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Fig. 2. Online accuracy of subject groups (SCI and controls) for each condition
(white/gray and green/blue). Squares, control group; circles, SCI group. Error bars
indicate S.E.M.

Table 2
Offline accuracy, bit rate and letter/min during the tenth, eighth, and fifth sequences
in SCI subjects.

Sequence (times) White/gray Green/blue
Accuracy (%) bit/min Accuracy (%) bit/min
10 88.0 9.8 90.7 10.2
8 80.4 109 90.4 12.8
5 77.2 16.2 81.7 17.5

mean accuracy was 77.3% for the control group and 88.0% for the
SCI group. Under the green/blue condition, the mean accuracy
was 86.0% and 90.7% for control and SCI groups, respectively
(Fig. 2). For the SCI group, the mean bit rates (Wolpaw et al.,
2002) were 9.8 bit/min and 10.2 bit/min under the white/gray
and green/blue conditions, respectively (Table 2). Note that the
time interval between character selections was not included for
the bit rate calculation. The mean bit rates for controls were 8.4
bit/min and 9.6 bit/min for the white/gray and green/blue condi-
tions, respectively. No significant correlations were observed be-
tween the accuracy or bit rate of SCI subjects and demographic
characteristics (age, time since injury, ASIA impairment scale
score; Spearman’s rank correlation coefficient, p > 0.05).

We used a two-way repeated-measure ANOVA to examine the
effects of group (SCI vs. control) and of condition (white/gray vs.
green/blue) on online accuracy. ANOVA revealed a main effect of
flicker matrix condition (F(1,9)=5.2, p<0.05). A trend toward
greater accuracy in the SCI group compared to controls was ob-
served; however, no main effect of group (F(1,9)=1.2, p=0.30)
and no significant interaction (F(1,9)=0.61, p=0.45) was found.
These results did not basically change if bit rate was substituted
for accuracy.

4.2. Offline evaluation

Fig. 3 shows the results of the offline analysis of subject groups
for each condition. We conducted a three-way repeated-measure
ANOVA with group (SCI vs. controls), condition (white/gray vs.
green/blue), and sequence number (1-10) as factors. Main effects
of condition (F(1,9)=9.4, p<0.05) and sequence (F(9,81)=93.2,
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Fig. 3. Offline evaluation for each sequence. Mean accuracy of the control group
and SCI group are plotted using squares and circles; the dotted line indicates white/
gray, and the solid line indicate green/blue conditions. Accuracy in the first through
seventh sequences was significantly lower than that in the tenth sequence, as
revealed by post hoc testing (p < 0.05, Bonferroni correction). Error bars indicate
S.E.M.

p<0.001) were significant, but no main effect of group
(F(1,9)=1.9, p=0.20) and no significant interaction (F(9,81)=
0.89, p = 0.54) was found. Thus, the P300 BCI with the green/blue
flicker matrix is effective not only in able-bodied subjects but also
in individuals with cervical SCI. Accuracy in the first through sev-
enth sequences was significantly lower than that in the tenth se-
quence, as revealed by post hoc testing (p<0.05, Bonferroni
correction).

In the SCI group, the mean online bit rate was 9.8 bit/min and
10.2 bit/min for the white/gray and green/blue conditions, respec-
tively, as calculated from the tenth sequence accuracy (Table 2). In
the fifth sequence, the mean accuracy of the SCI group exceeded
70% under both conditions (77.2% for white/gray, 81.7% for
green/blue), and the mean bit rate was 16.2 bit/min and 17.5 bit/
min for the white/gray and green/blue conditions, respectively (Ta-
ble 2). In the fifth sequence, the bit rate was significantly higher
than in the tenth sequence, but accuracy was significantly lower
under both conditions (paired t-test, p < 0.05). By contrast, in the
eighth sequence, accuracy was not significantly different from that
in the tenth sequence (80.4% for white/gray, 90.4% for green/blue),
and the bit rate was 10.9 bit/min and 12.8 bit/min for white/gray
and green/blue, respectively. This bit rate was significantly greater
than that in the tenth sequence for green/blue (paired t-test,
p <0.001), but not for white/gray (paired t-test, p > 0.05). Thus,
the green/blue flicker matrix was more effective than the white/
gray flicker matrix by the eighth sequence.

5. Discussion

We investigated the accuracy of P300-based BCI performance in
individuals with chronic cervical SCI using white/gray and green/
blue flicker matrices. SCI patients successfully controlled our BCI
system without significant training, and the green/blue flicker ma-
trix provided higher accuracy than the white/gray matrix.

5.1. Effect of the color combination in P300 BCI

A number of studies have attempted to increase P300 BCI per-
formance accuracy, primarily by examining classification methods
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(Donchin et al.,, 2000; Kaper et al.,, 2004; Krusienski et al., 2006;
Bashashati et al., 2007; Hoffmann et al., 2008). Other studies have
examined modifying matrix size and inter-stimulus intervals (Sell-
ers et al., 2006), type of flash (Guger et al., 2009; Townsend et al.,
2010) and background colors (Salvaris and Sepulveda, 2009). We
recently reported that a green/blue luminance and chromatic flick-
er matrix provided higher accuracy than a white/gray luminance
flicker matrix and a green/blue isoluminance flicker matrix (Tak-
ano et al,, 2009b). In the present study, the mean accuracy among
both able-bodied and cervical SCI subjects was significantly higher
under the green/blue condition than under the white/gray
condition. No accuracy difference between SCI and able-bodied
groups was found.

Online performance of the SCI group reached 90% accuracy and
a bit rate of 10.2 bit/min (1.9 letter/min) under the green/blue con-
dition, comparable to previous reports studying disabled subjects
(Piccione et al., 2006; Sellers and Donchin, 2006; Hoffmann et al.,
2008; Nijboer et al., 2008). This performance is thought to be suf-
ficient for satisfactory use of a BCl, which requires greater than 70%
accuracy (Sellers et al., 2006; Kiibler and Birbaumer, 2008; Nijboer
et al., 2008). Offline analysis showed that number of sequences can
be reduced from 10 to 8 while preserving accuracy and signifi-
cantly increasing the bit rate. This effect was not apparent under
the white/gray condition. Thus, the green/blue flicker matrix was
more effective for fast communication.

5.2. BCI performance in SCI subjects

P300-based BCI has been examined in SCI subjects in two previ-
ous reports of one cervical SCI patient each (Piccione et al., 2006;
Hoffmann et al., 2008). One patient controlled a four-choice P300
BCI with an online accuracy of 75.7% (Piccione et al., 2006), and
the other controlled a six-choice P300 BCI with an offline accuracy
of 100% (Hoffmann et al., 2008). The main BCI method used with
SCI subjects is sensorimotor rhythm (SMR) for binary choice
(Pfurtscheller et al., 2000; Krausz et al., 2003; McFarland et al.,
2005; Kauhanen et al., 2007, Kiibler and Birbaumer, 2008). Kauha-
nen et al. (2007) reported that the mean online accuracy for bin-
ary-choice SMR BCl with five cervical SCI subjects was 48%.

Although the brain remains intact in SCI subjects, the deafferen-
tation of sensory input that occurs after SCI can result in brain reor-
ganization and altered scalp EEG activity compared with able-
bodied controls (Green et al., 1998; Tran et al., 2004; Herbert
et al.,, 2007). Accordingly, SMR BCI, which uses beta or mu waves
from sensory motor areas, would be more affected by this reorga-
nization. Indeed, Kauhanen et al. (2007) reported that the binary-
choice SMR BCI performance of five cervical SCI subjects was worse
than that of able-bodied subjects (not matched for age and sex). In
the present study, individuals with cervical SCI controlled the P300
BCI with similar accuracy to able-bodied individuals. Although the
data are limited, the P300 BCI may be easier for SCI subjects to use.

5.3. Toward clinical applications

For practical use of the P300 BCI, the system has to be accurate,
fast, and reliable. We used 10 sequences for EEG data acquisition
for online analyses, but offline analyses showed that the green/blue
flicker matrix was more effective than the white/gray flicker ma-
trix by the eighth sequence. Further reducing the number of se-
quences to five still provided greater than 70% accuracy with a
higher bit rate. The mean accuracy at the fifth sequence became
lower than that at the tenth sequence, so if the users needed to
complete their sentences by correcting misspelled characters, it
would take a longer time (Townsend et al., 2010). The sequence
times may be determined by individual user preference, as some
prefer to control devices quickly with lower fidelity, whereas oth-
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ers prefer to communicate precisely and more slowly (Sellers and
Donchin, 2006).

The severity of the patient impairment may also have implica-
tions for practical BMI use, Kiibler and Birbaumer (2008) reviewed
a number of BCI studies using P300, SMR, and slow cortical poten-
tial (SCP) and reported a relationship between physical impair-
ment [subdivided into minor, moderate, major, locked-in state
and complete locked-in state (CLIS)] and BCI performance. When
they included CLIS patients, they found a strong correlation be-
tween impairment and BCI performance; however, after removing
the CLIS patients, the correlation disappeared. Nijboer investigated
the efficacy of a P300 BCI in eight advanced ALS patients (Nijboer
et al., 2008) and showed that online BCI performance was not cor-
related with the degree of disability according to the ALS Func-
tional Rating Scale (Cedarbaum and Stambler, 1997). Thus, for
patients with ALS, it is suggested that BCI be applied before the on-
set of CLIS (Birbaumer, 2006; Kiibler and Birbaumer, 2008). In the
present study, we found no correlation between performance and
ASIA impairment scale score (complete or incomplete) in SCI pa-
tients, nor did we observe a correlation between performance
and time since injury. We previously reported that the BMI perfor-
mance of subacute SCI subjects, whose time since injury was less
than a year, was worse than that of chronic SCI subjects (Ikegami
et al., 2009). Further investigation is required to determine the
optimal time for applying BCI to individuals with SCL

In conclusion, the P300 BCI system for environmental control
and communication with a green/blue flicker matrix provided bet-
ter accuracy than that with a white/gray flicker in individuals with
cervical SCI, and future studies may aid the development of practi-
cal BCI for these individuals to expand their range of activity and
communication.
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The brain—machine interface (BMI) or brain—computer interface is a new interface technology
that uses neurophysiological signals from the brain to control external machines or computers.
This technology is expected to support daily activities, especially for persons with disabilities.
To expand the range of activities enabled by this type of interface, here, we added augmented
reality {AR) to a P300-based BMI. In this new system, we used a see-through head-mount
display (HMD) to create control panels with flicker visual stimuli to support the user in areas
close to controllable devices. When the attached camera detects an AR marker, the position and
orientation of the marker are calculated, and the control panel for the pre-assigned appliance is
created by the AR system and superimposed on the HMD. The participants were required to
control system-compatible devices, and they successfully operated them without significant
training. Online performance with the HMD was not different from that using an LCD monitor.
Posterior and lateral (right or left) channel selections contributed to operation of the AR-BMI
with both the HMD and LCD monitor. Our results indicate that AR-BM I systems operated with

a see-through HMD may be useful in building advanced intelligent environments.

Keywords: BMI, BCI, augmented reality, head-mount display, environmental control system

INTRODUCTION

The brain—machine interface (BMI) or brain—computer interface
(BCI) is a new interface technology that uses neurophysiological
signals from the brain to control external computers or machines
(Birbaumer et al., 1999; Wolpaw and Mcfarland, 2004; Birbaumer
and Cohen, 2007). Electroencephalography (EEG), in which neu-
rophysiological signals are recorded using electrodes placed on the
scalp, represents the primary non-invasive methodology for study-
ing BMI. Our group applied EEG and developed a BMI-based sys-
tem for environmental control and communication. In this system,
we modified a P300 speller (Farwell and Donchin, 1988). The P300
speller uses the P300 paradigm and involves the presentation of a
selection of icons arranged in a matrix. According to this protocol,
the participant focuses on one icon in the matrix as the target, and
each row/column or a single icon of the matrix is then intensified
in a random sequence. The target stimuli are presented as rare
stimuli (i.e., the oddball paradigm). We elicited P300 responses to
the target stimuli and then extracted and classified these responses
with respect to the target. In our former study, we prepared a green/
blue flicker matrix because this color combination is considered
safest (Parra et al., 2007). We showed that the green/blue flicker
matrix was associated with a better subjective feeling of comfort
than was the white/gray flicker matrix, and we also found that the
green/blue flicker matrix was associated with better performance
(Takano et al., 2009a,b). The BMI system was satisfactorily used by
individuals with cervical spinal cord injury (Komatsu et al., 2008;
Tkegami et al., 2011).

Such a system could be used by persons with disabilities to support
their daily activities. In this type of system, users rely on control panels
that are pre-equipped; thus, each system is specialized for the user’s
specific environment (e.g., his or her home). To expand the range
of possible activities, it is desirable to develop a new system that can
be readily used in new environments, such as hospitals. To make this
possible, here, we added an augmented reality (AR) feature to a P300-
based BML. In the system, we used a see-through head-mount display
(HMD) to create control panels with flicker visual stimuli, thereby
giving users suitable panels when they come close to a controllable
device. When the attached camera detects an AR marker, the posi-
tion and orientation of the marker are calculated, and the control
panel for the pre-assigned appliance is created by the AR system and
superimposed on the scene via the HMD (Figures 1 and 2).

We used a see-through HMD in this study. To evaluate the effects
of different types of visual stimuli on the new AR-BMI, we com-
pared a see-through HMD with an LCD monitor. The participants
were asked to control devices using the AR-BMI system with both
a see-through HMD and an LCD monitor. In doing so, we found
that the AR-BMI system with the see-through HMD worked well.

MATERIALS AND METHODS

SUBJECTS

Fifteen subjects were recruited as participants (aged 19—46 years;
3 females, 12 males). All subjects were neurologically normal and
strongly right-handed according to the Edinburgh Inventory
(Oldfield, 1971). Our study was approved by the Institutional
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Review Board at the National Rehabilitation Center for Persons
with Disabilities. All subjects provided written informed consent
in accordance with institutional guidelines.

EXPERIMENTAL DESIGN

Augmented reality techniques were combined with a BMI
(Figure 1). The AR-BMI system consisted of an HMD (LE750A,
Liteye Systems, Inc., Centennial, CO, USA) or LCD monitor

FIGURE 1 | Diagram of the AR-BMI system. When the USB camera detects
an AR marker, the control panels for a pre-assigned appliance (e.g., desk light)
are added to the user's sight and the device becomes controllable. The
subjects are able to operate the appliance by focusing on an icon on the
augmented control panel.

(E207WFPc, Dell Inc., Round Rock, TX, USA), a PC, USB
camera (QCAM-200V, Logicool, Tokyo, Japan), EEG amplifier
(g.USBamp, Guger Technologies OEG, Graz, Austria), and EEG
cap (g.EEGcap, Guger Technologies OEG). We used the ARToolKit
C-language library for the system (Kato and Billinghurst, 1999).
When the camera detects an AR marker, the pre-assigned infra-
red appliance becomes controllable. The AR marker’s position
and posture were calculated from the images detected by the
camera, and a control panel for the appliances was created by
the AR system and superimposed within sight of the subject.
We prepared a TV and a desk light as controllable devices. AR
markers for the control panels for the TV and desk light were
prepared (Figure 2).

We prepared green/blue flicker matrices (Takano et al., 2009b) as
control panels. The duration of intensification/rest was 100/50 ms.
Allicons flickered in random order, creating a sequence. One clas-
sification was carried out per 15 sequences (Figure 2). Subjects were
required to send five commands to control both the TV and desk
light. We asked the subjects to focus on one of the icons.

EEG RECORDING AND ANALYSIS

Eight-channel (Fz, Cz, Pz, P3, P4, Oz, Po7, and Po8) EEG data
were recorded using a cap. All channels were referenced to the Fpz
and grounded to the AFz. Electrode impedance was under 20 k<.
The EEG data were amplified/digitized at a rate of 128 Hz using
a gUSBamp. The gUSBamp internal digitization rate was higher
than 128 Hz, so the data were down-sampled. The digitized data
were filtered with an eighth-order high-pass filter at 0.1 Hz and a
fourth-order 48-52 Hz notch filter.

In the analyses, recorded EEG data were filtered with a first-
order band-pass filter (1.27-2.86 Hz); 120 digitization points of
ERP data were recorded according to the timing of the inten-
sification. Data from the first 20 points (before intensification)

TV contro

Light control panel

Flicker

anel

Environmental control

L Classification L

EEG

R
20 points 100 points
Segmented data

and volume down).

Lmum 15 Sequences nm—mJ

FIGURE 2 | Experimental procedure. The icons change color from blue to green at the time of intensification, and the elicited ERPs are recorded. The red solid line
in the EEG data indicates the segmented portion used for classification. The target was classified by Fisher's linear discriminant analysis after 15 sequences. The light
control panel had four icons (turn on, turn off, light up, and dim}, whereas the TV control panel had 11 icons (turn on, change channel, change video mode, volume up,
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were used for baseline correction. The remaining 100 points
(after intensification) were down-sampled to 25.6 Hz and used
for classification.

In training sets, we recorded EEG data to create a feature vector
beforehand. Subjects were required to focus on one of the target
icons, and four target icons were used. Sixty (4 trials X 15 intensifi-
cations) sets of digitization points were recorded as the target data
set, and 600 (4 trials X 15 intensifications X 10 non-target icons)
sets of digitization points were recorded as the non-target data
set. Each data set included 100 digitization points per each EEG
channel, and these data sets were down-sampled to 20 digitization
points per each EEG channel. In total, 160 dimension-feature vec-
tors (20 dimensions per EEG channel) were calculated using the
segmented data for each subject. Feature vectors were derived for
each experimental condition (LCD and HMD).

In testing sets, using the feature vectors, target and non-target
icons were discriminated using Fisher’s linear discriminant analysis.
The result of the classification, as the maximum of the summed
scores, was used to determine the icon to which the subjects were
attending.

RESULTS
ONLINE PERFORMANCE AND OFFLINE EVALUATION
In the current study, we prepared an AR-BMI to control system-
compatible devices. We used both a see-through HMD and an LCD
monitor to further evaluate the effect of different types of visual
stimuli on the AR-BMI.

Online performance was evaluated and the mean accuracy rate
for the TV control panel was 88% (SD = 3.20) with the LCD moni-
tor, compared to 82.7% (SD = 2.63) with the HMD; however, these

results were not significantly different (Figure 3). In contrast, a
significant difference was noted in an offline evaluation [two-way
repeated ANOVA F(1,420) = 13.6, p < 0.05; Tukey—Kramer test,
p<0.05].

The mean accuracy rate for light control was 84% (SD = 3.40)
with the LCD monitor, compared to 76% (SD = 2.06) with the
HMD; however, the results were not significantly different. The
results were also not significantly different in an offline evaluation.
Thus, our AR-BMI system could be operated not only by using a
PC display, but also by using an HMD.

CHANNEL SELECTION

We further investigated the effects of channel selection on the
operation of the AR-BMI using an HMD and LCD monitor.
We divided the EEG channels into different sets and evaluated
their accuracy.

When we analyzed the data in two horizontal channel sets [A
(P3, Pz,and P4) and B (Po7, Oz, and Po8; Figure 4A)], set B (pos-
terior set) showed significantly higher accuracy than set A (anterior
set) in all sessions and under all conditions (p < 0.05, two-way
repeated ANOVA, no interaction).

When we analyzed the data in three vertical channel sets [C (P3
and Po7), D (Pz and Oz), and E (P4 and Po8; Figure 4B)], set D
(middle set) showed significantly lower accuracy than the others
(left and right sets) in all sessions and under all conditions (p<0.05,
two-way repeated ANOVA, no interaction, and Tukey—Kramer as
a post hoc test).

These results show that the posterior and lateral (right or left)
channel sets provided better performance in the operation of the
AR-BMI with both the HMD and LCD monitor.

LCD TV
A 100 po
< 80
o 60
S 40
o]
< 20
0
HMD TV
B 100 gy
E s80]
& 60
@
g 0
<

20

15
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5 10

FIGURE 3 | Subjects’ control accuracy. Accuracy in controlling the TV and desk
light are shown. The horizontal axes indicate the number of sequences, while
the vertical axes indicate the accuracy. White solid lines show the mean

LCD Light

HMD Light

5 10
Sequences (times)

15

accuracy with the SE. The blue squares behind the white solid lines are
two-dimensional histograms; each blue square indicates the frequency of the
subjects in each sequence and their accuracy [{A): LCD, (B): HMDI.
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DISCUSSION

In this study, we found that by applying an AR-BMI system operated
with a see-through HMD, which can provide suitable control panels
to users when they come into an area close to a controllable device,
participants successfully operated system-compatible devices with-
out significant training.

HMD VS. LCD MONITOR

When visual-evoked potentials are applied to a BMI system, the
effects of visual stimuli can be better evaluated. Townsend et al.
(2010) reported that a checkerboard paradigm for visual stimuli
increased accuracy. Our group found that green/blue flicker stimuli
improved performance during operation of a P300-based BMI
(Takano et al., 2009b). A BMI study that used an immersive HMD
and LCD monitor to provide visual stimuli showed no significant
difference between the two technologies (Bayliss, 2003).

In this study, we applied both a see-through HMD and an LCD
monitor to an AR-BMI system to further evaluate the effect of
different types of visual stimuli, and in the online evaluation, the
performance with the HMD was not different from that with the
LCD monitor. The percent accuracy in this study ranged from 76
to 88%; because the incidence of correct responses exceeded 70%,
the system is considered to have reached the level of actual usage
(Kubler and Birbaumer, 2008; Nijboer et al., 2008).

In offline analyses, the see-through HMD provided significantly
lower accuracy for TV control than the LCD monitor. Because icon size
and the distance between icons can affect the accuracy of classification
(Sellers et al., 2006), this may have been caused by the different types of
visual stimuli between the HMD and LCD monitor. Thus, the effects
of visual stimuli on BMI operation should be investigated further.

CHANNEL SET

We also investigated the effects of channel selection on opera-
tion of the AR-BMI using an HMD and LCD monitor, and
found that posterior and lateral (right or left) channel selections

contributed favorably to the operation of the AR-BMI with
both the HMD and LCD monitor. Important roles for pos-
tero-lateral channels in driving a P300-based BMI have been
reported (Krusienski et al., 2008; Rakotomamonjy and Guigue,
2008). Rakotomamonjy and Guigue (2008) scored the effective-
ness of channels in a P300-based BMI using a support vector
machine and found an advantage with Po7 and Po8. Krusienski
et al. (2008) showed that the occipito-parietal (Po7, Oz, and
Po8) and midline (Fz, Cz, and Pz) electrodes provided better
accuracy.

The neuronal mechanisms of the P300 have been investigated,
and it has been noted that that the P300 reflects stimulus-driven
and top-down attentional processes with other cognitive process,
including categorization (Bledowski et al., 2004; Polich, 2007).
Our tasks used green/blue color stimuli so that the processing
of chromatic information, which occurs primarily in the V4
area, was also required (Lueck et al., 1989; Plendl et al., 1993;
Murphey et al., 2008). Additional studies are necessary to fully
understand the neuronal processes underlying the P300 para-
digm with green/blue color flickering stimuli; however, this
study suggests the importance of posterior and lateral (right
or left) channel sets in the operation of an AR-BMI with both
an HMD and LCD display. '

TOWARD ADVANCED INTELLIGENT ENVIRONMENTS

Several combinations between BMI and other technologies have
been attempted, such as BMI with eye tracking (Popescu et al,,
2006), and BMI with robotics (Valbuena et al., 2007). AR was com-
bined with SSVEP BMI to provide arich virtual environment (Faller
et al., 2010), and we used AR with an LCD monitor and an agent
robot in P300 BMI so that the users could operate home electronics
in the robot’s environment (Kansaku et al., 2010). In this study, we
developed an AR-BMI system operated with a see-through HMD,
which may be useful in building advanced intelligent environments
(Kansaku, in press).

Frontiers in Neuroscience | Neuroprosthetics

April 2011 | Volume 5 | Article 60 | 4

60



Takano et al.

AR-BMI with a head-mount display

The systems developed by our group use a modified P300 speller
(Farwell and Donchin, 1988). Although the P300 speller has pri-
marily been used for communication using spelling alphabets, the
system has recently been used to control more complex system-
compatible devices, including robots (Bell et al., 2008; Komatsu
etal.,2008). Thus, each icon expresses the user’s thoughts by assign-
ing more complex meanings.

Our AR-BMI with a see-through HMD can be used to con-
trol more types of devices; thus, the system may be helpful in
expanding the range of activities for persons with disabilities.
The future extension of the environment for human activities
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