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Abstract The objective of this study is to investigate age-
related differences in recovered visual function in Royal
College of Surgeons (RCS) rats transduced with the
Channelrhodopsin-2 (ChR2) gene. An adeno-associated
virus vector that contained CAR2 was injected intravitreously
into young or aged RCS rats. After 4 months, visual
evoked potentials were recorded. To estimate the transduction
efficiencies, ChR2V-expressing cells and retrograde labeled
retinal ganglion cells (RGCs) were counted. After photore-
ceptor degradation, immunohistochemistry was used to detect
glial fibrillary acidic protein (GFAP) in the retinas. The
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amplitudes and latencies from young RCS rats were higher
and shorter, respectively, than those from aged RCS rats.
ChR2V was expressed in the RGCs of both groups of rats;
there was no significant difference in the transduction
efficiency of either group. However, the number of RGCs in
aged RCS rats was significantly less than that in young RCS
rats. In addition, strong GFAP immunoreactivity was observed
after photoreceptor degeneration, whereas it was weaker
in ChR2V-expressing RGCs. ChR2 transduction produced
photosensitive RGCs in both young and aged rats. However,
the degree of recovery depended on the age at the time of
transduction.

Keywords Channelrhodopsin-2 - Adeno-associated virus
vector- Royal College of Surgeons rat - Visual evoked
potentials

Introduction

Channelrhodopsin-2 (ChR2) (Nagel et al. 2003; Sineshchekov
et al. 2002) is a 7-transmembrane protein that contains an
all-trans-retinal chromophore(Tsuda et al. 1980) and
functions as a light-driven cation-selective channel (Nagel
et al. 2003). Since ChR2 transduction can confer photo-
sensitivity to neurons (Boyden et al. 2005; Ishizuka et al.
2006), channelrhodopsins have optogenetic applications to
restore vision.

Retinitis pigmentosa (RP), the common inherited disease
that causes blindness, has a prevalence of 1 in 4,000.
Although RP is considered to be an incurable disease
because photoreceptor cells are often degenerated, other
retinal neurons, such as retinal ganglion cells (RGCs), that
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are usually preserved can be used to restore vision
(Humayun et al. 1999; Santos et al. 1997; Stone et al.
1992). For example, Bi et al. (2006) showed that
transducing ChR2 into RGCs restores the visual responses
in the rdl mouse model of RP (Bowes et al. 1990;
McLaughlin et al. 1993). Similarly, we restored visual
(Tomita et al. 2007) and behavioral responses (Tomita et al.
2010) in another type of genetically blind rats, Royal College
of Surgeons rats and photoreceptor-degenerated Thy-I ChR2
transgenic rats (Tomita et al. 2009). Thus, ChR2 gene therapy
is a potentially promising treatment for RP patients with
viable RGCs. The number of remaining RGCs depends
on the disease progression. In severe cases, they may be
eliminated (Humayun et al. 1999). In general, functional
abnormalities of the inner retinal neurons and retinal
remodeling occur after photoreceptor degeneration (Strettoi
et al. 2002, 2003). However, the function of RGCs after
photoreceptor degeneration is not completely understood.

To elucidate the age dependence of the function of the
remaining RGCs after photoreceptor degeneration, we
transduced ChR2 into the RGCs of young and aged RCS
rats and then measured their electrophysiological functions.

Materials and Methods
Animals

Young (6-month-old) and aged (10-month-old) male RCS
(rdy/rdy) rats were purchased from CLEA Japan, Inc.
These rats were maintained on a 12-h light—dark cycle

Fig. 1 Experimental design.
Adeno-associated virus
vectors that contained the
Channelrhodopsin-2 gene
(AAV-ChR2V) were injected

and fed standard laboratory chow and water ad libitum.
All experiments were approved by the Animal Research
Committee, Graduate School of Medicine, Tohoku Uni-
versity, Japan. In addition, the experimental procedures
adhered to the Association for Research in Vision and
Ophthalmology Statement for the Use of Animals in
Ophthalmologic and Vision Research.

Preparation of the Adeno-Associated Virus Vector

The adeno-associated virus (AAV) vector with the ChR2 gene
was constructed as described previously (Tomita et al. 2007).
Briefly, the first 315 amino acids of ChR2 (GenBank
Accession No. AF461397) were fused to Venus, a fluorescent
protein. Then, the AAV Helper-Free System (Stratagene, La
Jolla, CA) was used to produce infectious, AAV-Venus
(control) and AAV-ChR2V virions, which were purified
by a single-step column purification method as previously
described (Sugano et al. 2005).

Intravitreal Delivery of Adeno-Associated Virus

The AAVs were injected into rats at the times shown in
Fig. 1. Prior to this operation, the rats were anesthetized by
an intramuscular injection of 66 mg kg™' ketamine and
33 mg kg ' xylazine. Then, by using an operating
microscope, an incision was made into the conjunctiva to
expose the sclera. Five microliters of a suspension that
contained 1-10x10'? virions-puL™" was intravitreally
injected through the ora serrata with a 10-pL Hamilton
syringe with a 32-G needle (Hamilton Company, Reno,
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Counting cell number
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Western blot analysis (n=3)
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NV). The AAV-ChR2V virions were injected into both eyes
of young and aged RCS rats. As a control, the AAV-Venus
virions were injected into the right eye of young RCS rats.

Recording of Visual Evoked Potentials

Four months after the intravitreous injections, the visual
evoked potentials (VEPs) were recorded as described
previously (Tomita et al. 2007, 2009, 2010). Briefly,
VEPs were recorded by using a Neuropack (MEB-9102;
Nihon Kohden, Tokyo, Japan). First, the rats were
anaesthetized with ketamine-xylazine, and then their
pupils were dilated with 1% atropine and 2.5% phenylephrine
hydrochloride. Photic stimuli of various intensities were
generated from a blue light-emitting diode (LED) at 435—
500 nm (peak at 470 nm) and applied for 10 ms with a
frequency of 0.5 Hz. The high and low pass filters were
set to 50 and 0.05 kHz, respectively. VEP responses were
measured 100 consecutive times, and then the response
waveform was averaged.

Retrograde Labeling of Retinal Ganglion Cells

After recording the VEPs, retrograde labeling was used to
identify RGCs in the ganglion cell layer. The labeling was
performed by injecting 4 pL of a solution of 2% aqueous
fluorogold (FG; Fluorochrome, Englewood, CO) (Brecha
and Weigmann 1994) and 1% dimethylsulfoxide into the
superior colliculus with a Hamilton syringe and a 32-G
needle (Sato et al. 2005).

Determination of Transduction Efficiency

At the end of the experiment, the rats were sacrificed and
their eyes were resected and fixed in 4% paraformaldehyde
and 0.1 M phosphate buffer, pH 7.4. The left eye of each rat
was flat-mounted on a slide and covered with Vectashield
medium (Vector Laboratories, Burlingame, CA) to prevent
the degradation of fluorescence. Then, the number of
fluorogold-positive RGCs and double-positive (fluorogold
and Venus) RGCs were counted in 12 different areas (3
areasx4 quadrants) by using a fluorescence microscope
(Axiovert 40, Carl Zeiss, Tokyo). These numbers were used
to estimate the transduction efficiency of AAV-ChR2V. In
addition, the vertical image in the retinal whole mount was
reconstructed from z-stacked images that were captured
with the Apotome® z-scanning mode of the Axiovert 40
microscope.

Immunohistochemistry

The right eye of each rat was rinsed with phosphate-
buffered saline (PBS) and serially immersed in 10%,

20%, and 30% sucrose in PBS at 4°C. Subsequently, the
samples were embedded in optimal cutting temperature
compound (Sakura, Tokyo, Japan), and then stored at —80°C
(Tomita et al. 2005). Tissue cryosections (10 pwm thick)
were mounted on slides and air-dried. These sections
were incubated with blocking buffer (0.05% Tween-20,
3% BSA, 3% goat serum in PBS) at room temperature
(RT) for 1 h, and then with mouse anti-rat glial fibrillary
acid protein (GFAP) antibody (1:250; Nihon Millipore,
Tokyo, Japan) with blocking buffer overnight at 4°C. For
the negative control, sections were incubated with the
same concentration of mouse immunoglobulin G (IgG).
After the incubations, the sections were rinsed three
times with PBS, incubated with Alexa 594-conjugated
anti-mouse IgG antibody (Molecular Probes, Eugene,
OR) at RT for 30 min, and then rinsed three times with
PBS. Finally, the sections were mounted with Vectashield
medium (Vector Laboratories, Burlingame, CA), and the
GFAP immunoreactivity was visualized with an Axiovert40
fluorescence microscope.

Antibody Production

A polyclonal antibody was prepared against the ChR2. Two
Japanese white rabbits were injected intradermally with
200 npg of the synthetic peptides GDIRKTTKLNIGGT
(279-292aa), emulsified with complete Freund’s adjuvant.
Keyhole limpet hemocyanin (KLH) was used as a carrier
protein, and synthetic peptides were conjugated to it by the
m-maleimidobenzoyl-N-hydroxysuccinimide ester method.
The rabbits received five booster injections of the synthetic
peptide emulsified with incomplete Freund’s adjuvant.
Following the measurement of the antibody titer by ELISA,
whole blood was collected and then the serum was purified
through a KLH column.

Western Blot Analysis

Retinas were lysed and sonicated in lysis buffer [10 mM
Tris-HCl, 0.5% n-Dodecyl-f-D-maltoside, pH 8.0 containing
a protease inhibitor (Roche Diagnostics, Tokyo)]. For
Western blots of GFAP, ChR2, and [-actin in the retinal
extracts (12 pg protein) were electrophoresed on 4-20%
SDS—polyacrylamide gels (BIO-RAD, Tokyo) and transferred
onto a PVDF membrane. The membranes were bathed
with the GFAP antibody and then washed three times
with TBST [10 mM Tris-HCI (pH 8.0), 150 mM NaCl,
and 0.1% Tween 20]. Alkaline phosphatase-conjugated
goat anti-mouse IgG (Invitrogen, Tokyo) was used as
secondary antibody. Protein bands were developed by the
CDP-star detection reagent (GE Healthcare, Tokyo)
according to the manufacturer’s instructions. Protein bands
were detected by exposing the membranes to X-ray film
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(Fuji, Tokyo, Japan). The membranes were then stripped
of the first antibody and reprobed with antibodies of p-
actin (Santa Cruz Biotechnology, Santa Cruz, CA) or
ChR2.

Statistical Analysis

Statistical analysis was performed by using GraphPad
Prism software ver. 4.00 (GraphPad Software, San Diego,
CA). Statistically significant differences were determined
by using unpaired ¢ tests. The criterion for statistical
significance was p<0.05.

Results
Visual Evoked Potentials

No VEPs were recorded in any of the wild-type or control RCS
rats, even with most intense photic stimuli (data not shown). In
contrast, photic stimuli produced VEPs in both the young and
aged RCS rats that were infected with the AAV-ChR2V virions.
However, there were some differences between the overall
shapes of the waveforms of the young and aged RCS rats
(Fig. 2a). For example, the VEP amplitudes from young RCS
rats were larger than those from aged RCS rats (Fig. 2b). In
addition, the P1 latency in young RCS rats was significantly
shorter than that in aged RCS rats (Fig. 2¢).

Transduction Efficiency of ChR2V

ChR2V was expressed in the retinas of both young (Fig. 3a)
and aged RCS rats (Fig. 3b). Most ChR2V-expressing cells
were considered to be RGCs because their axons and
dendrites were labeled with Venus fluorescent protein. In
addition, a vertical section of the z-stacked images showed
that the ChR2V-expressing cells coincided with retrograde-
labeled RGCs (Fig. 3¢). The number of RGCs and double-
labeled RGCs in the retinas of aged rats was less than that of
young rats (Fig. 3d). However, the transduction efficiencies
in the retinas of young (28.3+5.3%) and aged (27.7+9.5%)
rats were very similar.

Immunohistochemistry and Western Blot Analysis

GFAP immunoreactivity was strong after photoreceptor
degeneration (Fig. 4a—). However, GFAP immunoreactivity
was weak in ChR2V-expressing retinal cells (Fig. 4d).
Western blot analysis of retinal extracts showed that the
GFAP protein expression in untreated or AAV-Venus injected
RCS rats was higher than that in AAV-ChR2V injected RCS
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Fig. 2 VEPs recorded from the eyes of young and aged RCS
rats transduced with the Channelrhodopsin-2 (ChR2) gene. a
Typical waveforms evoked by photic stimuli from a blue LED
(upper panel: wild-type rat, middle panel: young RCS rat, lower
panel: aged RCS rat). b, ¢ The relationships between the light
stimulus intensity and VEP amplitude (b) or the P1 latency (c). The
data points and error bars indicate the mean and standard deviation,
respectively (7=6)
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Fig. 3 ChR2V expression in the
inner retinal layers of the eyes of
young and aged RCS rats. a, b
Fluorescence microphotographs
from young (a) and aged (b)
RCS rats. ¢ A vertical image

of the retina in a young RCS
rat that was reconstructed from
z-stacked images. d The
transduction efficiencies were
estimated by counting Venus
and fluorogold positive cells.
The height of the bars and the
error bars indicate the mean and
standard deviation, respectively
(n=6). ¥**p<0.001
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rats. The GFAP protein expression was slightly detected in
non-dystrophic (RCS, +/+) rats (Fig. 4¢).

Discussion

Degenerative eye diseases, such as RP, usually affect
photoreceptor cells first. Subsequently, RGCs are also affected
and the inner retinal neurons are remodeled (Grunder et al.
2001; Marc et al. 2003, 2007; Strettoi and Pignatelli 2000;
Strettoi et al. 2002, 2003). However, the function of the

remaining RGC:s is not clear. In this study, we observed age-
dependent reductions in the number of RGCs. In addition,
the ChR2V-expressing RGCs of both young and aged rats
responded to light stimuli and evoked potentials. Although
there were some differences in the maximum VEP amplitudes
in the two groups of rats, they both showed similar increases
in VEP amplitude with increasing stimulus intensity. These
results indicated that the surviving RGCs are still able to
produce action potentials.

Histological examinations show that photoreceptor
degeneration in RCS rats begins on approximately
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Fig. 4 Changes in GFAP immunoreactivity after photoreceptor
degeneration. GFAP immunoreactivity (red) was measured in 3-month-
old (a), 6-month-old (b), and 10-month-old (¢) RCS rats. d Weak GFAP

postnatal day 20 (P20) and ends with rod degeneration by
P100 (LaVail and Battelle 1975; Mullen and LaVail 1976;
Tamai and Chader 1979). Similarly, electroretinogram
analyses demonstrate that photoreceptors disappear by P80
(Bush et al. 1995; Sauve et al. 2004). In the latter studies, the
first definitive signs of photoreceptor degeneration are
decreased receptive field size, contrast sensitivity, and
threshold sensitivity within a month after birth (Pu et al.
2006). However, these characteristics are determined by
indirect stimulation of RGCs by photoreceptors because the
native RGCs are not light sensitive. In this study, we
overcame this limitation by transducing RGCs with ChR2
to make them photosensitive.

We did not observe a decrease in the number of RGCs in
young RCS rats, which is consistent with a previous study that
did not show any significant loss of RGCs for 6 months
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immunoreactivity was observed in the retinal cells of young RCS rats
that had been transduced with Ch2R. Western blots showed the decreased
GFAP protein expression in AAV-ChR2V transduced rat retinas (e)

(Pavlidis et al. 2000). In contrast, we observed a significant
loss of RGCs in aged RCS rats. Interestingly, the transduction
efficiencies of both groups of rats were the same; however, the
cause is not known. Since RGCs are classified into different
groups by their morphology (Huxlin and Goodchild 1997), it
is possible that the AAV type-2 vector may have a higher
affinity to some types of RGCs. Nevertheless, the high
transduction efficiency of the AAV type-2 vector in RGCs in
this study is in agreement with previous results (Al et al.
1998; Martin et al. 2002). The lack of a significant difference
between the contribution of individual ChR2-expressing
RGCs to the maximum VEP amplitude in young and
aged RCS rats (young rats: 111.7+17.7 uVv/710.6+117.7
cells=0.157 uV-cell™, aged rats: 77.5£15.1 uV/414.2+
144.5 cells=0.187 pV-cell™") indicated that the activity of
individual RGCs was independent of age.



