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Abstract

Introduction An accurate assessment of three-dimen-
sional (3D) intervertebral deviation is crucial to the better
surgical correction of adolescent idiopathic scoliosis (AIS).
However, a precise 3D study of intervertebral deviation has
not been previously reported.

Objective The purpose of the present study is to evaluate
the intervertebral coronal inclination, axial rotation and
sagittal angulation of AIS using 3D bone models and a
local coordinate system.

Materials and methods 3D bone models of the thoracic
and lumbar spine of ten AIS patients were constructed
using computed tomography. The lacal coordinate axis was
determined semi-automatically for each vertebra. By using
these local coordinates, the intervertebral deviation angles
were calculated in the coronal, axial and sagittal planes and
projected to subjacent Jocal coordinates.

Result The intervertebral deformity in the coronal plane
was larger near the apical region and smaller near the
junctional region. Conversely, the intervertebral rotation in
the axial plane was smaller near the apical region, and
larger near the junctional region. Concerning the sagittal
plane deformity, the constant tendency was not recognized.
Conclusion VUsing a local coordinate syster for the ver-
tebra of AIS, we measured the 3D intervertebral coronal,
axial and sagittal deviation of the thoracolumbar spine and
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found that the change in the intervertebral inclination angle
in the coronal plane increased toward the apical region and
decreased toward the junctional region, and that the con-
verse tendency was noted for the axial intervertebral rota-
tional angle. This analysis provides an improved 3D guide
for the surgical correction of AIS.

Keywords Idiopathic scoliosis - Three-dimensional -
Intervertebral deviation - Local coordinate system

Introduction

Adolescent idiopathic scoliosis (AIS) is a three-dimen-
sional (3D) deformity associated with lateral deviation in
the coronal plane, thoracic hypokyphosis in the sagittal
plane and rotation in the axial plane [3, 4, 25]. However,
two-dimensional evaluation of AIS remains the mainstay
of most studies of AIS [10, 18]. In 2008, Modi et al. [18]
reported the wedging angle of both the vertebral body and
intervertebral disc and correlated the apical wedging angle
and the severity of the curve in 150 AIS patients using only
anteroposterior radiographs in the standing position. For
evaluation in the transverse plane, Kotwicki et al. [10] used
only a single axial slice from a computed tomography (CT)
scan at the apex to measure the rotational angle and the
intravertebral deformation. The asymmetry in the shape of
the vertebral body and spinal canal and rotational defor-
mity in the axial plane in AIS patients further contribute to
the inaccuracy of such assessments of the vertebral axis in
the two-dimensional plane.

3D evaluation of ATS is also gaining popularity. The in
vitro 3D reconstruction of cadaveric vertebrae using 3D
morphometric analysis [21-23], such as vertebral wedging,
pedicle width, pedicle length, pedicle height, pedicle
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inclination and facet surface, is a recent example. In
addition, several studies conceming 3D reconstruction of
the spine using biplane radiographic images have been
reported [2, 8, 9]. The method proposed by Kadoury et al.
enabled 3D reconstruction from biplane radiographs.
Although their studies involve 3D analysis of an in vivo
model, their reconstructed bone models used anthropo-
metric data and not patients’ bones.

An accurate assessment of 3D intervertebral deviation is
crucial to the better surgical correction of the deformity.
Although there have been some studies regarding interver-
tebral deviation of AIS [5, 7, 24], no detailed 3D study using
an in vivo model of AIS has been reported. Therefore, the
present study aimed to develop a local coordinate system for
the AIS vertebra and to evaluate the in vivo 3D intervertebral
deviation in the coronal, axial and sagittal planes in order to
provide guidance for its surgical correction.

Materials and methods
Patients

We examined spinal CT images from consecutive ten
patients with AIS who were scheduled for corrective sur-
gery. The patients included two males and eight females,
with an age range of 12 to 19 years (mean 14.7 years) at
the time of operation. Before CT imaging, anteroposterior
(AP) plain radiographs were taken in the upright position.
On AP radiographs, the measured mean Cobb’s angles
were 62.5° (range 29°-77°) at the thoracic curvature and
50.3° (range 30°-73°) at the lumbar curvature. According
to King's classification [11], the curves were type L in two
patients, type Il in one, type III in six and type IV in one.
Risser sign [15] showed grade 0 in two, grade 3 in four, and
grade 4 in four patients. Nash and Moe’s vertebral rotation
[19] of the apex showed grade + in one, grade +- in
seven, and grade 4+ in two patients.

The protocol was approved by the institutional boards of
the hospital and fully informed consent was obtained from
all participants.

CT image acquisition

Prior to surgery, all ten patients underwent CT scans of the
entire deformed spine in the supine position. Scans were
performed using a helical CT scanner (Light Speed VCT,
General Electric, Maukesha, WI). The slice thickness was
0.625 mm, the tube voltage was 120 kV and the amperage
was 90 mA. The data were saved in a standard DICOM
(Digital Imaging and Communications in Medicine) for-
mat. The estimated radiation dose for the patients using this
scanning protocol was 5.2 mSv.

@ Springer

Construction of 3D surface bone models

To construct the 3D bone models, we performed a seg-
mentation procedure. Segmentation extracts bone regions
and associates each region with. individual bones. The
anatomic structure or region of interest must be delineated
and separated so that it can be viewed individually.
Regions of individual bones were segmented semiauto-
matically using a software program for image analysis
(Virtual Place-M; AZE Ltd, Tokyo, Japan). We then
obtained the surface models of the vertebrae by applying
3D surface generation of the bone cortex [18, 20].

Axis configuration of local anatomic coordinate system

In order to measure the deviation in three dimensions
between adjacent vertebrae, we first established the axis of
the local coordinate system for each vertebra by first cal-
culating the centroid of the vertebra automatically and
designating it as the origin of the coordinate axis (Fig. 1a).
Next, the planar approximation of the superior endplate
was calculated using the least-squares method and we
estimated a plane parallel to the superior endplate via the
origin (Fig. 1b). On that plane, a line from both the cen-
troid and the point which divided the front part of the
vertebral body into half (using the least-squares method)
formed the z axis (Fig. 1c), with ‘anterior’ as the ‘positive’
direction. A line perpendicular to the z axis pointing to the
left formed the x axis. Finally, the y axis was defined as a
line perpendicular z—x plane (Fig. 1d).

Measurement of intervertebral coronal plane deformity

The intervertebral coronal inclination between adjacent
vertebrae was defined as the angle between adjacent x axes
projected on the subjacent local coordinate x—y plane. From
T1-T2 to L4-L5, each intervertebral corenal inclination was
measured. For example, the adjacent inclination in the
coronal plane of T8-T9 represented the angle between x axes
of T8 and T9 projected to the x—y plane of T9 (Fig. 2). All
adjacent intervertebral angles were measured automatically.

Measurement of intervertebral axial plane deformity

The intervertebral rotation in the axial plane between
adjacent vertebrae was defined as the angle between adja-
cent z axes projected on the subjacent local coordinate
z-x plane. From T1-T2 to L4-L35, each intervertebral axial
rotation angle was measured. For example, the adjacent
rotation in the axial plane of T8-T9 represented the angle
between z axes of T8 and T9 projected to the z—x plane of
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Fig. 1 The method used to
establish the local coordinate
system. a The black sphere is a
centroid of the vertebra that is
defined as the origin of the
coordinate axis. b The cross-
sectional surface of the vertebra;
the planar approximation of the
superior endplate was calculated
using the least-squares method,
and we estimated a plane
parallel to the superior endplate
via the origin. ¢ In the cross-
sectional plane, the z axis is
defined as a line between the
centroid and the point that
divides the front portion of the
vertebral body in half. d A line
perpendicular to the z axis and
pointing to the left on the plane
forms the x axis. Finally, the

y axis pointing cranial is defined
as a line perpendicular to the
z—x plane

Y(TS]':‘ Y{T8)

Coronal plane deformity

Fig. 2 The T8 and T9 bone models and each local coordinate axis.
The solid lines present the axis of T8, and the broken lines present the
axis of T9. Left the intervertebral coronal inclination. The figure faces
the subjacent vertebral x~y plane; the intervertebral coronal inclina-
tion angle (arrow) is defined as the angle between two adjacent x axes
projected on the subjacent x—y plane. Middle the intervertebral axial

T9 (Fig. 2). All adjacent intervertebral angles were also
measured antomatically.

Measurement of intervertebral sagittal plane deformity

The intervertebral angulation in the sagittal plane between
adjacent vertebrae was defined as the angle between adja-
cent y axes projected on the subjacent local coordinate
y—z plane. From TI1-T2 to L4-L5, each intervertebral
sagittal angulation was measured. For example, the adja-
cent angulation in the sagittal plane of T8-T9 represented
the angle between y axes of T8 and T9 projected to the

Agxial plane deformity

X8}
Sagittal plane deformity

rotation. The figure faces the subjacent z—x plane; the intervertebral
axial rotational angle {(arrow) is defined as the angle between adjacent
z axes projected on the subjacent z—x plane. Right the intervertebral
sagittal angulation. The figure faces the subjacent y-z plane; the
sagittal intervertebral angulation (arrow) is defined as the angle
between adjacent y axes projected on the subjacent y—z plane

y-z plane of T9 (Fig. 2). All adjacent intervertebral angles
were also measured automatically.

Results

Intervertebral coronal plane deformity

The left side of Fig. 3 shows the amount of change between
each intervertebral coronal inclination for all ten patients.

These results indicate that the intervertebral deformity in
the coronal plane was larger near the apical region and
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smaller near the junctional region. The maximum inter-
vertebral change at apical region was 20.2° (absolute
value), the minimum change at junctional region was 0°.
Figure 4 shows two representative cases (Case 3 and Case
10). The 3D models of both the thoracic and lumbar spine
and the intervertebral angle in the coronal and axial planes
are shown in Fig, 4. The x axis of the graph to the left of
the bone model represents the intervertebral inclination
angle in the coronal plane. The ‘plus’ direction of the graph
means that the x axis of the suprajacent vertebra is directed
in the ‘plus’ direction in relation to the subjacent vertebral
y axis. Similarly, the minus direction of the graph means
that the adjacent vertebral x axis is directed in the minus
direction in relation to the y axis of the subjacent vertebra

(Fig. 2).
Injervertebral axial plane deformity

The middle of Fig. 3 shows the amount of change between
each intervertebral axial rotation for all patients. As the
converse to the intervertebral coronal deformity, the
intervertebral rotation in the axial plane was smaller near
the apical region and larger near the junctional region. The
maximum intervertebral change at junctional region was
12.6° (absolute value), the minimum change at apical
region was 0°. The angle to the plus direction represents
the amount of axial rotational change in the clockwise

rotation of the suprajacent vertebra to subjacent z—x plane.
On the other hand, when the suprajacent vertebral body
rotates to the counterclockwise for the subjacent vertebral
body, the change in the angle of the adjacent vertebral body
is directed in the minus direction (Fig. 2). The amount of
changes between adjacent vertebral axial rotation of two
representative cases (Case 3 and Case 10} are shown in the
graphs to the right of the bone models (Fig. 4).

Intervertebral sagittal plane deformity

The right side of Fig. 3 shows the amount of change
between each intervertebral sagittal angulation for all the
patients. Concerning the sagittal plane deformity, the
constant tendency was not recognized. The ‘plus’ repre-
sents that the y axis of the suprajacent vertebra is directed
in the minus direction in relation to the subjacent vertebral
z axis. It means that the suprajacent vertebral bodies
located in extension to subjacent vertebral bodies on sub-
jacent y—z planes (Fig. 2).

Discussion
Idiopathic scoliosis is a complex spinal deformity charac-

terized by lateral curvature of the spine associated with
axial vertebral rotation. Recent 3D evaluations of the spine

T1-T2 T1-12 T1-T2 =
T2-T3 T2-T3 T2-T3 —_—
T3-T4 T3-T4 T3-T4
T4-TS T4-T5 T4-T5
T5-T6 T5-T6 T5-T6
Bcasal
T6-T7 T6-T7 T6-17 © case2
T7-T8 T7-T8 T7-T8 mcased
T8-T9 T8-T9 T8-T9 #cased
|
To-T10 T9-T10 T9-T10 cases
= caseb
T10-T11 T10-T11 T10-T11 = Eease?
T1Ti2 TI1-T12 TH-TE2 - case8
T12:L1 T12:L1 T12-L1 £ = cased
-4,
L2 - Li12 L1z F__ # ease10
L2:L3 - L2-13 L2-L3 -
| P, T
L3-La el L3-L4 e L3-L4 prail
| — JE—
Lats| = L4-L5 - Lats e
25 -15 5 § 15 (degree) -15 -5 5 15 (degres) 47 7 3 13 (degree)
Intervertebral coronal Intervertebral axial Intervertebral sagittal
inclination rotation angulation

Fig. 3 The intervertebral deviation of the each adjacent vertebrae of
all ten patients. The x axes show the each intervertebral deviation
angles of all patients in coronal, axial and sagittal plane. The
intervertebral deformity in the coronal plane was larger near the
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apical region and smaller near the junctional region. Conversely, the
intervertebral rotation in the axial plane was smaller near the apical
region, and larger near the junctional region. Conceming the sagittal
plane deformity, the constant tendency was not recognized
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in patients with AIS have been performed [8, 9, 21-23]. As
morphometric studies, Parents et al. [21-23] created a 3D
reconstruction of a large number of cadaveric bones, and
compared normal vertebrae with the vertebrae of AIS. For
example, vertebral wedging increased progressively toward
the apex and pedicles located on the concavity were found
to be significantly thinner than normal specimens [21-23].
In addition, the evaluation of global 3D correction between
pre- and post-operative spinal 3D shape was also reported
by Kadoury et al. [8, 9]. They reconstructed 3D models
using bi-planar radiographs, and examined the difference
among four operative methods. Steib et al. also performed
3D studies about the 3D change before and after surgical
correction by in situ contouring technique using the
reconstructed 3D models from bi-planar radiographs [6, 7,
16, 27]. However, these methods lacked accuracy since
their method required only about 6-20 landmarks when
reconstructing the bone models. Although an accurate
assessment of 3D intervertebral deviation is crucial to the
better surgical correction of the deformity, no detailed 3D
study using an in vivo model of AIS has been reported.
Our results indicate the different deviation patterns
between the intervertebral coronal plane deformity and
intervertebral axial plane rotation. The intervertebral
deformity in the coronal plane was larger near the apical
region and smaller near the junctional region. Conversely,
the intervertebral rotation in the axial plane was smaller
near the apical region and larger near the junctional region.
In 1994, Dubousset also showed that the intervertebral
axial rotation reached its maximum at the extremities and
its minimum at the apex [5]. However, the simple finite
element models of only one case were used in the study and
it is not known how to measure the intervertebral deviation
[5]. Therefore, using the precise 3D evaluation method, we
can show that the change in the intervertebral inclination

angle in the coronal plane increased toward the apical
region and decreased toward the junctional region, and that
the converse tendency was noted for the axial intervertebral
rotational angle in AIS patients for the first time.

There is a limitation in our method. The bone models
were constructed from CT images taken in the supine
position. Troell et al. [28] examined the radiographs of 287
girls with AIS and found that their mean Cobb angle,
measured at standing position, was approximately 9° larger
than that in the supine position, and the difference was 45°
in the maximum. Yazici et al. [29] also showed that the
average Cobb angle on a standing radiograph was
approximately 16° larger than that in the supine position
and they found that a rotational angle of 22.75° on the
standing radiograph and 16.78° in the supine position.
However, our results compared coronal with axial devia-
tion under the same condition as supine. Though it is
conceivable that the degree of the spinal deformity may be
small in the supine position, it would appear that the fea-
tures obtained from our study are not different from those
obtained in the standing position.

The results in the present study can be applied to the
surgical correction of AIS. The concave rod rotation
maneuver, introduced by Cotrel and Dubousset, is gener-
ally concluded with derotation vertebral procedures. It’s
well accepted that rotation of precontoured concave rod
(counter-clockwise) by alone has poor rotation improve-
ment [1, 12-14, 17, 26]. Moreover, Kadoury et al. con-
cluded that scoliosis also involves transverse plane rotation
of the vertebrae in the opposite direction. In order to der-
otate the vertebrae, moments in the opposite sense should
also be applied to the vertebrae [9]. According to our result,
it might be easier to correct the rotation of each vertebra
from the end vertebra to the apex using direct vertebral
rotation technique.
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Conclusion

We propose a new local coordinate system for deformed
vertebrae of AIS. By using this coordinate system, the 3D
intervertebral deviation in the coronal, axial and sagittal
planes were measured. We found that the intervertebral
deformity in the coronal plane was larger near the apical
region and smaller near the junctional region. Conversely,
the intervertebral rotation in the axial plane was smaller
near the apical region and larger near the junctional region.
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ABSTRACT

To achieve 3D kinematic analysis of total knee arthroplasty (TKA), 2D/3D registration techniques, which use X-ray
fluoroscopic images and computer-aided design (CAD) model of the knee implant, have attracted attention in recent
years. These techniques could provide information regarding the movement of radiopaque femoral and tibial components
but could not provide information of radiolucent polyethylene insert, because the insert silhouette on X-ray image did not
appear clearly. Therefore, it was difficult to obtain 3D kinemaitcs of polyethylene insert, particularly mobile-bearing
insert that move on the tibial component. This study presents a technique and the accuracy for 3D kinematic analysis of
mobile-bearing insert in TKA using X-ray fluoroscopy, and finally performs clinical applications. For a 3D pose
estimation technique of the mobile-bearing insert in TKA using X-ray fluoroscopy, tantalum beads and CAD model with
its beads are utilized, and the 3D pose of the insert model is estimated using a feature-based 2D/3D registration
technique. In order to validate the accuracy of the present technique, experiments including computer simulation test
were performed. The results showed the pose estimation accuracy was sufficient for analyzing mobile-bearing TKA
kinematics (the RMS error: about 1.0 mm, 1.0 degree). In the clinical applications, seven patients with mobile-bearing
TKA in deep knee bending motion were studied and analyzed. Consequently, present technique enables us to better
understand mobile-bearing TKA kinematics, and this type of evaluation was thought to be helpful for improving implant
design and optimizing TKA surgical techniques.

Keywords: Total knee arthroplasty, Mobile-bearing insert, 3D kinematics, Accuracy validation, X-ray fluoroscopy,
2D/3D registration technique, Clinical applications

1. INTRODUCTION

In orthopaedics, total knee arthroplasty (TKA) is an effective treatment for functional disability and arthritic knees in
which articular cartilage is damaged, TKA implants generally consist of metallic femoral and tibial components and a
polyethylene bearing insert between them (Figure 1). The polyethylene insert replaces the damaged cartilage of the tibial
plateau and provides a low-friction surface for the metallic implant component.

Quantitative assessment of three-dimensional (3D) kinematics of TKA is highly important for evaluating the outcome of
surgical procedures and for improving the implants design and clinical outcome. To achieve 3D kinematic analysis of
TKA, 2D/3D registration techniques, which vse X-ray fluoroscopic images and computer-aided design (CAD) model of
the knee implant, have attracted attention in recent years [1-4]. These studies could provide information regarding the
movement of radiopaque femoral and tibial components but could not provide information of radiolucent polyethylene
insert, because the insert silhouette on X-ray image did not appear clearly. Therefore, it was difficult to obtain 3D
kinemaitcs of polyethylene insert, particularly mobile-bearing insert that move on the tibial component.

Only a few studies have reported 3D kinematics of mobile-bearing insert in TKA using a fiducial markers technique
based on X-ray images [5,6]. These studies are thought to be useful for 3D determination of the mobile-bearing insert
kinematics. However, there is concern that the 3D pose estimation accuracy of the insert can be influenced by positional
error of fiducial markers for the insert and projection number of makers on X-ray image. In previous studies, the pose
estimation accuracy of the mobile-bearing insert has not been investigated, and therefore did not give assurance the same

Medical Imaging 2011: Image Processing, edited by Benoit M. Dawant, David R. Haynor,
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degree of accuracy as femoral and tibial components. This study presents a technique and the accuracy for 3D kinematic
analysis of mobile-bearing insert in TKA wusing X-ray fluoroscopy. The results of accuracy validation define the
capabilities and limitations of 3D kinermatic analysis of the insert. We also apply the technique to TKA patients during
dynamic motion. ‘

Femoral
component

Polyethylene
insert

5 Tibial _—7

component

Figure 1. CAD models for femoral and tibial components and a polyethylene insert between them.

2. METHODS
2.1 Condition and requirement

To achieve 3D pose estimation of knee implants using X-ray fluoroscopy, it is necessary to know the parameters of the
X-ray imaging system, The parameters of the imaging system are determined with a 3D calibration cube. The calibration
cube has evenly spaced 217 metallic markers, which are employed as calibration markers. First, the calibration cube is
placed in the viewing area of the imaging system and X-ray images are acquired. Next, because the X-ray images exhibit
significant distortion introduced by image intensifiers, images are corrected with a non-linear distortion correction
method. Finally, parameters of the imaging system (principal point and principal distance) are determined from 2D data
{positions of the center of projected makers) on the corrected X-ray images and the known 3D data (positions and
orientation) of the calibration cube with a non-linear calibration technique [7]. The principal point is the location on the
image plane perpendicular to the incident X-ray, and the principal distance is the distance from the X-ray focus to the
principal point.

In vivo knee motion after TKA was recorded as a series of digital X-ray images (1024x1024 pixels; 12 bits; 7.5
frames/sec) using a 12-inch digital image intensifier system (C-vision PRO-T, Shimadzu, Japan). Tests were typically
performed using X-ray parameters of 70 kV, 400 mA and 1.2-2.0 ms duration, enabling nearly blur-free imaging of
motion with higher per-frame exposure and image quality than in standard video-fluoroscopy.

2.2 Pose estimation of femoral and tibial components

For the 3D pose estimation of femoral and tibial components using X-ray fluoroscopy, a contour-based (feature-based)
2D/3D registration technique is uvtilized [2,4]. This technique uses implants silhouette contours on X-ray fluoroscopic
images and CAD model of implants. The basic concept of this registration algorithm is that the 3D pose of a model can
be determined by projecting rays from contour points in an image back to the X-ray focus, and noting that all of these
rays are tangential to the model surface (Figure 2). The tangent condition therefore corresponds, in practice, to the
minimum distance condition between the projection rays and the model surface. Then, a cost function E is defined as the
sum of Euclidean distance d; from point g; on the projection rays (corresponding to the point p, on the contours) to the

closest point s, on the CAD model surface.
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E= idﬁ M

i=1
The distance d, is given by
d; = *lq; —sf 03]
where 0 < i < N and N is the number of contour points. Negative values indicate rays that cross the model surface.

The 3D pose of the femoral and tibial component model is estimated by minimizing the cost function £ (equation (1))
iteratively using a nonlinear optimization technique [8]. A good function for determining convergence of the 3D pose of
the model is given by root mean square distance (RMSD):

RMSD =W/;N0 ; / N €)

C

ontour point
B, (1 v)

/

\\\\»

Fluoroscopicimage W

Femoral component
CAD model

X-ray focus

Figure 2. 3D pose estimation of the femoral component model from X-ray fluoroscopic images.

2.3 Pose estimation of mobile-bearing insert

To achieve 3D pose estimation of the mobile-bearing insert in TKA using X-ray fluoroscopy, tantalum beads are utilized.
Because the polyethylene insert is transparent during fluoroscopy, four identical metallic tantalum beads are inserted at
known positions of polyethylene insert using a specially designed insertion device during surgery. Holes of 2mm depth
and small diameter are drilled, so that the Imm tantalum beads are press fitted in the predefined non-critical areas of the
insert. Therefore, CAD model of the polyethylene insert can be created with the four strategically placed beads (Figure
3). Because three points are required on a rigid body to define its 3D pose, at least three beads have to be located on
fluoroscopic images. Hence, all metallic beads were offset as far as possible from adjacent beads in the sagittal and
frontal planes of the polyethylene insert, insuring optimal determination of out-of-plane rotations. Figure 4 shows a
representative beads silhouette on the X-ray fluoroscopic image.

To extract these beads silhouette markers from the X-ray image, a Gaussian Laplacian filter and Canny’s edge detector
were applied [9], and false edges including implants contours and noises detected were manually erased. After the
identification of the beads on each fluoroscopic image in this way, the 3D pose of the insert model is estimated using a
feature-based 2D/3D registration technique, which uses beads silhouette on fluoroscopic image and the corresponding
insert CAD model with beads. A cost function is defined as described above equation (1), and likewise 3D pose
estimation of the mobile-bearing insert is performed.
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Figure 3. A specially designed insertion device (Left) and CAD model of Figure 4. A representative beads
the polyethylene insert with the four strategically placed beads (Right). X-ray image.

3. EXPERIMENTAL RUSULTS
3.1 Accuracy validation

In order to validate the accuracy of pose estimation for the mobile-bearing insert, two experiments were performed. In
the first experiment, as a preliminary experiment, the repeatability of tantalum beads positions of polyethylene insert
using a specially designed insertion device was investigated. Beads insertion of polyethylene insert using this device was
repeated five times, beads positions of the five polyethylene inserts were accurately measured using high-resolution
computed tomography. As a result of preliminary experiment, positional error of tantalum beads using this device was
found to be 0.5 mm at most.

In the next experiment, based on the result of preliminary experiment, computer simulation test was performed. The
positional errors within 0.5mm were randomly given for three or four strategically placed beads, and then synthetic
tantalum beads sithouette images which had three or four beads were created for the insert in known typical orientations.
In this study, a set of six synthetic tantalum beads silhouette images as shown in Figure 5 were used. The pose estimation
errors of the insert were determined by comparing the estimated pose to the known pose.

The results of computer simulation test of pose estimation for the mobile-bearing insert are presented in Table 1. The
root-mean-square errors (RMS errors) are given for each synthetic silhouette image. The RMS errors of all variables
depended on the orientation pattern of the insert, while the difference of the error by beads projection number (three or
four beads) for each orientation pattern (image 1,2 and image 3,4 and image 5,6) was small. The RMS errors of the five
variables except for z (medial-lateral) translation were sufficiently smaller than 1.0 mm and 1.0 degree.

Orientation pattern A Orientation pattern B
Image 1 image 2 Image 3 Image 4
(4 beads) (3 beads) {4 beads) (3 beads)

Orientation pattern C

o® . * ® .

Image 5 Image 6
{4 beads) (3 beads)

Figure 5. Synthetic tantalum beads silhouette images in typical orientations used for computer simulation test.
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Table 1. Pose estimation errors for computer simulation test of the mobile-bearing insert.

Translation (mm) Rotation (degrees)
X y z x ¥ z
RMS errors posterior- pro.w_cimal» medial-  adduction- internal-  extension-
anterior distal lateral  abduction _esternal  flexion
Orientation  Image 1 020 0.17 0.83 0.13 0.27 0.22
pattern A Tmage 2 0.30 0.48 0.99 0.14 0.30 0.22
Orientation Image 3 0.43 0.14 0.96 0.18 047 0.32
pattern B Tmagpe 4 0.41 0.39 1.02 0.23 0.43 0.34
Orientation  Image 5 0.52 0.67 1.48 0.49 0.53 0.47
pattern C  Tmage 6 0.65 0.84 1.63 0.51 0.58 0.45

3.2 Clinical applications

We finally applied the present technique to the mobile-bearing TKA patients during dynamic motion. The object of the
study was explained to patients, and formal consent was obtained. Under fluoroscopic surveillance, dynamic movement
in deep knee bending was conducted for total seven patients. Measurement values of each dynamic movement were
described as the relative pose values of the femoral component with respect to the tibial component, and as that of the
mobile-bearing insert with respect to the tibial component. For in vivo kinematic analysis, the relative pose of each knee
implants model is determined by employing a three-axis Euler-angle system [10], and then the pose can be denoted by
six variables, three translations and three rotations.

In the results of clinical applications, a representative image of the femoral and tibial CAD models ovetlaid on the X-ray
image after 3D pose estimation, and an image of the mobile bearing insert estimated based on the metallic tantalum
beads are shown in Figure 6. The sequence of relative poses in dynamic movement showed a smooth and reasonable
physiologic pattern of motion, and the average range of motion for flexion-extension angle during the deep knee bending
was 121.4 degree. In all seven patients, the femoral component rotated externally with respect to the tibial component
during flexion, and the average external rotation range was 13.0 degree (Figure 7). Similarly, in all cases, the mobile-
bearing insert also rotated externally with respect to the tibial component during flexion, and the average rotation range
was 12.1 degree (Figure 8). In a few cases, the femoral component showed more external rotation than the mobile-
bearing insert with respect to the tibial component during flexion, and the rotation angle was found to be about 5.0
degree at a maximum.

Figure 6. CAD model images from a representative TKA patient during deep knee bending.
Femoral and tibial component models (Left) and mobile-bearing insert model (Right).
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Figure 7. Axial rotation (internal/external rotation) of femoral component with respect to tibial component.
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Figure 8. Axial rotation (internal/external rotation) of mobile-bearing insert with respect to tibial component.

4. DISCUSSION AND CONCLUSIONS

This study presented a procedure and the accuracy for 3D kinematic analysis of mobile-bearing insert in TKA using X-
ray fluoroscopy, and finally performed clinical applications. Although it is difficult to obtain 3D kinemaitcs of the
polyethylene mobile-bearing insert because the polyethylene insert is transparent during fluoroscopy, accurate
measurement of the insert can be achieved by tracking previously inserted tantalum beads using a specially designed
insertion device. Utilizing the inserted beads information (position and orientation) and present feature-based 2D/3D
registration technique, the 3D pose estimation of the mobile-bearing insert was successfully performed.
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The accuracy validation of the 3D pose estimation for the mobile-bearing insert was performed by two experiruents,
which has not been reported in previous studies. The accuracy of the pose estimation depended on the orientation pattern
of the insert, and the errors of z (medial-lateral) translation were large due to use of single-plane X-ray image (Table 1).
However, the difference of the error by beads projection number (three or four beads) was relatively small, and also even
if positional errors within 0.5mm were given for three or four strategically placed beads, the accuracy of present
technique was found to be sufficient for analyzing mobile-bearing TKA kinematics.

In the clinical applications, for seven TKA patients, relative axial rotations of three components (femoral component,
tibial component, and mobile-bearing insert) were determined. The results showed that the mobile-bearing insert was
primary rotating relative to the tibial component rather than the femoral component. Therefore, as the femoral
component axially rotated, the mobile-bearing insert was rotating a similar magnitude in the same direction (Figure 7 and
8). While, in a few case, the femoral component showed more external rotation than the mobile-bearing insert with
respect to the tibial component. during flexion. This maybe indicates the femoral component was sliding on the mobile-
bearing insert during flexion. Thus, present technique enables us to better understand mobile-bearing TKA kinematics.
Consequently, this type of evaluation is thought to be helpful for improving implant design and optimizing TK.A surgical
techniques.
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The Dynamic Spinal Brace (Nick name : Prairie) used in the treatment
for the infante with spinal deformity : A preliminary report.
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