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Treatment of Duchenne muscular dystrophy
with antisense oligonucleotides

Masafumi Matsuo"”, Yasuhiro Takeshima" , Mariko Yagil)

1) Department of Pediatrics, Kobe University Graduate School of Medicine

Abstract
Duchenne muscular dystrophy (DMD) is a lethal disorder of childhood caused by

deficiency of muscle dystrophin. Interestingly, a milder form of the disease called Becker
muscular dystrophy (BMD) is distinguished form DMD by delayed onset, later dependence
on wheelchair support and longer life span. Both DMD and BMD are caused by mutations in
the dystrophin gene and their clinical difference can be explained by the reading frame rule.
Many attempts have been made to express dystrophin in DMD patients, but an effective
treatment has not yet been established. Identification of dystrophin Kobe promoted the
understanding of the regulatory mechanism of dystrophin pre-mRNA splicing. As a result,
the antisense oligonucleotides therapy whereby the correction of the translational reading
frame of dystrophin mRNA is provided by inducing exon skipping has been proposed to
transform severe DMD into the milder form. Consequently, a 31-mer phosphorothioate
oligonucleotides against the splicing enhancer sequence of exon 19 of the dystrophin gene
(antisense oligonucleotides : AO) was shown to be able to induce exon 19 skipping.
Furthermore, the transfection of AO into cultured myocytes from a DMD case with an out-of -
-frame deletion of exon 20 promoted expression of dystrophin successfully. The peripheral
infusion of the AO solution into a DMD case harboring an out-of-frame deletion of exon 20

produced in-frame dystrophin mRNA and led dystrophin expression in skeletal muscle,

1. Introduction

Duchenne muscular dystrophy (DMD) is a lethal disorder of childhood usually associated
with a functional deficiency of dystrophin. Until now no effective treatment for DMD has

been established. Currently much attention has been paid for antisense oligonucleotides
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(AO) therapy that converts severe DMD to milder Becker muscular dystrophy (BMD) by
inducing exon skipping. Present progress made in this area of research with particular

reference to dystrophin Kobe is presented.

2. Duchenne muscular dystrophy

Duchenne muscular dystrophy (DMD) is the most common inherited muscular disease
with a worldwide incidence of 1 in 3500 male births. DMD is a lethal disorder of childhood
associated with a functional deficiency of dystrophin. The affected individuals are
wheelchair-bound by the age of 12 and succumb to cardiac or respiratory failure in the mid
to late 20s. Interestingiy, a milder form of the disease called Becker muscular dystrophy
(BMD) is distinguished from DMD by delayed onset, later dependence on wheelchair |
support and longer life span. Both DMD and BMD are caused by mutations in the dystrophin
gene. The dystrophin gene is 3,000 kb in size and consists of 79 exons encoding a 14 kb
mRNA. Nearly two-thirds of identified mutations in the dystrophin gene are deletions with a
loss of one or more exons. Duplications with acquisition of one or more exons have been
observed in 5-10% of DMD/BMD patients. The remaining 20-30% of cases are caused by
small mutations including point mutations, microdeletions, microinsertions, and chromoso-

mal abnormalities.

3. Reading-frame rule

Although both DMD and BMD patients have been shown to ha\}e deletion mutations, the
extent of the deletion does not always correlate with the severity of the disease : some BMD
patients with mild symptoms have deletions encompassing numerous exons, whereas some
DMD patients with severe symptoms lack a single exon. According to the reading-frame
rule”, the BMD patents with the deletions might be able to produce an in-frame dystrophin
mRNA that would still direct the production of an internally truncated semi-functional
protein. The deletions harbored by severe DMD patients, on the other hand, would bring
together exons that, when spliced, would shift the translational reading frame in the mRNA,
such that premature stop codon is created. This rule predicts that milder BMD patients would
produce a smaller semi-functional protein while DMD patients would not produce a protein
at all. Based on this rule phenotype of dystrophinopathy can be explained by their genotype

in more than 90% of cases.
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Fig.1 Dystrophin Kobe
Splicing pathway of dystrophin Kobe is schematically described. In normal exon 19
is incorporated into dystrophin mRNA. In dystrophin Kobe the whole sequence of exon
19 disappeared from dystrophin mRNA. This exon skipping was induced even though
all consensus sequences around the exon/intron junctions were maintained intact.
Boxes and lines indicate exon and intron, respectively. Numbers inside the boxes
indicate exon number. Diagonal lines indicate splicing pathways.

4 . Dystrophin Kobe

In one particular dystrophin gene mutation named dystrophin Kobe”, we found that exon
skipping during splicing was induced by the presence of intra-exon deletion mutation in the
genome, although all of the consensus sequences known to be required for splicing were
unaffected. In dystrophin Kobe 52 bp out of 88 bp of exon 19 were found deleted and this
52 bp deletion was considered to cause DMD by shifting the reading frame”. Unexpectedly,
his dystrophin mRNA of dystrophin Kobe was found smaller than predicted when it was
analyzed by reverse-transcription PCR amplification. Sequence analysis of the product
disclosed that the whole 88 bp of exon 19 was missing from the dystrophin cDNA, instead
of the shortened exon 19”. This indicated that exon 19 of the dystrophin Kobe was skipped
out during pre-mRNA splicing. |

Taken it consideration that consensus sequences for splicing locating around the exon/
intron junctions were maintained intact in the dystrophin Kobe”, it was hypothesized that the

deleted sequence of exon 19 in dystrophin Kobe may function as a cis-acting element for
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exact splicing for the upstream and downstream introns. In order to exemplify this
hypothesis, an in vitro splicing system using artificial dystrophin pre-mRNAs was
constructed and the role of deleted sequence was examined. It was disclosed that splicing of
intron 18 was almost completely abolished when the wild-type exon 19 was replaced by the
dystrophin Kobe exon 19”. This indicated that the deleted region functioned as a splicing
enhancer sequence. It was hypothesized that the antisense oligonucleotides may induce exon
skipping by blocking the function of splicing enhancer. In fact, the 31-mer-phosphorothioate
oligonucleotides (5-GCCTGAGCTGATCTGCTGGCATCTTGCAGTT-3") (A0O19)

covering a splicing enhancer sequence of exon 19 was found to inhibit splicing in in vitro
splicing‘”. Since the aforementioned result suggested a possibility of artificial induction of
exon 19 skipping, AO19 was then transfected to normal lymphoblastoid cells. Remarkably
exon 19 sequences disappeared from all dyétrophin mRNAs at 24 hours after the
transfection”. AO19 was thus proved to be a powerful tool with the ability to induce exon 19

skipping.
5. Production of dystrophin in DMD derived muscle cells ——

Induction of exon 19 skipping with AO19 was assessed for DMD treatment. An
alternative strategy for DMD treatment might be to retard progression of the clinical
symptoms, i. e., to convert DMD into BMD phenotype. Theoretically, this therapy can be
done by changing a frame-shift mutation causing DMD into an in-frame mutation
characteristic of BMD by modifying the dystrophin mRNA. Since transfection of the AO19
has been shown to induce exon 19 skippingS), we subsequently investigated whether AO19
can be used to treat a DMD case with a 242 nucleotide deletion of exon 20 (Fig. 2).If exon
19 (88 bp) skipping is induced in this case, the translational reading frame of dystrophin
mRNA will be restored by enlarging the deletion from 242 to 330 bp. As a result, this
modulation of splicing should lead to the production of internally deleted dystrophin in
muscle cells from the case. A Japanese DMD patient was identified to have a deletion of
exon 20 of the dystrophin gene. A primary muscle culture cell established from his muscle
biopsy sample was treated with AO19. Introduction of AO19 into the nuclei of cultured cells
led to skipping of exon 19 in a proportion of total mRNA. As expected dystrophin-positive
cells were identified. The percentage of dystrophin positive cells was nearly 20% at the 10th
day after the transfection®. These results showed that dystrophin expression was promoted

by editing dystrophin mRNA and strongly indicated a possibility of DMD treatment with
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No dystrophin

dystrophin

Fig.2  Correction of translational reading-frame using antisense oligonu-

, cleotides

In DMD with a deletion of exon 20 (242 bp), splicing of dystrophin pre-
mRNA proceeds to produce out-of-frame mRNA lacking exon 20 and no
dystrophin is produced (top). In the presence of the antisense oligonucleotide
against the splicing enhancer sequence, recognition of exon 19 (88 bp) is
inhibited and splicing proceeds unrecognizing exon 19 to produce in-frame
mRNA (bottom). Boxes and number in boxes indicate exon and exon number,
respectively.

AO19.

However, delivery of AO19 into skeletal muscle was puzzled. When injection of labeled
AO19 into peritoneum of mdx mouse was conducted, nucleus of muscle cells became
fluorescent positive. Remarkably exon 19 skipping was observed in cardiac and skeletal
muscle”. It thus can be concluded that AO19 can be delivered to muscle cells by directly

injecting into venous system.

6 . Treatment with antisense oligonucleotides

After obtaining the permission from the Ethical Committee of Kobe University Graduate
School of Medicine and the informed consent from parents, a 10-year-old DMD patient
possessing an out-of-frame, exon 20 deletion of the dystrophin gene received a 0.5 mg/kg
intravenous infusion of AO19 that was synthesized under the GMP guideline. AO19 was

administered at one-week intervals for 4 weeks. No side effects attributable to infusion were
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observed. Remarkably, exon 19 skipping appeared in a portion of the dystrophin mRNA in
péripheral lymphocytes after the infusion. In a muscle biopsy one week after the final
infusion, the novel in-frame mRNA lacking both exons 19 and 20 was identified and found
to represent approximately 6% of the total reverse transcription PCR product. Dystrophin
was identified histochemically in the sarcolemma of muscle cells éfter oligonucleotide
treatment. These findings demonstrate that phosphorothioate oligonucleotides may be
administered safely to children with DMD, and that a simple intravenous infusion is an
effective delivery mechanism for oligonucleotides that lead to exon skipping in DMD

skeletal muscles® .

7 . Exon skipping therapy for DMD

Correction of the dystrophin reading frame from out-of-frame into in-frame by induction
of exon skipping is now considered as the most promising treatment for DMD® . Therefore,
this strategy has been applied for treatment of DMD with deletion in the deletion hot-spot'® .
In addition, this strategy can be applied to DMD cases with a nonsense mutation as natural
rescue by exon skipping has been reported in some nonsense mutations''”. Therefore, exon
skipping by AO is considered widely applicable than expected. However, it should be careful
in assessing the effect of AO, because unanticipated splicing error may ensue the altered

13)

splicing by AO™.
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