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ARTICLE INFO ABSTRACT

Previous studies have indicated that minocycline might function as an antidepressant drug. The aim of this
study was to evaluate the antidepressant-like effects of minocycline, which is known to suppress activated
microglia, using learned helplessness (LH) rats (an animal model of depression). Infusion of minocycline
into the cerebral ventricle of LH rats induced antidepressant-like effects. However, infusion of minocycline
into the cerebral ventricle of naive rats did not produce locomotor activation in the open field tests, suggest-
ing that the antidepressant-like effects of minocycline were not attributed to the enhanced locomotion. LH
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f::::;z:fielplessness (LH) rats showed significantly higher serotonin turnover in the orbitofrontal cortex and lower levels of brain-
Minocycline derived neurotrophic factor (BDNF) in the hippocampus than control rats. However, these alterations in
Depression serotonin turnover and BDNF expression remained unchanged after treatment with minocycline. On the
Monoamines contrary, minocycline treatment of LH rats induced significant increases in the levels of dopamine and its
BDNF metabolites in the amygdala when compared with untreated LH rats. Taken together, minocycline may be

a therapeutic drug for the treatment of depression.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Minocycline, the second-generation tetracycline antibiotic drug,
has powerful anti-inflammatory and neuroprotective effects. The
action of minocycline is assumed to be exerted through the inhibition
of cytochrome c release from the mitochondria, the inhibition of
caspase expression, and the suppression of microglial activation
(Domercq and Matute, 2004; Kim and Suh, 2009). Minocycline
thereby reduces transcription of the downstream pro-inflammatory
nitric oxide synthase and cyclooxygenase-2 and the subsequent release
of interleukin1f (IL-1[3), nitric oxide (NO), and prostaglandin E2.

Minocycline is currently receiving attention as a potential new
agent for the treatment of major depression (Hashimoto, 2009; Pae
et al., 2008). A previous case report documented the antidepressant
effects of minocycline in a patient with bipolar disorder (Levine
et al, 1996). In animal studies, minocycline reduced immobility by
increasing climbing and enhanced the anti-immobility effect of
subthreshold doses of desipramine in the forced swimming test (an
antidepressant-screening model) (Molina-Hernandez et al., 2008).

* Corresponding author at: Department of Psychiatry, Teikyo University Chiba
Medical Center, 3426-3 Anesaki, Ichihara 299-0111, Japan. Tel.: +-81 436 62 1211;
fax: +81 436 62 1511.

E-mail address: shirayama@rapid.ocnne jp (Y. Shirayama).

0091-3057/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.pbb.2011.09.008

Furthermore, minocycline attenuated lipopolysaccharide (LPS)-
induced expression of pro-inflammatory cytokines, and prevented
LPS-induced development of depressive-like behaviors in mice
(O'Connor et al.,, 2009). These lines of evidence suggest that mino-
cycline is a potential antidepressant drug.

The prefrontal cortex, nucleus accumbens, hippocampus, and
amygdala are candidates for the locus of depression, and their in-
volvement in the pathophysiology of depression is well documented.
Dysfunctional changes within these interconnected limbic regions
have been implicated in depression and the actions of antidepres-
sants (Berton and Nestler, 2006; Krishnan and Nestler, 2008). Post-
mortem and neuroimaging studies of depressed patients have
revealed reductions in gray-matter volume and glial density in the
prefrontal cortex and hippocampus (Drevets, 2001; Harrison, 2002;
Sheline et al., 2003). Activity in the amygdala and anterior cingulate
cortex is strongly correlated with dysphoric emotions: indices of
neuronal activity within these regions are chronically increased in
depressed individuals, but revert to normal levels after successful
treatment (Drevets, 2001; Ressler and Mayberg, 2007).

The networks described above are significantly modulated by
monoamine projections from the midbrain and brainstem nuclei.
Abnormal monoamine metabolism is also observed in animal models
of depression such as olfactory bulbectomized rats (Zhou et al., 1998),
Wistar-Kyoto rats (De La Garza and Mahoney, 2004) and Flinders
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Sensitive Line rats (Zangen et al., 1997, 1999), and treatment with an-
tidepressants improves these monoaminergic dysfunctions (Zangen
et al, 1997, 1999). Olfactory bulbectomized rats showed increased
serotonin (5-HT) turnover in the frontal cortex (Zhou et al., 1998).
Flinders Sensitive Line rats, a genetic model of depression, also
showed increased dopamine turnover in the prefrontal cortex and
decreased serotonin turnover in the nucleus accumbens (Zangen
et al., 1997, 1999). Serotonergic neurons are known to be associated
with depression-related neuropsychological functions including
stress responsiveness, motivation, working memory, and anxiety
(Jans et al., 2007). In support of this, a previous clinical study demon-
strated that depressed patients exhibited significantly higher 5-HT
turnover in plasma levels than normal controls (Mitani et al., 2006).

The monoamine hypothesis of depression posits that depression is
caused by decreased monoamine function in the brain (Berton and
Nestler, 2006). It is assumed that initial increases in the levels of syn-
aptic monoamines (5-HT and norepinephrine (NE)) induced by anti-
depressant drugs produce secondary neuroplastic changes that
involve transcriptional and translational changes, mediating molecu-
far and cellular plasticity (Nestler et al.,, 2002; Pittenger and Duman,
2008). Although monoamine-based antidepressants remain the first
line of therapy for depression, therapeutic delays and low remission
rates have encouraged the search for more effective agents (Berton
and Nestler, 2006; Mathew et al.,, 2008; Trivedi et al., 2006).

Brain-derived neurotrophic factor (BDNF) is implicated in neuro-
nal plasticity and plays an important role in learning and memory.
It has been reported that stress reduced the expression of BDNF in
the hippocampus of rats, and that treatment with antidepressants
or electroconvulsive therapy restored the reduced hippocampal
BDNF levels in stressed rats. It is well known that subchronic treat-
ments with antidepressants increase the BDNF expression in the hip-
pocampus of animals (Duman and Monteggia, 2006; Nibuya et al.,
1995). Direct infusion of BDNF into the hippocampus induces an
anti-depressive effect in learned helplessness (LH) rats (Shirayama
et al,, 2002). Furthermore, treatments with antidepressants did not
improve the depressive-like behavior in the forced swim test in
mice whose expression of BDNF in the dentate gyrus of hippocampus
was selectively attenuated (Adachi et al., 2008). Clinical studies in-
cluding a recent meta-analysis study have reported that the concen-
tration of serum BDNF was decreased in depressed patients, and that
subsequent treatment with antidepressants increased the concen-
tration of serum BDNF (Brunoni et al., 2008; Sen et al., 2008; Shimizu
et al., 2003). Furthermore, external stressors activate cyclooxygen-
ase enzymes that enable the production of prostaglandins, increas-
ing the secretion and synthesis of BDNF (Toyomoto et al., 2004).
Moreover, pro-inflammatory cytokines such as IL-1@, which are in-
creased in clinical depression, impaired BDNF signal transduction
(Tong et al., 2008).

LH is a widely used animal model of depression. In this model,
application of an uncontrollable and unpredictable stressor such as
inescapable shock leads to a helpless state in a variety of animals and
humans (Overmier and Seligman, 1967; Maier and Seligman, 1976;
Breier et al., 1987). Helpless animals lose weight, appear agitated, and
have sleep disturbances, libido reduction, and associative-cognitive
deficits (Henn and Vollmayr, 2005). LH animals are responsive to
tricyclic antidepressants, selective serotonin reuptake inhibitors,
monoamine oxidase inhibitors, and electroconvulsive treatment
(Sherman et al.,, 1982; Shirayama et al,, 2002). LH rats show changes
in the NE and 5-HT systems. Thus, the NE- receptor and 5-HT-1B
receptor were up-regulated in the hippocampus of LH rats, and the
neurochemical and behavioral changes were reversed with subchronic
treatment with antidepressants (Henn and Vollmayr, 2005).

We examined whether minocycline could recover the behavioral
deficits observed in LH rats. The focus of this investigation was to
determine the mechanism of the antidepressant-like effects of mino-
cycline on LH rats. Therefore, we examined the effects of minocycline

on levels of monoamine and their metabolites after LH paradigm and
after subsequent treatment with minocycline in the medial prefrontal
cortex, orbitofrontal cortex, nucleus accumbens, striatum, hippocam-
pus, and amygdala. These regions are possibly involved in the path-
ophysiology of depression (Pittenger and Duman, 2008). Moreover,
we examined the BDNF level in the LH paradigm and after subse-
quent treatment with minocycline in the hippocampus.

2. Materials and methods
2.1. Animals and treatments

The animal procedures were in accordance with the Chiba University
Graduate School of Medicine Guide for the Care and Use of Laboratory
Animals and were approved by the Chiba University Graduate School
of Medicine Animal Care and Use Committee. Male Sprague-Dawley
rats (190-220 g) were housed under a 12-h light/12-h dark cycle at
room temperature (22 42 °C) with free access to food and water.

Surgery was performed using a stereotaxic apparatus (Kopf,
Tujunga, CA) under anesthesia with pentobarbital sodium solution
(50 mg/kg, intraperitoneal injection; Abbott Laboratories, Abbott
Park, IL) 1day after the acquisition of LH. The coordinates for the
cerebral ventricle relative to the bregma according to the atlas of
Paxinos and Watson (Paxinos and Watson, 1997) were as follows:
—0.3 anteroposterior (AP), +1.2 lateral, —3.4 dorsoventral (DV)
from the dura. Minocycline hydrochloride (Wako Pure Chemical
Industries, Ltd., Osaka, Japan) was dissolved in physiological saline.
Rats received bilateral microinjection of different amounts of minocy-
cline (160 or 20 pg/side) or saline (control) into the cerebral ventri-
cle. A total volume of 4.0 ul was infused into each side over 10 min,
and the injection syringe was left in place for an additional 5 min to
allow for diffusion.

2.2. LH paradigm

LH behavioral tests were performed using the Gemini Avoidance
System (San Diego, CA, USA). This apparatus was divided into two
compartments by a retractable door. On days 1 and 2, rats were sub-
jected to 30 inescapable electric footshocks [0.65 mA, 30 s duration, at
random intervals (averaging 18-42 s)]. On day 3, a two-way condi-
tioned avoidance test was performed as a post-shock test to deter-
mine if the rats would show the predicted escape deficits. This
screening session consisted of 30 trials in which the electric foot-
shocks [0.65 mA, 6 s duration, at random intervals (mean of 30 s)]
were preceded by a 3 s conditioned stimulus tone that remained on
until the shock was terminated. Rats with more than 25 escape
failures in the 30 trials were regarded as having reached the criterion.
Approximately 65% of the rats reached this criterion.

On day 4, rats received bilateral microinjections of minocycline
into the ventricle.

On day 8, a two-way conditioned avoidance test was performed.
This test session consisted of 30 trials in which electric footshock
[0.65 mA, 30 s duration, at random intervals (mean of 30 s, averaging
18-42 s)] was preceded by a 3 s conditioned stimulus tone that
remained on until the shock was terminated. The numbers of escape
failures and latency to escape in each of 30 trials were recorded by the
Gemini Avoidance System.

2.3. Open field test

Four days after the surgery, locomotor activity was measured in
the open field test in a square area (76.5x 76.5 x 49 cm) using a stan-
dard procedure (Lacroix et al.,, 1998). This experiment was performed
separately from the two-way conditioned avoidance test using differ-
ent animals. The open field was divided into two areas, a peripheral
area and a square center (40x40 cm). The test room was dimly
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illuminated (60 W lights, indirect). Rats were allowed to explore for
45 min. The computer software (BeTrace: Behavioral and Medical
Sciences Research Consortium, Hyogo, Japan) calculated the velocity
of movement, the distance traveled, and time spent in the center of
the open field. These parameters are assumed to reflect locomotor
activity and fear or anxiety, respectively.

2.4. Measurement of monoamines

On day 8, animals were decapitated and the brains were immedi-
ately removed. These animals had not been subjected to the two-way
conditioned avoidance test or open field test. The prefrontal cortex,
nucleus accumbens, striatum, amygdala, and hippocampus were
dissected and stored at —80 °C until used for the assay. Tissue sam-
ples were homogenized in 0.2 M perchloric acid (HCLO4) containing
100 uM disodium EDTA and 100 ng/ml isoproterenol (internal stan-
dard), and were then centrifuged at 20,000xg for 15 min at 4 °C.
The supernatants were filtered through a 0.45 um pore membrane
(Millex-LH, 4 mm; Millipore, Tokyo, Japan) and were analyzed for
dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homova-
nillic acid (HVA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-
HIAA), norepinephrine (NE) and 3-methoxy-4-hydroxyphenylglycol
(MHPG) by high-performance liquid chromatography (HPLC)
coupled with electrochemical detection. The HPLC system consisted
of a liquid chromatograph pump (EP-300, Eicom, Kyoto, Japan),
degasser (DG-300, Eicom), reversed phase column (Eicompak SC-
50DS 3.0x150 mm; Eicom), ECD-300 electrochemical detector
(Eicom), and data processor (EPC-300, Eicom). The mobile phase
consisted of 0.1 M acetate-citric acid buffer (pH 3.5) containing
13% methanol, 5 mg/l disodium EDTA, and 190 mg/l sodium octyl
sulfate.

A: LHrats

2.5. Measurements of BDNF protein levels

On day 8, animals were decapitated and the hippocampus was
dissected out. These rats had not been subjected to the two-way con-

" ditioned avoidance test or open field test. The samples were homog-

enized by a Polytron in 3 ml of buffer containing 10 mM Tris-HCI (pH
7.4), 150 mM NaCl, 4 mM EDTA, 1% Triton X-100, 1% sodium deoxy-
cholate, 0.1% SDS, 1 mM NasVO,, 1 mM dithiothreitol, 1 mM phenyl-
methylsulfonyl fluoride, and 1 pg/ml leupeptin. The homogenized
samples were spun at 15,000 rpm for 30 min, and the supernatants
were analyzed for BDNF using a two-site enzyme-linked immuno-
sorbent assay (ELISA). BDNF proteins were quantified by using the
BDNF Emax immunoassay system (Promega Co., Madison, WI,
USA). Data were expressed as percent of control and are the means
with S.EM.

2.6. Statistical analysis

Statistical differences among three groups were determined by one-
way ANOVA, followed by post hoc analysis (Tukey's test). For compari-
son of the mean values between the two groups, statistical evaluation
was done using the two-tailed Student's t-test. Differences were consid-
ered to be significant when the P values were less than 0.05.

3. Results
3.1. LH and conditioned avoidance test
LH rats that received bilateral microinjections of minocycline into

the cerebral ventricle demonstrated a significant improvement on the
conditioned avoidance test relative to saline-treated controls (Fig. 1).

B: naive rats
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Fig. 1. Minocycline decreased escape failure in the LH paradigm. Minocycline (Mino) or saline (SAL) was administered via bilateral infusion into the cerebral ventricle, and animals were
subjected to a conditioned avoidance test 4 days later. Escape failure and latency to escape were determined. The results were expressed as mear + S.E.M. The number of animals is listed
under each column. Shown on the right are the resuits of minocycline-injection into naive rats for comparison. Left top, F (2, 14) =4.052, p=0.0409; left bottom, F (2, 14)=3.861,
p=0.0462; right top, t=0.114, p=0.9120; right bottom, t=0.072, p=0.9442. *p<0.05 when compared with saline-treated controls (ANOVA followed by Tukey's test).
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Meanwhile, injection of minocycline into the cerebral ventricle of
naive rats failed to induce the antidepressant-like effects in the condi-
tioned avoidance test (Fig. 1).

3.2. Locomotor activity

Infusions of minocycline into the cerebral ventricle of naive rats
failed to affect the time spent in the center and distance traveled,
but decreased velocity in the open field test (Fig. 2). This is not the
result expected if a general increase in locomotor activity contributed
to the effect of minocycline on conditioned avoidance in the LH
models of depression.
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Fig. 2. Effects of minocycline infusion into the cerebral ventricle of naive rats on locomotor
activity. Minocycline (Mino) or saline (SAL) was administered via bilateral infusion into
the cerebral ventricle, and 4 days later, the time spent in the center, distance traveled,
and velocity in an open field were determined. The results were expressed as mean +
S.E.M.The number of animals is listed under each column. Top, t = 0.873, p = 0.4079; mid-
dle, t=10.642, p=0.5389; bottom, t=3.058, p=0.0156. *p<0.05 when compared to
saline-injected controls (Student's t-test),

3.3. Monoamines and their metabolites

LH rats showed a significant increase in 5-HT turnover in the orbi-
tofrontal cortex, and the alteration remained unchanged after treat-
ment with minocycline (F (2,26) =5.542, P=0.0099; Table 1). No
alterations were found in 5-HT levels, 5-HIAA levels, and 5-HIAA/5-
HT ratio in the medial prefrontal cortex, nucleus accumbens, striatum,
hippocampus, or amygdala (Table 1).

No changes in the levels of DA, DOPAC, or HVA, or in the
(DOPAC +HVA)/DA ratio were seen in the medial prefrontal cortex,
orbitofrontal cortex, nucleus accumbens or striatum (Table 2). On the
contrary, subsequent treatment with minacycline significantly increased
levels of DA and DOPAC in the amygdala when compared with LH rats
(DA, F (2,25) =4.189, P=0.0270; DOPAC, F (2,25)=15.290, P=0.0121;
Table 2).

LH rats did not show any alterations in the NE levels, MHPG levels
or MHPG/NE ratios in the medial prefrontal cortex, orbitofrontal
cortex or nucleus accumbens (Table 3).

3.4. BDNF levels

LH rats showed a significantly decreased level of BDNF in the
hippocampus compared with control rats (Fig. 3). However, subse-
quent treatment with minocycline did not result in any improvement
in the decreased expression of BDNF (Fig. 3).

4. Discussion

The primary finding of the present study is that infusion of mino-
cycline into the cerebral ventricle produced antidepressant-like
effects in LH rats, an animal model of depression. The open field test
showed a decrease in velocity and no alterations in distance traveled

Table 1
Levels of serotonin metabolism and its turnover in brain regions.

5-HT 5-HIAA 5-HIAA/5-HT
<Medial prefrontal cortex>
Control n=11 0.33040.021 0.455 4+ 0.021 1414 £ 0.080
LH n=10 0.315:£0.024 0.436+0.015 144940114
LH 4+ Mino n=9 0.34040.021 0.496 + 0.023 1.478 +0.057
<Orbitofrontal cortex>
Control n=11 0.463 4 0.021 0.371+0.013 0.762 +0.030 )
LH n=10 0.4304-0.027 0418 £0.020 0.920 40,042
LH + Mino n=10 0.45540.015 0.402 +0.016 0.88640.033"
<Nucleus accumbens>
Control n=11 0.395+0.025 0.700+ 0.024 1.825+40.101
LH n=10 0.4394-0.047 0.756 4+ 0.056 1.793 £ 0.092
LH + Mino n=10 0.3914-0.037 0.738 +0.020 1.900+0.180
<Striatum>
Control n=11 0.34240.019 0.628 4:0.028 1.857 £0.067
LH n=10 0.3584-0.033 0.644 + 0.041 1.843 £0.076
LH + Mino n=10 0.33340.028 0.667 +£0.025 2.082+0.116
<Hippocampus>
Control n=11 0.2894-0.023 0.509 £ 0.031 1.89140.086
LH n=10 0.3114+0.013 0.5124+0.019 1.667 £0.083
LH + Mino n=10 0.267+0.018 0.485+0.017 1.964+0.149
<Amygdala>
Control n=10 0.665 +0.058 0.776 + 0.024 1.242 4+ 0.099
LH n=9 0.6294-0.042 0.7004+0.019 1.146 + 0.068
LH + Mino n=10 0.6174-0.041 0.7824:0.046 1.291 4 0.068

Monoamine level (ng/mg tissue) and turnover are indicated as mean 4 SEM.
Sample numbers are indicated in each row.
5-HT, serotonin; 5-HIAA, 5-hydroxyindoleacetic acid.

* P<0.05 when compared to control animals (ANOVA followed by Tukey's test).
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Table 2
Levels of dopamine metabolism in brain regions.
DA DOPAC HVA (DOPAC + HVA)/DA

<Medial prefrontal cortex>
Control n= 0.168 £ 0.011 0.072 £ 0.007 0.106 4:0.007 1.066 4 0.054
LH n= 0.1404+0.017 0.062 +0.005 0.092 +0.002 1.1104+0.080
LH 4 Mino n= 0.134+0.012 0.056 + 0.006 0.110£0.011 1.248 +0.084
<Orbitofrontal cortex>
Control n=11 0.331+0.088 0.10140.025 0.139+0.020 1.06340.142
LH n=10 0.2524:0.079 0.098 £ 0.022 0.1324+0.014 1.420+0.271
LH +Mino n=10 0.2744+0.076 0.081£0.016 0.1294-0.015 1.1354:0.183
<Nucleus accumbens>
Control n=11 7.23940.245 2.66440.188 0.953 3-0.064 0.503£0.034
LH n=10 6.908 -+ 0.452 2.78040.223 0.908 +0.063 0.53740.021
LH + Mino n=10 749210442 3.0134£0.202 1.108 £0.117 0.553 +0.033
<Striatum>
Control n=11 11.176 £0.384 2799+ 0.168 1.127 £0.037 0.351+0.012
LH n=10 9.9014+0.619 24244 0.188 1.0384+0.073 0.348 +0.010
LH +Mino n=10 10.235+0.456 2.548 +0.141 1.1694:0.065 0.363+0.011
<Amygdala> .
Control n=10 1.001 +0.102 0.293 £ 0.031 0.157+0.012 0.494 4+ 0.059
LH n=9 0.67940.131 0.176 +0.029 0.11640.015 0.501 +0.101
LH + Mino n=9 1.385 4 0.250% 0.3460.048" 0.186£0.035 0.41140.025

Monoamine level (ng/mg tissue) and turnover are indicated as mean:: SEM.

Sample numbers are indicated in each row.

DA, dopamine; DOPAC, 3,4-dihydroxyphenylacetic acid; HVA, homovanillic acid.
# P<0.05 when compared to LH rats (ANOVA followed by Tukey's test).

or time spent in the center, suggesting that the antidepressant-like
effects of minocycline may not be attributed to enhanced locomotion.

Second, LH rats showed decreased levels of DA and DOPAC in the
amygdala, and minocycline significantly increased the levels of DA
and DOPAC in the amygdala when compared with untreated LH rats.
Previous studies showed that manipulation of the amygdala exerted
antidepressant-like effects (Wallace et al, 2004; Shirayama et al.,
2011). Therefore, the mechanism of minocycline could be attributable
to a significant alteration in DA and DOPAC in the amygdala.

Third, serotonin turnover (5-HIAA/5-HT ratios) was statistically
increased in the orbitofrontal cortex of LH rats when compared with
control rats, but the increases in 5-HT turnover remained unchanged
after treatment with minocycline. This is in partial agreement with
the recent study in which depressed patients exhibited higher 5-HT
turnover levels in plasma than normal controls (Mitani et al., 2006).
It demonstrates that LH contributed to alteration of the 5-HT systems
in the orbitofrontal cortex. The orbitofrontal cortex is involved in
motivation, which is lowered in depression. This is compatible with

Table 3
Levels of norepinephrine in brain regions.
NE MHPG MHPG/NE

<Medial prefrontal cortex>
Control n=11 0.3344:0.009 0.19940.012 0.599+0.038
LH n=10 0.3234:0.008 0.192+0.013 0.603 4 0.050
LH + Mino n=9 0.3104+0.019 0.233 4 0.025 0.691 + 0.067
<Orbitofrontal cortex>
Control n=11 0.263 4 0.008 0.177 £ 0.011 0.682 +0.053
LH n=10 0274 40,005 0.176 £ 0.016 0.63540.051
LH + Mino n=10 0.25340.011 0.20940.022 0.7514:0.061
<Nucleus accumbens>
Control n=10 0.33540.029 0.1814+0.019 0.565 4 0.081
LH n=9 0.35440.038 0.1944-0.028 0.595+0.130
LH + Mino n=9 0.388 4 0.069 0.199 4+ 0.028 0.549+0.135

Monoamine level (ng/mg tissue) and turnover are indicated as mean + SEM.
Sample numbers are indicated in each row.
NE, norepinephrine; MHPG, 3-methoxy-4-hydroxyphenylglycol.

a working hypothesis that antidepressant drugs, especially selective
serotonin uptake inhibitors, exert their beneficial effects through
activating serotonergic neural transmission (Jans et al., 2007). Further
study will be needed to elucidate the role of 5-HT in the antidepres-
sant effects of minocycline.

We did not find statistically significant results for NE. However,
a recent study showed that minocycline administration reduced
immobility in the forced swim test (an antidepressant-screening
model) by increasing climbing (Molina-Hernandez et al., 2008), indi-
cating that minocycline exerts an antidepressant-like effect through
the NE system because a previous study on antidepressants indicated
that increased climbing reflects the NE system whereas increased
swimming reflects the 5-HT system in the forced swim test (Lucki,
1997). Further studies will be needed to elucidate the involvement
of NE systems in LH rats during stressful conditions.

A previous study showed that Wistar-Kyoto rats, which are prone
to develop stress-induced anhedonia, exhibited increased DA and 5-
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Fig. 3. Effects of minocycline on the BDNF expression in the hippocampus of LH rats.
Minocycline (Mino) or saline (SAL) was administered via bilateral infusion into the
cerebral ventricle of LH rats, and 4 days later, BDNF expression was examined. BDNF
level (% control) are indicated as mean = SEM. Sample numbers are indicated in each
row. F (2, 28) = 6.042, p=0.0066. *p<0.05, **p<0.01 when compared with controls
(ANOVA followed by Tukey's test).
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HT turnover in the nucleus accumbens under the steady state and in
the prefrontal cortex under a stressful condition, although normal
control rats did not show any alterations in DA or 5-HT turnover in
the steady state or under a stressful condition (De La Garza and
Mahoney, 2004). Therefore, LH rats might show further alterations in
the levels of monoamines, metabolites and turnover under stressful
conditions, and treatment with minocycline might block the monoam-
inergic changes induced by the stressful condition. Future studies will
be needed to examine this question.

Finally, BDNF levels in the hippocampus of LH rat were lower than
those of control rats, but the reduction in BDNF expression remained
unchanged after treatment with minocycline. A reduction of BDNF in
the hippocampus of LH rats was the expected result. A recent study
on the effects of minocycline during in vitro hypoxia showed that
minocycline suppressed the microglial activation and up regulation
of pro-inflammatory mediators, but did not affect the hypoxic activa-
tion of BDNF (Lai and Todd, 2006). Microglia may supply neurons
with BDNF (Kempermann and Neumann, 2003). Considering these
results together, we may reasonably exclude the involvement of
BDNF in the antidepressant-like effect of minocycline.

In a recent study, minocycline was effective as an antidepressant
drug in an animal model of inflammatory-associated depressive
disorders induced by lipopolysaccharide (LPS) (O'Connor et al.,
2009). Pro-inflammatory cytokines, mainly interferony (IFN-vy) and
TNF-e, induce Indoleamine 2,3-dioxygenase (IDO), which degrades
tryptophan along the kynurenine pathway. Minocycline blocks
IFN-y-mediated protein kinase C phosphorylation and nuclear trans-
location of protein kinase C, which is necessary for IDO activation. The
relationship between depression and inflammation remains to be
elucidated. Future studies need to address the involvement of micro-
glia in the antidepressant-like effect of minocycline.

In conclusion, infusion of minocycline into the cerebral ventricle of
LH rats produced antidepressant-like effects, although infusion of
minocycline into the cerebral ventricle of naive rats did not increase
locomotor activity in the open field tests. LH rats showed significant in-
creased 5-HT turnover in the orbitofrontal cortex and decreased levels
of BDNF in the hippocampus compared with control rats. However,
these alterations in 5-HT turnover and BDNF expression remained
unchanged after treatment with minocycline. Taken together, these
results suggest that minocycline may be a therapeutic drug for the
treatment of depression.
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Abstract

Rationale Methamphetamine (METH) is a powerfully addic-
tive stimulant associated with serious health conditions. Accu-
mulating evidence suggests a role of oxidative stress in
METH-induced behavioral abnormalities. Sulforaphanc
(SFN), found in cruciferous vegetables, is a potent antioxidant.
It is of interest to determine whether SFN can attenuate behav-
joral and neuropathological changes associated with METH
exposure.

Objectives This study was undertaken to examine the
effects of SFN on behavioral changes and dopaminergic
neurotoxicity in mice exposed to METH.

Methods The effects of SFN on acute hyperlocomotion and
the development of behavioral sensitization induced by
the administration of METH were examined. Levels of
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dopamine (DA) and its major metabolite 3,4-dihydroxyphenyl
acetic acid (DOPAC) in the striatum were measured. In addi-
tion, DA transporter (DAT) immunoreactivity was also
performed.

Results Pretreatment with SFN at 1, 3, and 10 mg/kg elicited
a dose-dependent attenuation of acute hyperlocomotion in
mice, after a single administration of METH (3 mg/kg). The
development of behavioral sensitization after repeated admin-
istrations of METH (3 mg/kg/day, once daily for 5 days) was
significantly reduced by pretreatment with SFN (10 mg/kg).
In addition, the lowering of DA levels and DOPAC as
well as DAT immunoreactivity in the striatum, usually
seen after repeated administration of METH, was signif-
icantly attenuated by both pretreatment and the subsequent
administration of SFN. Furthermore, SFN significantly re-
duced microglial activation in the striatum after repeated
exposure to METH.

Conclusion Tt is therefore likely that SFN can be a useful
drug for the treatment of signs associated with METH abuse
in humans.

Keywords Sulforaphane - Dopamine - Methamphetamine -
Microglia - Neurotoxicity - Sensitization

Abbreviations

METH  Methamphetamine

SFN Sulforaphane

DA Dopamine

DOPAC 3,4-Dihydroxyphenyl acetic acid

DAT Dopamine transporter

PET Positron emission tomography

Nrf2 NF-E2-related factor-2

ARE Antioxidant responsive element

HPLC High performance liquid chromatography
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Introduction

Abuse of methamphetamine (METH) is an extremely seri-
ous and growing global problem, affecting the USA and
Asian countries such as Japan, South Korea, Thailand, Phil-
ippines. and China (National Institute on Drug Abuse 2002;
Yamamoto 2004; Barr et al. 2006; Hashimoto 2007; United
Nations Office on Drug Use and Crime (UNODC) 2008;
Gonzales et al. 2010; Chen et al. 2010; Colfax et al. 2010).
METH is a powerfully addictive stimulant associated with
serious health conditions, including memory loss, aggres-
sion, psychotic signs, and brain damage (Ujike and Sato
2004; Hashimoto 2007; Chen et al. 2010). However, there is
currently no pharmacological treatment for the wide range
of signs associated with METH exposure (Hashimoto 2007;
Chen et al. 2010).

Repeated administration of METH is known to induce
dopaminergic neurotoxicity in rodents and non-human pri-
mates, by producing long-term depletion of dopamine (DA)
and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC),
as well as reducing the density of DA transporter (DAT) in the
striatum (Davidson et al. 2001; Cadet et al. 2003; Fukami et al.
2004; Koike et al. 2005; Zhang et al. 2006; Hashimoto et al.
2004; 2007; Hagiwara et al. 2009). Furthermore, it has been
reported that levels of dopamine nerve terminal markers, DA,
tyrosine hydroxylase, and DAT are decreased in the striatam
of post mortem brains (nucleus accumbens, caudate, putamen)
of chronic METH users (Wilson et al. 1996). Moreover, brain
imaging studies using PET show that the density of DAT in the
caudate/putamen and nucleus accumbens of METH users is
significantly lower than that of healthy controls (Sekine et al.
2001; Volkow ct al. 2001). Although METH-induced neuro-
toxicity at dopaminergic terminals is well documented, the
precise mechanisms of METH-induced neurotoxicity remain
unknown (Cadet et al. 2003; Hashimoto 2007; Chen et al.
2010).

Multiple lines of evidence implicate oxidative stress in
the METH-induced behavioral and neuropathological
changes that damage brain dopaminergic neurons (Agikgdz
et al. 2001; Fukami et al. 2004; Miyazaki et al. 2006;
Hashimoto et al. 2004, 2007; Cadet et al. 2007; Yamamoto
and Raudensky 2008; Chen et al. 2010). The potent antiox-
idant sulforaphane (SFN: l-isothiocyanato-4-methylsulfi-
nylbutane) is an organosulfur compound derived from a
glucosinolate precursor found in cruciferous vegetables
such as broccoli, Brussels sprouts, and cabbage (Zhang et
al. 2005; Juge et al. 2007). A number of studies show that
SFN is a very potent chemopreventative agent in numerous
animal carcinogenesis and cell culture models (Juge et al.
2007 Cheung and Kong 2010; Kwak and Kensler 2010).
The protection afforded by SFN is thought to be mediated
via activation of the NF-E2-related factor-2 (Nrf2) pathway
and subsequent up-regulation of phase Il detoxification
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enzymes and antioxidant proteins, through an enhancer se-
quence referred to as the electrophilic responsive element or
antioxidant responsive element (ARE) (Itoh et al. 2004;
Kang et al. 2005; Cheung and Kong 2010; Kwak and
Kensler 2010). Furthermore, SFN is known to exert neuro-
protective effects against neurotoxicity caused by 6-
hydroxydopamine, tetrahydrobiopterin, and ischemia/reperfu-
sion, again through activation of the Nrf2—-ARE pathway (Han
etal. 2007; Danilov et al. 2009; Siebert et al. 2009; Ping et al.
2010). It has been reported that SFN increases Nrf2 protein
levels in the striatum and affords protection against methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced death of
nigral dopaminergic neurons (Jazwa et al. 2011). Taken to-
gether, it is likely that as a potent Nrf2 activator, SFN could
protect against the death of dopaminergic neurons in the
brains of Parkinson’s disease patients suffering from oxidative
stress-related neuropsychiatric diseases.

Given the potent antioxidant effects of SFN, it is of
interest to determine whether SFN can attenuate behavioral
and neuropathological changes associated with METH ex-
posure. In this study, we investigated the effects of SFN on
acute hyperlocomotion and the development of behavioral
sensitization induced by the administration of METH. We
also examined the effects of SFN on METH-induced neu-
rotoxicity in the dopaminergic neurons of the mouse
striatum.

Materials and methods
Animals

Male Balb/c AnNCrICrlj (8 weeks old, 23-30 g body weight
at the beginning of the experiment; Charles River Japan Inc.,
Tokyo, Japan) mice were housed under a 12-h light/12-h dark
cycle (lights on from 07:00 to 19:00 hours) at room temper-
ature (22+2°C; humidity, 55+5%) with free access to food
and water. Balb/c mice were used, since this strain has a
known sensitivity to METH-induced neurotoxicity (Kita
et al. 1998; Koike et al. 2005; Zhang et al. 20006;
Hagiwara et al. 2009). Experimental protocols were approved
by the Institutional Animal Care and Use Committee of
Chiba University.

Drugs

METH hydrochloride (d-methamphetamine; Dainippon
Pharmaceutical Ltd., Osaka, Japan) was dissolved in phys-
iological saline, and (R.S)-sulforaphane (SFN) (LKT Labo-
ratories, Inc., St Paul, MN, USA) was dissolved in distilled
water including 10% com oil. All other chemicals were
purchased from commercial sources. The dose of METH
was expressed as a hydrochloride salt.
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Behavioral evaluations

Effects of SFN on hyperlocomotion after a single
administration of METH

In the acute behavioral experiments, the initial period of
acclimation was 60 min. Either vehicle (10 ml/kg) or SFN
at 1, 3, or 10 mg/kg was administered intraperitoneally (i.p.)
to mice. Thirty minutes after the first injection, mice were
injected subcutancously (s.c.) with METH (3.0 mg/kg) or
vehicle (10 ml/kg). Locomotor activity was measured over
3.5 h using an animal movement analysis system (SCANET
SV-10; Melquest, Toyama, Japan), as reported previously
(Zhang et al. 2000; Hagiwara et al. 2009).

Effects of SEN on the development of behavioral
sensitization after repeated administration of METH

Forty mice were divided into the following four groups: a
vehicle (10 ml/kg, i.p.)+vehicle (10 ml/kg, s.c.) group; a
vehicle (10 ml/kg, i.p.)*METH (3 mg/kg, s.c.) group; a SFN
(10 mg/kg, i.p.)+METH (3 mg/kg, s.c.) group; and a SFN
(10 mg/kg, i.p.)+vehicle (10 ml/kg, s.c.) group. The interval
between the first pretreatment injection and second test injec-
tion was 30 min. In this study, we used a 10-mg/kg dose of
SFN in mice, as this was the most effective dose in the METH-
induced hypetlocomotion experiments. After the second test
injection, mice were returned to their home cages. This cycle of
injections was repeated for each animal, on five consecutive
days. One week after the final treatment, each mouse was
given a low dose of METH (1 mg/kg, s.c.), and locomotion
was measured over 3 h (including 1 h habituation) using an
animal movement analysis system (SCANET SV-10), as
described above (Zhang et al. 2006; Hagiwara et al. 2009).

METH-induced dopaminergic neurotoxicity in the striatum

We examined the effects of pretreatment and subsequent
treatment with SFN on METH-induced neurotoxicity in
mice. Thirty minutes after pretreatment injections of SFN
(10 mg/kg, i.p.) or vehicle (10 mi/kg, i.p.), mice received
three injections of METH (3 mg/kg, s.c.) or vehicle (10 ml/kg,
s.c.) at 3-h intervals. Rectal temperatures were measured using
a TD-320 thermometer coupled to a rectal probe (Shibaura
Electronics Co., Ltd., Saitama, Japan), and temperatures were
recorded 30 min before pretreatment injections and at 1, 4, and
7 h after the first injection of METH. Then, vehicle (10 mi/kg,
i.p.) or SFN (10 mg/kg, i.p.) was administered to the mice 12 h
after the first administration of vehicle or SFN (day 1). The
mice received two daily (12-h intervals) injections of SFN
(10 mg/kg, i.p.) or vehicle (10 ml/kg, i.p.) for two consecutive
days (days 2 and 3). In this experiment, we used a treatment
schedule to examine both prophylactic and therapeutic effects

of SFN. Mice were sacrificed 3 days after the administration
of METH for the measurement of DA and DOPAC levels. The
brains were quickly removed and the striatum was dissected
away on an ice-cold glass plate. Samples were stored at —80°C
until use.

Measurement of DA and DOPAC by HPLC

Levels of DA and DOPAC in the mouse striatum were
measured using high performance liquid chromatography
(HPLC), coupled with electrochemical detection as reported
previously (Koike et al. 2005; Zhang et al. 2006; Hagiwara
et al. 2009). Briefly, tissue samples were homogenized in
0.2 M perchloric acid (HCIOy), containing 100 pM diso-
dium EDTA and 100 ng/ml isoproterenol (internal stan-
dard), and were then centrifuged at 20,000xg for 15 min
at 4°C. Supernatants were filtered through a 0.45-pum pore
membrane (Millex-LH, 4 mm; Millipore, Tokyo, Japan).
The HPLC system consisted of a liquid chromatograph
pump (EP-300, Eicom, Kyoto, Japan), a degasser (DG-
300, Eicom), a reversed phase column (Eicompak SC-
50DS 3.0% 150 mm; Eicom), an ECD-300 electrochemical
detector (Eicom), and a data processor (EPC-300, Eicom).
The mobile phase consisted of 0.1 M acetate—citric acid
buffer (pH 3.5) containing 16% methanol, 5 mg/l disodium
EDTA, and 190 mg/l sodium octyl sulfate.

Immunohistochemistry for DAT and MACT in the brain

Immunohistochemistry on the mouse brain sections was
performed as reported previously (Koike et al. 2005; Zhang
et al. 2006; Hagiwara ct al. 2009). Three days after the
administration of METH (3 mg/kgx 3 at 3-h intervals), mice
were anesthetized with sodium pentobarbital (50 mg/kg)
and perfused transcardially with 10 ml of isotonic saline,
followed by 40 ml of ice-cold, 4% paraformaldehyde in
0.1 M phosphate buffer (pH 7.4). Brains were removed from
the skulls and postfixed overnight at 4°C in the same fixa-
tive. For the immunohistochemical analysis, 50-um-thick
serial, coronal sections of brain tissue were cut in ice-cold,
0.01 M phosphate buffered saline (pH 7.5) using a vibrating
blade microtome (VT1000S, Leica Microsystems AG, Wet-
zlar, Germany). Free-floating sections were treated with
0.3% H,0, in 50 mM Tris—HClI saline (TBS) for 30 min
and were blocked in TBS containing 0.2% Triton X-100
(TBST) and 1.5% normal serum for 1 h at room tempera-
ture. The samples were then incubated for 36 h at 4°C with
rat anti-DAT antibody (1:10,000, Cat. no: MAB 369, Chem-
icon International Inc., Temecula, CA, USA) or rat anti-
MAC1 (CD11b; activated microglia) antibody (1:1,000,
Cat. no: MCA74G, Serotec Ltd., Oxford, UK). The sections
were washed twice in TBS and then processed using the
avidin-biotin—peroxidase method (Vectastain Elite ABC,
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Vector Laboratories, Inc., Burlingame, CA, USA). Sections
were incubated for 5 min in a solution of 0.15 mg/ml
diaminobenzidine containing 0.01% H,0,. Then, sections
were mounted on gelatinized slides, dehydrated, cleared,
and coverslipped under Permount® (Fisher Scientific, Fair
Lawn, NJ, USA). The sections were imaged, and the stain-
ing intensity of DAT immunoreactivity in the anterior
regions of the striatum was analyzed using a light micro-
scope equipped with a CCD camera (Olympus 1X70) and
the SCION IMAGE software package. MACI1 immunore-
activity was quantified in the anterior regions (0.018 mm?)
of the striatum, in a blinded manner.

Statistical analysis

Data are presented as the mean=standard error of the mean
(SEM). The results of the behavioral study and rectal temper-
ature measurements were analyzed by two-way analysis of
variance (ANOVA) for repeated measures, with treatment as
the between-subjects factor and time as the within-subjects
factor. When appropriate, group means at individual time
points were compared by one-way ANOVA, and post hoc
comparisons were performed using the Bonferroni/Dunn test.
Levels of DA and DOPAC, as well as the densities of DAT
immunoreactivity and MAC1 (activated microglia)-immuno-
reactive staining cells and the behavioral study, were analyzed
by one-way ANOVA, followed by the post hoc Bonferroni/
Dunn test for multiple comparisons. For all analyses, p values
of less than 0.05 were considered statistically significant.

Results

Effects of SFN on hyperlocomotion in mice after a single
administration of METH

A single administration of METH (3 mg/kg, s.c.) markedly
increased locomotion in mice. Two-way ANOVA analysis
revealed significant differences among the six groups stud-
ied [F (5, 100)=11.18, p<0.0001]. Pretreatment with SFN
(at 1, 3, or 10 mg/kg, i.p., 30 min before the administration
of METH) attenuated METH-induced hyperlocomotion in
mice, in a dose-dependent manner (Fig. 1). High dose of
SFN (10 mg/kg) significantly attenuated METH-induced
hyperlocomotion in mice (Fig. 1). In contrast, SFN
(10 mg/kg) alone did not alter locomotion in mice when
compared to vehicle controls (Fig. 1).

Effects of SFN on the development of behavioral
sensitization after repeated administration of METH

Repeated administration of METH (3 mg/kg/day, once daily
for five consecutive days) increased METH (1 mg/kg)-
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Fig. 1 Effects of SFN on hyperlocomotion in mice after a single
administration of METH. Thirty minutes after i.p. injection of vehicle
(10 ml/kg) or SFN (1, 3, or 10 mg/kg), METH (3 mg/kg) or vehicle
(10 ml/kg) was administered s.c. to the mice. Behavior (locomotion) in
the mice was evaluated. Each value is the mean+SEM (n=10-11 per
group). *p<0.05, **p<0.01 as compared with the vehicle+METH
group (Bonferroni/Dunn method)

induced hyperlocomotion in mice previously treated with
METH, compared with the results obtained from the control
(vehicle+vehicle) group. These results indicated the devel-
opment of behavioral sensitization by repeated treatment
with METH (Fig. 2). Two-way ANOVA analysis revealed
significant differences among the four groups [F (3, 51)=
5.22, p<0.001]. The post hoc analysis showed that repeated
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Fig. 2 Effects of SFN on the development of behavioral sensitization
in mice after the repeated administration of METH. Vehicle (10 mi/kg)+
vchicle (10 ml/kg) group, vehicle (10 mlkg)+METH (3 mg/kg) group,
SEN (10 mg/kg)+METH (3 mg/kg) group, and SFN (10 mg/kg)+vehicle
(10 ml/kg) group were treated daily as noted for five consecutive days.
Seven days after the final administration of METH, a lower dose of
METH (1 mg/kg, s.c.) was administered to all mice. Behavior (locomo-
tion) in the mice was evaluated. Each value is the mean+SEM (n=10 per
group). *p<0.05, **p<0.01 as compared to the vehicle+ METH group
(Bonferroni/Dunn method)



