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vestibule or at the scala vestibuli. This result is consistent with
clinical data of patients suffering from PLF (Goto et al., 2001). At low
frequencies, the pressure generated in the cochlea with a fistula
becomes lower than the pressure in the intact cochlea because the
lymphatic fluid easily flows in and out through the fistula. By
contrast, at high frequencies, the movement of the lymphatic fluid
depends on the inertia of the lymphatic fluid itself rather than on
the boundary condition surrounding the lymphatic fluid. This is
a reason why the changes in the vibration of the BM at high
frequencies are smaller than those at low frequencies.

Meanwhile, when a fistula existed adjacent to the RW, the
maximum amplitude was not changed significantly even though
the size of the fistula adjacent to the RW is larger than that of the
fistula at other places (Table 3). Foster and Luebke (2002) reported
that the RW fistula itself does not cause hearing loss, and air
bubbles entered into the cochlea from the fistula. Our findings are
in agreement with this result. The RW membrane is far more
mobile than the bony wall of the cochlea, and the lymphatic fluid at
the vicinity of the RW can naturally flow easily. In other words, the
RW can be regarded as a large fistula. This is the reason why a fistula
near the RW does not affect the vibration of the BM. On the other
hand, Kelly and Khanna (1984) reported that opening the round
window caused histological damage in the apical region of the BM
presumably due to a large momentary pressure differential created
across the organ of Corti. This damage was similar to that induced
by low-frequency sound and may cause the loss of sensitivity of the
BM (Leonard and Khanna, 1984). In our present analysis, the
damages of the organ of Corti and the BM have not been consid-
ered, and hearing loss was estimated based on only the attenuation
of the BM vibration. To clarify the actual mechanism of hearing loss
caused by a perilymphatic fistula, the effects of the histological
damages should most likely be considered in the future.

5. Conclusions

In this study, a three-dimensional finite-element model of the
human cochlea was created. Passive dynamic behavior of the BM,
which is closely related to auditory activity at moderate to high
SPLs, and the cochlear fluid caused by the vibration of the stapes
footplate were analyzed. When a fistula exists at the vestibule or at
the scala vestibuli, the maximum amplitude of the BM becomes
smaller than that in the intact cochlea. The losses in the amplitude
increased with decreasing frequency. In particular, when the fistula
exists at the basal part of the scala vestibuli, the effect extends to
high frequencies. By contrast, when a fistula exists at the vicinity of
the RW, the vibration of the BM scarcely changes. This model assists
in elucidating mechanisms of hearing loss due to a PLF, and is useful
in the establishment of new treatments for the PLF.
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