auditory cortices
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were strongly affected by the duration of auditory
deprivation [1,5,6,19,20]. Since low activation of
the auditory cortices with visual stimuli suggests the
subject’s lesser dependence on visual communication
methods and substantial residual plasticity in his
auditory cortices, case 2 with an SLC26A44 mutation
may be determined to be an appropriate candidate for
cochlear implantation.

Accurate diagnosis of hearing loss and early
cochlear implantation are important for successful
spoken language development. The approach using
PET could help those involved in the habilitation and
education of prelingually deafened children to decide
upon the suitable mode of communication for each
individual.

Both of the patients received cochlear implantation
after PET examination. Further follow-up of these
cases may indicate that efficacy of the combination of
genetic diagnosis and functional brain imaging helps
to predict long-term outcomes of cochlear implanta-
tion. Examination of more cases is necessary to define
the relationship of the varying cortical activation pat-
terns with each genetic mutation.
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