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Introduction

Cadml (also known as RA175, Necl2, and SynCAMI), a
member of the immunoglobulin superfamily (IgSF), localizes to both
sides of the synaptic cleft and functions as a synaptic cell-cell
adhesion molecule. Cadm]l induces functional synapses [1]. The
extracellular domain of Cadml mediates calcium-independent,
homophilic #rans interactions [1,2], and its cytoplasmic tail has a
band 4.1 region and a PSD95/Dlg/Z0O-1 (PDZ)-binding motif [2].
At the pre-synapse, Gadml associates with calmodulin associated
serine/threonine kinase (CASK) via a single PDZ domain [1].

Mutations in genes encoding synaptic adhesion proteins,
including neuroligin (NLGN) 3 and 4, contactin-associated protein-like 2
(CNINAP2, Caspr?), and CADMI, are associated with autism
spectrum disorder (ASD) [3-5]; the CADMI mutations H246N
and Y2518 specifically have been found in people diagnosed with
ASD who had impaired social interactions and communication,
including speech and language impairments [5]. Mutations in
CADMI increase its susceptibility to processing errors and the
accumulation of CADMI peptide fragments in the endoplasmic
reticulum [5,6]; they also reduce CADMI affinity in cell adhesion
and lead to synaptic defects in neuron cultures [6]. Cadml
knockout (KO) mice [7] exhibit abnormal social and emotional
behaviors that share similarities with some behaviors associated
with ASD [8]. These findings suggest that CADMI loss of function
may be linked to ASD.
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Speech—language impairment is one of the most prominent
symptoms in some types of ASD. Impaired speech-language
communication frequently also occurs as a phenotype of people
with mutations in the adhesion molecule gene CNTNAP? [4]. A
previous study found an R553H mutation in human FOXP2 in
patients with speech—language disorders [9]. Normal FOXP2
associates with a corepressor and acts as a transcriptional repressor
[10]; however, mutated FOXP2 (R553H) lacks DNA-binding
activity [11]. Infant mice emit and use ultrasonic vocalizations
(USVs) as an essential communication tool for mother—offspring
interactions [12]. Foxp2 KO mice and knock-in (KI) mice for Foxp2
(R552H), which corresponds to the human FOXP2 (R553H)
mutation, exhibit severe USV impairments, suggesting human
speech and mouse USVs may have a common molecular basis in
the brain [13,14]. Foxp2(R552H) KI pups with USV impairment
show poor development of Purkinje cells in the cerebellum [13],
and the number of synapses on the dendrites of Purkinje cells is
decreased in the these pups.

Of interest, cerebellar abnormalities, including Purkinje cell
loss, have been found in autopsy samples from ASD patients [15].
We have observed that CadmI KO mice have smaller cerebellums.
Furthermore, Cadml mRNA is expressed not only in various
regions of the cerebrum but also in the developing cerebellum
[16]. Cadml is predominantly localized to the thalamus cortical
afferent pathway in the cerebrum [17]; however, little is known
about Cadm] expression at synapses in the cerebellum.
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In the present study, we examined USV of Cadml KO mice,
Cadml localization in the cerebellum, and the relationship
between loss of Cadml at the synapses and impaired USV in
Cadml KO and Foxp2(R552H) KI pups.

Results

We established a strain of Cadm! KO (C57BL/6]) mice (Cadmi
KO mice) by mating heterozygous Cadml KO (129Sv) mice [7]
with C57BL/6] for more than 10 generations. The homozygous
Cadml KO mice (postnatal day [P] 50) were smaller than their
wild-type counterparts (Figure 1A). At P10, we detected a
significant difference in mean body weight between homozygous
Cadm] KO mice and their wild-type littermates, a difference that
increased over the next 20 days. The mean body weight of the
homozygous Cadml KO mice was 20-25% less than that of the
wild-type mice (Figure 1B). In addition, compared to the wild-type
mice, the brains of homozygous Cadm! KO mice were smaller
(Figure 1C). In particular, the cerebellum of homozygous Cadml
KO mice showed a reduction in size (Figure 1D, upper panel) and
weight (Figure 1D, lower panel) of approximately 20%.

We next investigated the pups’ USV because we previously found
poor development of Purkinje cells in Foxp2(R552H) KI mice with
impaired USV [13]. The Cadm! KO pups exhibited impaired USV
upon separation from their mothers and litters, an effect similar to
that which we recently observed in Foxp2(R552H) KI pups (Figure 2A)
[13]. The Cadml KO pups produced some click-type USVs but only
low levels of whistle-type USVs, compared to the predominant
whistle-type USVs among wild-type pups (Figure 2B, C).

C

Cadm?1 Synapse Is Involved in USV Activity

The detection of these functional effects associated with Cadm]l
deficiency led us to investigate more thoroughly the distribution
pattern of Cadml in the cerebellum. In P11 wild-type pups, but
not Cadml KO pups, Cadm] was detected in the dendritic arbor
of Purkinje cells and some of the granular cells in the cerebellum
(Figure 3A). Cadml preferentially localized to the apical-distal
portion of the dendritic arbor (Figure 3B). The dendrite
development of Purkinje cells in Cadml KO mice appeared poor
compared to that of wild-type mice (Figure 3B and Figure S1).

Purkinje cells receive two excitatory afferents, parallel fibers and
climbing fibers, which can be distinguished based on the expression of
VGIuT1 and VGuT2 [18,19]; climbing fibers express VGIuT2
throughout development while parallel fibers shift from VGIuT2
expression to VGIuT1. The onset of VGIuT2 expression in the
individual parallel fiber terminals was clearly earlier than that of
VGIT1 in the samples; in the early postnatal stages (P6-8), Cadml
was mainly expressed in the molecular layer with the expression of
VGluT?2 (Figure 4A). During P6-11, Cadml expression intensity
increased. At P11, VGIuT?2 intensity decreased, while VGluT1
intensity increased (Figure 4B). Thus, VGIuT2 in parallel fibers
expressing Cadm] was replaced with VGluT1, which extended its
expression from proximal regions to apical-distal regions in the
molecular layer (Figure 4A). After this deep-to-superficial replace-
ment, Cadm! and VGIuT1 immunoreactivity was detected through-
out the molecular layer and appeared to co-localize at P14 (Figure 4A).

We next examined the levels of Foxp2, Synaptophysin, and
VGIuT1 in the cerebellum of Cadm] KO mice (Figure 5A). VGIuT1
levels were markedly decreased in the cerebellum of Cadml KO
compared to wild-type mice. Compared to VGIuT1, the decrease in
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Figure 1. Abnormal cerebellum development of Cadm7 KO. (A) Wild-type, heterozygote, and homozygous Cadm1 KO mice. (P50) (B) The
difference in mean weight between homozygous Cadm1 KO mice and their wild-type littermates (five each) was significant at P10 and increased over
the next 20 days (A, B); at P30, the mean weight of the homozygous Cadm71 KO mice was 20-25% less than that of the wild-type mice. In addition, the
brains of homozygous Cadm1 KO mice were smaller (C, n=22), and the cerebellums of homozygous Cadm1 KO mice had an approximately 20%
reduction in size and weight (D, n=10). Bars in the graph indicate meanzstandard error (SEM). Student’s t-test (*p<<0.05). Bars in the pictures indicate

1 ¢cm (A), 5 mm (C), and 0.75 mm (D), respectively.
doi:10.1371/journal.pone.0030151.g001
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Figure 2. Analysis of ultrasonic vocalizations (USVs) of Cadm7 KO mice (P8). (A) Real-time spectrography of the USVs by pups after
separation from the dam. (B) Major vocalization patterns of Cadm1 KO and wild-type pups. Wild-type vocalization was mainly whistle-type USVs, but
Cadm1 KO mice exhibited only a small number of click-type vocalizations. (C) The number of whistle-type USVs per min by pups. Vocalizations were
recorded for 3 min. Experiments were done three times for 5 pups in each group, and an example of typical results is shown. Values are

meanzstandard error (SEM). Student’s t-test (**p<<0.01).
doi:10.1371/journal.pone.0030151.g002

Synaptophysin was not marked, but it was significant; however,
Foxp?2 levels were unchanged. Real-time PCR analysis confirmed
that there was no alteration in Foxp2 mRNA levels in the
cerebellum of Cadm! KO compared to wild-type mice (Figure 5B).
Thus, Cadml deficiency did not appear to affect Foxp2
expression and Foxp2-mediated development of Purkinje cell
dendrites; however, it may have influenced synapse formation.
We also examined the localization of Cadm1 in the cerebellum
of Foxp2(R552H) KI mice and found that Foxp2(R552H) KI pups
(P11) had poorly developed Purkinje cell dendrites with reduced
immunoreactivity for Synaptophysin [13] (Figure 6). Overall, the
immunoreactivity of Cadm]l, as well as of VGIuT1, was reduced
on dendritic arbors in Foxp2(R552H) KI mice (Figure 6 and Figure
S9), although Cadml mRNA levels were unchanged (Figure S3).

Discussion

Foxp2-mediated USV and Cadm1 activity in synapses in
the cerebellum

Human speech and mouse USV have a common molecular
basis in the brain, and Foxp2(R552H) KI mice exhibit abnormal
cerebellar development and poor dendrite development [13]. In
humans, some of the areas associated with speech and language
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skills are located in the frontal/superior cerebellar articulation
control system and the parietal/inferior cerebellar phonological
storage system [20,21]. The cerebellar molecular systems control
both human spoken language and mouse USVs and therefore
share function in the two species.

In the present study, we found that Cadml KO mice had smaller
cerebellums, poor development of dendrites of Purkinje cells, and
impaired USV (Figures 1, 2, 3 and S1), as observed in
Foxp2(R552H) KI mouse pups. Cadm1 was preferentially localized
to the apical—distal portion of the dendritic arbor of Purkinje cells
in the molecular layer of wild-type pups (Figure 3), and the level of
VGIuT1 decreased in the cerebellum of Cadm! KO mice (Figure 5).

VGIuT'1/2-positive synapses have been detected in the brains of
transgenic mice overexpressing Cadml [22]. In the cerebellum, the
two excitatory afferents of Purkinje cells are the parallel fibers and
climbing fibers; climbing fiber terminals selectively express
VGIuT?2 throughout the postnatal period, but parallel fiber
terminals first express VGIuT2 and then switch to VGIuT!
[18,19]. In the current work, Cadml was expressed in the
granular cells and appeared to co-localize with VGIuT1 at the pre-
synapse (Figure 4). Both Cadml and VGIuT1 immunoreactivity
decreased in the Purkinje cells of Foxp2R552H) KI pups (P11)
with impaired USV (Figure 6), however. Of note, Cadml
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Figure 3. Distribution of Cadm1 in the cerebellum (P11). The
Cadm1 intensity preferentially distributed in an apical-distal dendritic
portion. Wild-type (A, B, upper panel) and Cadm? KO mice (B, lower
panel). Green, Cadm1. Red, Calbindin. Blue, Hoechst. Bars, 30 um.
doi:10.1371/journal.pone.0030151.g003

homophilically #rans interacts at the synapse [1,2]. In this study, at
P11, in addition to VGIuT1, Cadm! partly co-localized with
Synaptophysin, a pre-synaptic marker, and PSD-95, a post-
synaptic marker, in the molecular layer (Figure $4). In a separate
study, we found that Cadml also co-localized with GABBR2 on
the dendrites of Purkinje cells during development (Fyjita et al.,
submitted). Thus, Cadm] may localize at the pre-synapse and
post-synapse of the parallel fiber—Purkinje cells. The reduced
immunoreactivity of Cadm1 on the dendrites of Purkinje cells in
the Foxp2(R552H) KI mice could result from the decreased
number of synapses. Foxp2 is essential for Purkinje cell
development, while Cadm1 activity at parallel fiber—Purkinje cell
synapses may be involved in mouse USV, and perhaps also in
human spoken language. However, we note that loss of Cadml
activity in other brain regions could also contribute to or even
cause the vocalization phenotype, an important issue that future
studies should address.

Cadm1 expression and Foxp2

The CADM]I mutations H246N and Y251S have been identified
in people with ASD who also had speech and language
impairment [5]. In the current study, we found that Cadml KO
male mice (C57BL/6) had small cerebellums (Figure 1), impaired
USV (Figure 2), and abnormal social and emotional behaviors,
analogous to some behaviors associated with ASD [8].

ASD patients with mutations in the CNTNAP? gene also exhibit
impaired speech and language [23]. A recent study showed that
FOXP2 binds to the CAAATT motif in an intron of the human
CNTNAPZ gene, resulting in negative regulation of CNTNAP2
expression; mutant FOXP2 (R553H) lacking DNA-binding
activity resulted in increased CNTNAP2 expression in @ vitro
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experiments [11]. Human CADMI and mouse CadmI have the same
CAAATT binding motif for FOXP2 (accession no. NC_000011.9
for human CADMI and accession no. NC_000075.5 for mouse
Cadml). In contrast to CNTNAP2, we found here that Cadml
mRNA levels were unchanged in the cerebellum of Foxp2(R552H)
KI mice (Figure S1). Therefore, Foxp2 does not appear to regulate
directly the expression of mouse Cadml in the cerebellum. Thus,
Cadml and CNINAP2 exhibit different sensitivities to Foxp2
regulation, although they have the same CAAATT motif. This
distinction may be attributable to different conditions in i vitro and
i vivo experiments or to subtle variations in the binding motifs in the
Cadml and CNTNAP2 genes; the nucleotide sequence of the
repeated CAAATT motif, which is necessary for binding of
dimerized Foxp2, may differ between the two genes.

In conclusion, Cadml is not a target of the Foxp?2 transcription
factor, but Cadm] activity at parallel fiber—Purkinje cell synapses
may be necessary for USV function. Loss of Cadml activity at the
synapse may be associated not only with USV impairment in mice
but also with impaired speech and language communication skills
in people with ASD.

Materials and Methods

Ethics statement

We followed the Fundamental Guidelines for Proper Conduct
of Animal Experiments and Related Activities in Academic
Research Institutions under the jurisdiction of the Ministry of
Education, Culture, Sports, Science and Technology, and all of
the protocols for animal handling and treatment were reviewed
and approved by the Animal Care and Use Committee of Jichi
University (approval numbers, H22-179, 10-179) and Internation-
al University of Health and Welfare (approval numbers, D1008;
10118). Wild-type, Cadm! KO and Foxp2(R552H) KI mice [7,13]
(male mice) were used for the experiments.

Ultrasonic vocalization

We mated Cadm! KO (129Sv) mice [7] with C57BL/6] strain
mice for 10 generations and established a strain of Cadml KO
(C57BL/6]) mice. USVs of five Cadm] KO and five wild-type pups
(P8) were assayed as described previously [13]. Briefly, each pup
was separated from its mother and littermates, one at a time,
placed in a shallow beaker in a soundproof chamber, and then
positioned below a microphone connected to the UltraSound Gate
116 detector set (Avisoft Bioacoustics) to detect USVs of 40—
100 kHz. Analysis began after the pup had been habituated to the
chamber for 60 s. Sounds were recorded for 3 min.

Quantitative real-time PCR

Total RNA was prepared from a combined five pieces of
cerebellum of wild-type and Cadml KO and Foxp2(R552H) KI
male mice (P10), respectively, using the RINeasy mini kit (Qjagen)
according to the manufacturer’s specifications. Complementary
DNAs were synthesized from total RINA (1 ug) using reverse
transcriptase (Invitrogen) as described previously [24]. Real-time
PCR analysis was performed using the Applied Biosystems 7500
fast real-time PCR system (Applied Biosystems) with the TagMan
Gene Expression Assays (Applied Biosystems) based on published
sequences for genes encoding the respective mouse Cadml,
Foxp2, and VIC-labeled mouse Gapd (VIC-labeled MGD probe;
Applied Biosystems) as endogenous control. For each sample, the
20 ul total volume consisted of 10 pul TagMan Fast Universal PCR
Master Mix (2x; Applied Biosystems), 1 ul TagMan Gene
Expression Assays, and 5 pl of each first-strand ¢cDNA sample.
The real-time PCR fragments were amplified as follows: 1 cycle at
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Figure 4. Developmental changes of Cadm1, VGIuT1, and VGIuT2 in wild-type pups. Alteration of the distribution of Cadm1, VGIuT1, and
VGIUT2 was examined in the molecular layer of the developing cerebellum (P6-14). VGIUT2 first appeared in the molecular layer in the early postnatal
cerebellum (P6-8), in which Cadm1 co-localized with VGIuT2, and then the level of VGIuT2 decreased. VGIUT1 increased in the later postnatal
cerebellum (P11-14), in which Cadm1 co-localized with VGIUT1. Green, Cadm1. Red, VGIUT1 or VGIuT2. Blue, Hoechst. Bar, 30 um. Values are
meanzstandard error (SEM). Student’s t-test (*p<<0.05, **p<<0.01). Pups: n=3. Images: n=8.

doi:10.1371/journal.pone.0030151.g004

95°C for 20 s, 60 cycles at 95°C for 3 s, and 60°C for 30 s. Results
were analyzed using student’s #tests ($<<0.05 was considered
statistically significant).

Immunblot analysis

Five cerebellums each from wild-type and Cadml KO mice,
respectively, were combined and lysed in lysis buffer [50 mM Tris-
HCI pH 8.0, 150 mM NaCl, 10% glycerol, 0.5% IGEPAL
CA630, and protease inhibitors; complete mini (Roche Diagnos-
tics)] at 4°C for 15 min, and then each extract was subjected to
immunoblot analysis using mouse anti-Synaptophysin (Millipore),
rabbit anti-VGIuT1 (Synaptic Systems), rabbit anti-Foxp2 (Ab-
cam), and mouse anti-Tubulin (Sigma). Immunoreactivity was
visualized using alkaline phosphatase-conjugated anti-mouse or
anti-rabbit IgG, Nitro blue tetrazolium, and 5-bromo-4-chloro-3-
indolyl-1-phosphate (Roche Diagnostics). Data from three exper-
iments were scanned and analyzed for quantification with Image J
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software (National Institutes of Health). Results compared with
wild-type were analyzed using the student’s #test ($#<<0.05 was
considered statistically significant).

Immunostaining

Wild-type, Cadml KO, and Foxp2(R552H) KI mice cerebel-
lums were fixed in 4% paraformaldehyde in phosphate buffered
saline at 4°C overnight. Frozen sections (10 pm thick) were cut
on a cryostat and immunostained with chicken anti-SynCAM1
(Cadml; MBL), mouse anti-Calbindin (Sigma), rabbit anti-
Calbindin (Sigma), mouse anti-Synaptophysin, rabbit anti-
VGWuTI1, or rabbit anti-VGIuT2 (Synaptic Systems). Alexa
Fluor 488— and Alexa Fluor 568-conjugated secondary anti-
bodies against mouse, rabbit, and goat IgGs were purchased
from Molecular Probes. Nuclei were detected by Hoechst 33342
(Molecular Probes). The reactivity was viewed using a Leica SP5
confocal microscope (Leica Microsystems). At least three
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