Table 1 Mitochondrial DNA variants identified in this study

Gene  Mutation Homo/ prelingual HL  Late-onset HL Controls freq in Japanese freq in conservation  Previous mtDB* freq in
heteroplasmy (N = 54) (N = 80) (N = 137) controls (%) (N =672)* Japanese (%) index” report* (N =2704) mtDB (%)
125 663A > G homoplasmy 3 5 2 15 48 7.1 29/51 yes 86 3.2
rRNA
709G > A homoplasmy 7 7 12 8.8 125 18.6 19/51 ves 444 164
750A > G homoplasmy 54 80 137 1000 no data no data 49/51 ves 2682 96.7
752C > T homoplasmy 0 0 9 6.6 17 25 44/51 yes 20 0.7
827A > G homoplasmy 4 3 3 22 25 37 48/51 yes 54 2.0
904C > T  homoplasmy 1 0 0 0.0 0 0.0 48/51 none 0 0.0
961insC homoplasmy 1 0 3 2.2 1 0.1 9/51 yes 37 20
961delT+ both 0 1 4(2) 29 no data no data 9/51 yes no data no data
Cn
1005T > C both 1 m 1 07 1 0.1 33/51 yes 7 03
1009C > T homoplasmy 0 0 | 0.7 1 0.1 9/51 yes 2 0.1
1041A > G homoplasmy 0 4 5 36 11 16 26/51 yes 14 0.5
1107T » C homoplasmy 0 0 6 44 29 4.3 30/51 yes 34 1.26
11197 > C homoplasmy 1 2 7 5.1 20 30 20/51 yes 26 10
1382A > C homoplasmy 0 [ 1 80 62 9.2 38/51 yes 65 24
1438A > G homoplasmy 54 80 137 1000 662 98.5 46/51 yes 2620 96.9
[!?{/V{itﬁ 7501T > A homoplasmy 0 3 0 0.0 1 0.1 15/51 yes 1 0.0

Mitochondrial gene variants that met the criterion for association with hearing loss {HL) are underlined and in bold type. *Data from the mtSNP database [48]. "Based on the results of the multiple alignment by
ClustalW. See Additional File 1: Table S1 for information on the species used to calculate the sequence conservation. “Uppsala mtDB database [50]. dEach number in parentheses indicates the number of individuals
with a heteroplasmic variant.
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Figure 1 Pedigree of a family carrying the m.904C > T variant. (A) Pedigree of a family carrying the homoplasmic m.904C > T variant.
Individuals with hearing loss are indicated by filled symbols. The arrow indicates the proband. (B) Audiogram of the proband of m.904C > T.
Open circles with the line indicate the air conduction thresholds of the right ear; the X's with dotted line indicate the air conduction thresholds
of the left ear; [, bone conduction thresholds of the right ear; ], bone conduction thresholds of the left ear. Arrows indicate the scale-out level of
hearing loss. (C, D) Secondary structures of wild-type 125 rRNA (C) and 125 rRNA with the m.904C > T (D) predicted by Centroid Fold. To the
right is shown an enlargement of the region of predicted secondary structures surrounding nucleotide positions including 904 and 1005 (bold
arrows with red circles). Positions 862, 917, 1021, and 1030 are marked by dashed arrows with black circles for easy comparison of the structural

changes. Each predicted base pair is indicated by a gradation of color (red to blue) corresponding to the base-pairing probability from 1 (red) to
0 (blue) according to Centroid Fold.
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stem-like structure from positions 1021 to 1030 (Figure
1C and 1D), implicating a significant role for 904C in
12S rRNA folding.

The homoplasmic m.1005T > C variant in the 12§
rRNA was found in a male patient with prelingual,
severe hearing loss (Figure 2A, B). The patient’s spouse
had prelingual hearing loss owing to measles, and their
child also had prelingual hearing loss. The m.1005T > C
variant was not detected in the patient’s spouse or
daughter. DNA samples were not obtained from other
family members.

The heteroplasmic m.1005T > C variant together with
the homoplasmic mutation m.709G > A was detected in
a male patient from a consanguineous marriage of par-
ents with normal hearing (Figure 2C). In the proband
(I11:3), onset of hearing loss and diabetes mellitus
occurred in his 40s. Among his five siblings, four (IIL:1,
2, 4, 6) also showed adult-onset hearing loss between
age 20 and 50 years, but they did not have diabetes mel-
litus. The fifth sibling suffered from infantile paralysis
and died at age 6 (II1:5). Cloning of the fragment of 125
rRNA, which demonstrated apparent heteroduplex for-
mation (Figure 2D, arrow), yielded 12 of 54 clones
(22%) with the m.1005T > C variant. However, the
m.1005T > C variant was not detected in 24 clones
derived from the mtDNA from each of these siblings,
indicating that the variant was absent in the siblings or
the frequency was less than 4%. The audiograms showed
severe to profound hearing loss in the siblings 111, 2, 3,
and 4 (Figure 2E, F, 3A, B). The secondary structure of
the 125 rRNA variant predicted by Centroid Fold indi-
cated that the m.1005T > C induces a gross structural
alteration in the transcript, including nucleotide posi-
tions 862 to 917 (Figure 1C and 3C).

Three patients appeared to carry the homoplasmic
m.7501T > A variant in tRNAS" Y (Figure 4A, C, E).
One female patient suffered from episodic vertigo from
age 27 years followed by tinnitus and fluctuant, moder-
ate progressive hearing loss, and she had no familial his-
tory of hearing loss (Figure 4A, B). Another female
patient suffered from tinnitus beginning at age 24 years
and had been exposed to streptomycin from age 36 to
37 for treatment of tuberculosis (Figure 4C, D). She suf-
fered from fluctuant, moderate hearing loss from her
50s and had no familial history of hearing loss. The
third patient was a male from a consanguineous mar-
riage of parents with normal hearing and showed non-
progressive, severe hearing loss from childhood without
tinnitus or vertigo (Figure 4E, F). Later, he was also
found to have X-linked spinal and bulbar muscular atro-
phy (SBMA/Kennedy-Alter-Sung disease/Kennedy's dis-
ease). In this family, six of seven siblings showed
hearing loss. Family members other than the proband
did not participate in this study. According to the
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secondary structure prediction by Centroid Fold, the
m.7501T > A in (RNA®" ™ (which is transcribed as U
in the reverse direction) causes an elongation of the D-
arm in the transcript by reducing the size of the D-loop
of tRNA3" VN (Figure 4G, H), which might affect bio-
synthesis of mitochondrial proteins [55].

Discussion

In our study, screening of mtDNA by dHPLC and direct
sequencing detected 15 variants in 125 rRNA and 1 var-
fant in tRNAS" N, Comparison of the variant frequen-
cies in controls, assessment of nucleotide conservation
among mammalian species, and structural analysis of
the transcript was used to select candidate mutations
associated with hearing loss. No variants in tRNA"*"
WLR) (pNADS, (RNAME, (RNASAGY) or tRNACH were
detected in the subjects studied here, suggesting that the
mutations in these genes associated with hearing loss
are not common in the Japanese population.

To our knowledge, the homoplasmic m.904C > T var-
iant in 12S rRNA has not been reported elsewhere. Lack
of symptoms in the maternal relatives does not exclude
mitochondrial transmission, because penetrance of 12§
rRNA mutations can be extremely low, as seen in the
m.1555A > G associated with hearing loss [56]. Conser-
vation of the nucleotides among mammals and gross
alteration of the predicted secondary structure of the
128 rRNA transcript suggest that the m.904C > T var-
iant might affect auditory function by changing the effi-
ciency with which mRNAs are transcribed to yield
mitochondrial proteins.

A patient with the homoplasmic m.1005T > C variant
in the 12S rRNA had a child with prelingual hearing
loss. The inheritance of hearing loss in the child is likely
due to the transmission of an autosomal mutation, not
mtDNA, from the male proband. Therefore, the data for
this family may not provide unequivocal information
about the pathogenicity of the m.1005T > C variant
[4,22,27,30].

Identification of the heteroplasmic m.1005T > C var-
iant in a patient with hearing loss is a novel finding,
because this variant has been known only as homoplas-
mic [22,27,30,34]. We did not verify that the heteroplas-
mic m.1005T > C variant was correlated with hearing
loss because four of five siblings of the proband had
hearing loss without carrying the variant, whereas it
might be associated with diabetes mellitus. However, it
is difficult to exclude the possibility of association of the
heteroplasmic variant detected in blood samples with
mitochondrial diseases such as deafness. Frequencies of
heteroplasmy of mtDNA vary considerably among tis-
sues in the same individual (for instance, [37,57,58]).
Therefore, it is possible that the frequency of the
m.1005T > C variant in the inner ear cells of the
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Figure 2 Pedigrees of families carrying the m.1005T > C variant. (A B) Pedigree of a family carrying the homoplasmic m.1005T > C (A), and
the audiogram of the proband (B). (C-F) Pedigree of a family carrying heteroplasmic m.1005T > C (C), and the chromatogram of dHPLC of the
| MT4 fragment of the proband (D). The arrows indicate split peaks of the fragment owing to the heteroplasmic m.1005T > C. Audiograms of the
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Figure 3 Pedigrees of families carrying the m.1005T > C variant (continued). (AB) Audiograms of the siblings (lll: 3, 4) of a family carrying
the heteroplasmic m.1005T > C (Figure 2C). (C) Predicted secondary structure of the 125 rRNA transcript with the m.1005T > C. To the right is
shown an enlargement of the region of predicted secondary structures surrounding nucleotide position 1005.

siblings is much higher than in the blood cells and thus
may underlie the hearing loss.

Another finding in this study is that three patients
with postlingual hearing loss had the homoplasmic
m.7501T > A variant in tRNA*” “/““ Various muta-
tions in tRNAS“ TN guch as m.7445A > G [15,16],
7472insC [17,59], 7505T > C [60], 7510T > C [18], and
7511T > C [51,59,61], are associated with various types
of hearing loss (syndromic or nonsyndromic, prelingual
or late-onset), raising the possibility that the m.7501T >
A variant, reported elsewhere without detailed investiga-
tion [33], is also associated with hearing loss. The low
conservation of the variation at this position (29%
among mammals) does not support the pathogenicity of
the variant, in contrast to the much higher conservation

at m.7472A (61%), 7505A (98%), 7510T (78%), and
7511T (98%). On the other hand, the m.7501T > A var-
iant is predicted to modify the secondary structure of
the D-arm in the tRNA*““N transcript; the D-arm is
important for the stability of the transcript and the gen-
eral rate of mitochondrial protein synthesis [55]. Further
investigation, such as haplogroup analysis or generating
lymphoblastoid cell lines to measure endogenous
respiration rates, may help to define the pathogenicity of
the m.7501T > A variant.

All other variants found in this study, such as m.827A
> G, 961insC, and 961delT + Cn, which have been dis-
cussed elsewhere with respect to their pathogenicity
[21,22,27,30,62], were considered to be non-pathologic
polymorphisms because they were found frequently in
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the controls. The other variants, m.663A > G, 709G > A,
750A > G, 752C > T, 1009C > T, 1041A > G, 1107T >
C, 11197 > C, 1382A > C, and 1438A > G, were fre-
quently detected in the controls and considered to be
nonpathogenic polymorphisms, which is in consistent
with a previous report [27]. The spectrum of variants of
mitochondrial genes in Japanese individuals was similar
to that in a Chinese population [27], for which most of
the variants detected in this study (other than. the
m.904C > T and 7501T > A) have been reported. In
contrast, the spectrum was dissimilar to those in other
ethnic groups such as the Polish population [19,63]. Our
results indicate that ethnic background should be taken
into consideration when studying the pathogenicity of
mtDNA variants based on their frequencies in controls.

Conclusions

We sought to detect mitochondrial variants other than
m.1555A > G or 3243A > G mutations, which are
known to be related to hearing loss, by dHPLC, direct
sequencing, and cloning-sequencing in samples from
Japanese patients with hearing loss. The homoplasmic
m.904C > T variant in 125 rRNA was considered to be a
new candidate mutation associated with hearing loss.
The pathogenicity of the m.7501T > A variant in tRNA-
SerlCN) remains inconclusive, and other variants identi-
fied in this study, including the heteroplasmic m.1005T
> C variant, are not positively associated with hearing
loss. No variants were detected in the in tRNA™ /"%,
ERNA™, tRNA™S, (RNAS" %Y, and tRNAS".

Additional material

Additional file 1: Table S1. List of animal species and the accession }
numbers of the mtDNA (GenBank) used to calculate nucleotide
conservation.
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Different cortical metabolic activation by visual stimuli possibly due to

different time courses of hearing loss in patients with GJB2 and SLC26A44
mutations

HIDEAKI MOTEKI', YASUSHI NAITO?, KEIZO FUJIWARAZ RYOSUKE KITOH',
SHIN-YA NISHIO', KAZUHIRO OGUCHTI’, YUTAKA TAKUMI' & SHIN-ICHI USAMI"

' Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, *Department of

Otorhinolaryngology, Kobe City Medical Center General H ospiral, Kobe and > Positron Imaging Center, Aizawa Hospital,
Maztsumoto, Fapan

Abstract

Conclusion. We have demonstrated differences in cortical activation with language-related visual stimuli in patients who were
profoundly deafened due to genetic mutations in GJ¥B2 and SLC26A4. The differences in cortical processing patterns between
these two cases may have been influenced by the differing clinical courses and pathogenesis of hearing loss due to genetic
mutations. Our results suggest the importance of hearing during early childhood for the development of a normal cortical
language network. Objectives. To investigate the cortical activation with language-related visual stimuli in patients who were
profoundly deafened due to genetic mutations in GJ¥B2 and SLC26A44. Methods: The cortical activity of two adult patients with
known genetic mutations (GYB2, SLC26A4) was evaluated with fluorodeoxyglucose-positron emission tomography (FDG-
PET) with a visual language task and compared with that of normal-hearing controls. Results: A patient with a G¥B2 mutation
showed activation in the right auditory association area [BA21, BA22], and the left auditory association area [BA42] even with

visual language task; in contrast, a patient with an SLC26A44 mutation showed no significant activation in the corresponding
area.

Keywords: FDG-PET, visual language task, functional brain imaging

Introduction

Functional brain imaging is an effective method for
investigating the cortical processing of language,
which has provided much evidence for the plasticity
of the central auditory pathway following a profound
loss of hearing [1-4]. Many previous studies showed
that there is a capacity of the auditory cortex for
cross-modal plasticity after auditory deprivation of
the brain. Cerebral glucose metabolism in the pri-
mary auditory and related cortices in individuals
with prelingual deafness was shown to decrease in
younger patients, but to increase as they aged and,
in fact, recover fully or even exceed the normal
level of activation [5-7]. Children with prelingual

deafness can acquire spoken language by cochlear
implantation, but its efficacy decreases with age. The
development of the auditory cortex is believed to
depend on the patient’s auditory experience within
‘critical periods’ in the early lifetime. Adults who
had severe congenital hearing loss in their childhood
may take advantage of hearing with cochlear
implants if they had exploited residual hearing
with hearing aids. It has been shown that low
glucose metabolism in the temporal auditory cortex
predicts a good cochlear implant outcome in
prelingually deafened children, which suggests that
low metabolism in the auditory cortex may indi-
cate its potential of plasticity for spoken language
acquisition [7].
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Meanwhile, several etiological studies suggest that
at least 60% of congenital hearing loss has genetic
causes. Recent advances in molecular genetics have
made genetic diagnosis possible [8]. The identifica-
tion of the mutation responsible for hearing loss may
provide some information as to cochlear damage, and
help predict the time course and manifestations of
hearing loss. Genetic testing can therefore be useful in
decision-making regarding cochlear implantation and
other necessary treatment.

Evaluation of brain function and diagnosing accu-
rate etiology of hearing loss may be the keys to
personalizing post-cochlear implantation habilitation
programs and predicting the outcomes thereof.

In this study, we used 18 F-fluorodeoxyglucose
(FDGQG) positron emission tomography (PET) to mea-
sure cortical glucose metabolism with a visual lan-
guage task before cochlear implantation in profoundly
deaf patients whose etiologies were identified by
genetic testing.

Material and methods
Genetic diagnosis

Genetic screening was performed in two cases using
an Invader assay to screen for 41 known hearing loss-
related mutations [9] and direct sequencing for G¥B2
and SLC26A44 mutations [10,11].

FDG-PET scanning and image analysis

FDG-PET scanning and image analysis were per-
formed using the method described by Fujiwara
et al. [12]. During the time period between the
intravenous injection of 370 MBq 18 F-FDG (the
dose was adjusted according to the body weight of
each subject) and the PET scanning of the brain, the
patients were instructed to watch a video of the face of
a speaking person reading a children’s book. The
video lasted for 30 min, and several still illustrations
taken from the book were inserted (for a few seconds
each) to help the subjects to follow the story. The
subjects were video-recorded to confirm that they
were watching the task video. PET images were
acquired with a GE ADVANCE NXi system (General
Electric Medical Systems, Milwaukee, WI, USA).
Spatial preprocessing and statistical analysis were
performed with SPM2 (Institute of Neurology, Uni-
versity College of London, UK) implemented in
Matlab (Mathworks, MA, USA). The cortical radio-
activity of each deaf patient was compared with that of
a control group of normal-hearing adults by a 7 test in
the basic model of SPM2. The statistical significance
level was set at p < 0.001 (uncorrected).

This study was approved by the Ethics Committee
of Shinshu University School of Medicine and written
consent was obtained from each participant.

Control group

The control group consisted of six normal-
hearing right-handed adult subjects. The average
(mean + standard deviation) age of the normal-
hearing subjects was 27.5 + 3.8 years. The pure-
tone average hearing levels were within 20 dB HL
for all.

Case 1

A right-handed 22-year-old female with a G¥B2
mutation (235 delC homozygous) had hearing
impairment that was noticed by her parents when
she was 2 years old. She had used hearing aids ever
since, but with insufficient hearjng amplification. She
used lip-reading and some sign language, and her
speech was not intelligible to hearing people. Com-
puted tomography (CT) findings of the middle and
inner ear were normal. Her average pure-tone hearing
levels were 102.5 dB for the right ear and 95 dB for the
left ear (Figure 1A).

Case 2

A right-handed 26-year-old male with an SLC26A44
mutation (H723R homozygous) had hearing impair-
ment that was noticed by his parents when he was
2 years old, from which time he had used hearing aids
bilaterally. He did not use lip-reading or sign language
during the acquisition age for language. He obtained
spoken language with hearing aids but had progressive
hearing loss, and sometimes suffered vertigo attacks.
His pronunciation was clear, and his speech was
almost completely intelligible. CT findings exhibited
an enlarged vestibular aqueduct on each side. His
average pure-tone hearing levels were 106.2 dB for the
right ear and 100 dB for left ear (Figure 1B).

Results

Figure 2 shows transaxial PET images of each
participant’s brain. The visual stimuli resulted in
bilateral activation of the superior temporal gyrus,
including Heschl’s gyrus in case 1 with G¥B2 muta-
tion (Figure 2A, white arrowhead). In contrast, in
case 2 with SLC26A44 mutation, the activation of
the superior temporal gyrus was much lower than
in case 1 (Figure 2B, white arrowhead).

Figure 3 shows supra-threshold clusters in each
case. In case 1, activation higher than normal controls
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Figure 1. Pure-tone audiograms: (A) a 22-year-old female with a G¥B2 mutation; (B) a 26-year-old male with an SLC2644 mutation. There

were no clear differences in hearing thresholds in these two cases.

was observed in the right auditory association area
[BA21, BA22], and the left auditory association area
[BA42] (p < 0.001). In case 2, the right superior
frontal gyrus [BA9], and the middle temporal gyrus
[BA20], showed higher activation than normal con-
trols (p < 0.001).

Discussion

More than half of congenital hearing loss has been
estimated to be from genetic causes, and phenotypes
are affected by genetic mutations. There have been no

reports of the influence of phenotype on brain func-
tion associated with hearing. This is the first report on
evaluation of cortical processing of language in
patients with genetic mutations as a main etiology
of hearing loss. The auditory association area was
activated bilaterally in case 1 (G¥B2 mutation), but
not activated in case 2 (SLC26A4 mutation).
A previous study indicated that the temporal lobe is
activated during speech-reading in normal subjects
[13] and another study found that the temporal lobe is
not activated when reading fluent speech from a
talking face [14]. For the present study we used a

Figure 2. Transaxial PET images of each participant’s brain: activation (arrowheads) of the superior temporal gyrus with visual language
stimuli in each case. (A) Case 1 (G¥B2 mutation). The superior temporal gyri were strongly activated bilaterally. (B) Case 2 (SLC26A44
mutation). The superior temporal gyri exhibited less activation than in case 1.
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Figure 3. Cortical activation by language-related visual stimuli in
the two profoundly deafened cases. Case 1 (GJB2 mutation)
showed significant activation in the right middle temporal gyrus
[BA21] (1), superior temporal gyrus [BA22] (2), and left superior
temporal gyrus [BA42] (3), and left cerebellum (4), while case
2 (SLC26A4 mutation) exhibited significant activation in the right
superior frontal gyrus [BA9] (1), and middle temporal gyrus
[BA20] (2) (SPM2, p < 0.001, uncorrected).

fluent speech-reading task, similar to that described
by Hall et al. [14]. Fujiwara et al. in a FDG-
PET study using the same methods and task as the
present study, showed that subjects with better spoken
language skills had less temporal lobe activation [12].

To summarize these reports, the patients with
hearing aids with better spoken language skills have
less temporal lobe activation with a visual language
task. Otherwise, Nishimura et al. [15] reported a sign
language activation of the bilateral auditory associa-
tion areas in a congenitally deafened subject. How-
ever, detailed clinical data for the subject — including
his hearing levels, time course of hearing loss, and the
cause of deafness — were not described. The different
visual language activation patterns in the auditory
cortices revealed in the current two profoundly deaf-
ened subjects with different genetic etiologies and
hearing loss progressions may, thus, add further
knowledge of the cross-modal plasticity brought
about in the superior temporal association areas by
lack of hearing.

The differences in cortical processing patterns
between cases 1 and 2 — who both had hearing loss
of cochlear origin — may have been influenced by the
differing clinical courses of hearing loss. GJB2 is
currently known to be the most prevalent gene
responsible for congenital hearing loss worldwide.
Patients with severe phenotypes who have G7B2
mutations are good candidates for implantation,
because their hearing loss is of cochlear origin and
non-progressive [16,17]. SLC26A44 is known as a
commonly found gene and is associated with enlarged

vestibular aquaduct [11]. This phenotype includes
congenital and progressive hearing loss, usually asso-
ciated with vertigo [18]. In most cases hearing
remains in low frequencies, enabling the understand-
ing of spoken language with hearing aids. Cochlear
implantation has resulted in remarkable improve-
ments in auditory skills and speech perception for
patients with profound hearing loss associated with
SLC26A4 mutations as well as G¥B2.

Comparing case 1 (G¥B2 mutation) with case 2
(SLC26A4 mutation), the crucial importance of the
use of hearing aids during childhood up to age 6 years
for acquisition of better hearing is evident. In case 1,
even though she was able to hear sound with the use of
hearing aids, she was unable to recognize enough
speech language due to insufficient hearing amplifi-
cation during the critical periods in her childhood.
She therefore used lip-reading and some sign lan-
guage in addition to hearing aids. Increased metab-
olism was observed by FDG-PET in the auditory
association area, where no significant activation was
found in the normal-hearing controls. In contrast, in
case 2, a 26-year-old patient with an SLC26A44 muta-
tion, there was no significant activation in the corre-
sponding area. He obtained rather hearing ability and
spoken language by hearing aids with residual hearing
at lower frequencies during his childhood. His hearing
was supposed to be better than case 1, because 1) he
did not use lip-reading or sign language during the
acquisition age for language from anamnestic evalu-
ation; 2) his pronunciation was clear, indicating better
hearing (at least 40-50 dB) during the acquisition age
for language; 3) from an etiological point of view,
patients with SLC26A44 mutation usually have mild to
moderate hearing loss during childhood and this
shows a progressive nature [18]. He had progressive
hearing loss in the natural history as a phenotype of
SLC26A4 mutation. The difference in activation pat-
terns in the cases with G¥B2 and SLC26A44 mutations
was clearly demonstrated by statistical processing with
SPM, as well as in the PET scans. These results
suggest the importance of hearing during early child-
hood for the development of a normal cortical lan-
guage network, and that reorganization had occurred
in the auditory cortex of the patient with a GjB2
mutation; i.e. processing visual aspects of language
in the superior temporal gyri. This implies that cross-
modal plasticity as a consequence of the lack of
hearing during the critical period for spoken language
acquisition in early childhood was influenced by the
time course of hearing loss characterized by genetic
mutations.

Previous studies have suggested that auditory areas
presented high accumulation of FDG with deafness of
early onset, and plastic changes in auditory cortices

RIGHTS

I N K



£

aded trom informahealthcare.com by l'ohoku Universily on U5/18/1
For personal use only.

Acta Otolaryngol Downlo

1236 H. Moteki et al.

were strongly affected by the duration of auditory
deprivation [1,5,6,19,20]. Since low activation of
the auditory cortices with visual stimuli suggests the
subject’s lesser dependence on visual communication
methods and substantial residual plasticity in his
auditory cortices, case 2 with an SLC2644 mutation
may be determined to be an appropriate candidate for
cochlear implantation.

Accurate diagnosis of hearing loss and early
cochlear implantation are important for successful
spoken language development. The approach using
PET could help those involved in the habilitation and
education of prelingually deafened children to decide
upon the suitable mode of communication for each
individual.

Both of the patients received cochlear implantation
after PET examination. Further follow-up of these
cases may indicate that efficacy of the combination of
genetic diagnosis and functional brain imaging helps
to predict long-term outcomes of cochlear implanta-
tion. Examination of more cases is necessary to define
the relationship of the varying cortical activation pat-
terns with each genetic mutation.
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Abstract
Despite advances in discovery of deafness genes, clinical application still entails diffi-
culties because of the genetic heterogeneity of deafness. In order to establish strategy
for clinical application, we reviewed the genes responsible for hearing loss patients in
Japan(Usami S et al; Acta Otolaryngol 128: 446-454, 2008), and discussed diagnostic
strategy for mutation screening based on a mutation/gene database (Abe S et al; Genet

Test 11: 333-340, 2007).

Our series of mutation screenings has revealed that mutations in G/B2, SLC26A4, and
CDH23. and the 1555A>G mutation in the mitochondrial 12S rRNA, were the major
causes of hearing loss in Japanese patients. Interestingly, spectrums of G/B2. SLC26A4,
and CDH23 mutations found in the Japanese population were quite different from those

reported in populations with European ancestry. Our simultaneous screening of the

multiple deafness mutations was based on the mutation spectrum of a corresponding

population. The multicenter trial for this assay using an Invader panel revealed that

approximately 40 % of congenital hearing loss subjects could be diagnosed. This assay

will enable us to detect deafness mutations in an efficient and practical manner in the

clinical platform.

Key words: deafness, vertigo, genetic testing
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