Table 1 Detection of Candida and Aspergillus 18S rRNA gene by broad-range real-time PCR in unknown uveitis or endophthalmitis patients and control uveitis patients | Initial diagnosis | No. of patients | Sample | Results for real-time PCR | Final diagnosis | Remarks | |--|------------------|---------|---|--|--| | Idiopathic uveitis/
endophthalmitis | n=46 | Aqh, VF | <10 copies | ldiopathic uveitis/
endophthalmitis | | | | n=1 (65, male) | VF | Candida 9.2×10 ⁵ copies/ml | Candida endophthalmitis | Case 1; Endogenous endophthalmitis | | | n=1 (71, female) | VF | Aspergillus 4.5×10 ² copies/ml | Aspergillus endophthalmitis | Case 2; Endogenous endophthalmitis | | | n=1 (73, male) | VF | Aspergillus 1.8×10 ³ copies/ml | Aspergillus endophthalmitis | Case 3: Late postoperative endophthalmitis | | | n=1 (80, male) | Aqh | Candida 3.4×10 ² copies/ml | Candida endophthalmitis | Case 4; Post-traumatic corneal ulceration | | | n=1 (66, female) | VF | Candida 6.5 × 10 ⁵ copies/ml | Candida endophthalmitis | Case 5; Endogenous endophthalmitis (IFN treatment) | | | n=1 (74, male) | VF | Candida 6.2×10 ⁴ copies/ml | Candida endophthalmitis | Case 6: Endogenous endophthalmitis (diabetes) | | | n=1 (0, female) | VF | Candida 9.4×10 ⁴ copies/ml | Candida endophthalmitis | Case 7; Endogenous endophthalmitis (normal infant) | | | n=1 (60, male) | Aqh | <10 copies | Candida endophthalmitis | Case 8; Endogenous endophthalmitis (IVH use) | | Bacterial endophthalmitis | n=7 | Aqh, VF | <10 copies | / | | | Sarcoidosis | n=4 | Aqh, VF | <10 copies | 1 | | | Vogt-Koyanagi-Harada
disease | n=1 | Aqh | <10 copies | / | | | Toxocariasis | n=1 | Aqh | <10 copies | 1 | | | Toxoplasmosis | n=3 | Aqh, VF | <10 copies | 1 | | | Acute retinal necrosis | n=7 | Aqh, VF | <10 copies | 1 | | | Cytomegalovirus retinitis | n=4 | Aqh, VF | <10 copies | 1 | | | Herpetic anterior iridocyclitis | n=4 | Aqh | <10 copies | 1 | | | Non-inflammatory ocular diseases* | n=40 | Aqh, VF | <10 copies | 1 | Controls for PCR | ^{*}Non-inflammatory ocular diseases: age-related cataract, macular edema, retinal detachment, idiopathic macular hole or idiopathic epiretinal membrane rDNA. As seen in Fig. 1, the broad-range real-time PCR detected six Candida species, i.e., C. albicans, C. parapsilosis, C. tropicalis, C. guilliermondii, C. glabrata, and C. krusei, along with five Aspergillus species, i.e., A. fumigatus, A. flavus, A. nidulans, A. niger, and A. terreus. By using several different primers and probes, we were able to separately detect each of these fungal species (Fig. 1). #### Sensitivity of the real-time PCR assay To confirm the broad-range real-time PCR assay sensitivity, PCR fragments were amplified from the DNA of *C. albicans*. The detection limit and standard range of the TaqMan real-time PCR were determined by using serial tenfold dilutions of linearized plasmid. The PCR results for the prepared samples showed that the best sensitivity for detecting *C. albicans* DNA was at a concentration of 10¹ per PCR (Fig. 2). There was no detection of the DNA in the negative control (nuclease-free water). Detection of *Candida* and *Aspergillus* 18S rRNA gene in unknown uveitis/endophthalmitis patients PCR results indicated a total of seven ocular fluid samples from the idiopathic uveitis or endophthalmitis patients (7/54, 13% positive, Table 1) were positive for *Candida* or *Aspergillus* DNA. These positive patients had high copy numbers of either *Candida* or *Aspergillus* DNA, with values ranging from 3.4×10^2 to 9.2×10^5 copies/ml. These results indicate the presence of a fungal infection. A representative PCR result is shown in Fig. 3. Conversely, conventional fungal cultures only found two out of the seven PCR-positive samples (both *C. albicans*) to be positive, while the other five samples were negative. On the other hand, fungal DNA was not detected in any of the other 46 samples collected from these idiopathic uveitis or endophthalmitis patients. In the one PCR-negative case, PCR did not detect any fungal genome in the aqueous humor (<10 copies, case 8 in Table 1), even Aqh aqueous humor, IFN interferon, IVH Intravenous hyperalimentation, VF vitreous fluids Fig. 1 Specific primers and probes for broad-range real-time PCR of the fungal 18S rRNA sequence were designed in order to detect DNA for Candida and Aspergillus species though this patient was clinically suspected of having Candida endophthalmitis. Real-time PCR results were negative for the Candida and Aspergillus DNA in the bacterial endophthalmitis patients (n=7) and in the various uveitis patients (n=24) who had been diagnosed with sarcoidosis, Vogt-Koyanagi-Harada disease, toxocariasis, toxoplasmosis, acute retinal necrosis, cytomegalovirus retinitis, or herpetic anterior iridocyclitis. In addition, fungal DNA was not detected in any of the 40 control samples that were collected from the patients without ocular inflammation. Of the seven patients who were PCR positive, further examinations led to fungal endophthalmitis diagnoses as follows: five patients had endogenous endophthalmitis (four *Candida* and one *Aspergillus*), one had late postoperative endophthalmitis (*Aspergillus*, case 3), and one had post-traumatic keratitis-associated endophthalmitis (*Candida*, case 4) (Table 1). Case reports Case 1 A 65-year-old man with type II diabetes mellitus was treated for unknown uveitis over a period of a few weeks during 2009. He complained of blurred vision, decreased visual acuity, and pain in his right eye (RE). Ophthalmologic examination demonstrated the presence of characteristics of uveitis, bacterial endophthalmitis and fungal endophthalmitis. Vitreous opacity, including the presence of a fungal ball and yellowish retinal exudates, was seen in the fundus of his RE (Fig. 4a). After vitrectomy of his RE, Fig. 2 In order to examine broad-range real-time PCR assay sensitivity for the fungal 18S PCR, the PCR fragments were amplified from the DNA of C. albicans (ATCC 60193). The number in parenthesis indicates the cycle threshold (Ct) value in quantitative PCR 2 Springer Fig. 3 Representative data for the broad-range real-time PCR. Aspergillus DNA (4.5×10² copies/ml) but not Candida DNA was detected in the vitreous sample of case 2 real-time PCR of the vitreous sample obtained during the procedure indicated there were high copy numbers of Candida DNA (9.2×10⁵ copies/ml, Fig. 4b). Based on these results, the patient was given systemic fluconazole (Table 1). Aspergillus DNA was not detected in this sample. A few days later, fungal culture of his vitreous specimen **Fig. 4** PCR results for case 1. **a** Fundus photograph of the right eye with a *Candida* infection. Dense vitreous opacity and retinal exudates are seen. **b** This is a graph of the PCR results. We calculated the copy number of fungal genomic DNA in the sample. After we measured both the tested ocular sample and the control DNA (10⁵, 10⁴, and 10³ copies/ml) using real-time PCR, we then established the standard curve based on the results of the control DNA. Based on this standard curve, the sample Ct value was used to determine the DNA concentration of the sample. Final copy numbers of genomic DNA in the sample (copies/ml) were calculated based on the obtained sample volume and final dilution volume. High copy numbers of Candida DNA (9.2×10⁵ copies/ml) were detected by PCR. Aspergillus DNA was not detected in the sample was also found to be positive for *C. albicans*. After being treated, he had complete resolution of his symptoms. ## Case 3 A 73-year-old man was referred to the Uveitis Clinic at our hospital in July 2008 because of keratic precipitates (KPs), cells in the anterior chamber, and anterior vitreous opacity in his RE that was associated with recurrent anterior uveitis. In his RE, diffuse pigmented KPs were seen (Fig. 5a). After considering both the clinical features and whole body inspections, we diagnosed this case as idiopathic uveitis. Although he was treated with topical corticosteroid and an antibiotic for 2 months, the KPs expanded (Fig. 5b). During the treatment, diffuse pigmented KPs continued to expand and then united. In addition, we also observed cells in the anterior chamber with hypopyon and dense anterior vitreous opacity. After informed consent was obtained, pars plana vitrectomy was performed in order to obtain a vitreous sample. Although fungi were not detected in a culture test, real-time PCR detected 1.8×10³ copies/ml of the Aspergillus 18S rRNA gene (Table 1). Microbiological investigations performed using both culture and Gram's staining of the vitreous sample proved to be negative. A blood test for β-D-glucan and fungal antigens including Aspergillus were also negative. We diagnosed the patient as having Aspergillus-associated late postoperative endophthalmitis that was related to his 2007 cataract surgery. The patient was subsequently treated using systemic fluconazole. The medication proved to be effective in treating the infectious endophthalmitis, with the inflammation in the anterior segment of his RE completely disappearing (Fig. 5c). After treatment, Aspergillus DNA in his sample was below the PCR detection level. #### Discussion PCR is well suited for the detection of fungal moieties due to its specificity and applicability for use with small samples such as ocular specimens. Moreover, real-time quantitative PCR can be used to determine whether or not the fungus is related to endophthalmitis. By utilizing our broad-range real-time PCR for the 18S rRNA sequence, we were able to rapidly diagnose *Candida* or *Aspergillus* endophthalmitis in a few patients that exhibited clinical evidence of a fungal infection. While our methodology showed both positive and negative results, it was generally more
helpful than waiting for culture results, as the culture tests used to detect *Candida* or *Aspergillus* are both difficult to perform and require longer amounts of time due to the slow growth rates for these species [5, 6, 13]. In addition, the specificity of our PCR examination is good enough so Fig. 5 PCR results for case 3. a Slit photograph of the right eye with an *Aspergillus* infection. Diffuse pigmented keratic precipitates (KPs) are seen. b The pigmented KPs are expanded and united. Like the previous case, the *Aspergillus* DNA gene (1.8×10³ copies/ml) but not the *Candida* DNA was detected in the sample. c After treatment, the inflammation completely disappeared ## ♠ Springer that even a negative test is of benefit, as it helps to prevent making an incorrect diagnosis and administering a treatment for an infectious agent that is not present. Thus, this broad-range and real-time PCR system for ocular samples can provide a rapid diagnosis for those patients suffering from an unknown intraocular disorder such as idiopathic uveitis or endophthalmitis. Fungal endophthalmitis is a sight-threatening disease that is most commonly caused by the *Candida* species. This disease usually accounts for a few percent of all of the cases of culture-proven endophthalmitis. The disease is normally acquired from an endogenous source that is spread by hematogenous dissemination. However, its occurrence may also be secondary to trauma, intraocular surgery, or corneal ulceration. As confirmation of this suspected clinical disease is often difficult, there is frequently a delay in starting treatments. In the present patients, it was difficult to ascertain whether *Candida* or *Aspergillus* species were the causative agent in the intraocular inflammation. Since, in general, all of the patients were elderly and were immunocompetent, there was no focus area for the fungal infection systemically. As seen in Table 1, however, there were three exceptions. These included one case with a history of trauma (case 4), one case with a history of ocular surgery (case 3), and one case involving a normal infant (case 7), and for whom the case report details have been previously published [14]. In cases of fungal endophthalmitis in immunocompetent patients, specific additional antimycotic therapy has been shown to be effective in controlling the inflammation in the eye. In fact, all of the patients who were rapidly diagnosed by this PCR method were well controlled by the antimycotic treatment. Moreover, our PCR system was not only able to detect the conserved sequence of the fungal 18S rRNA gene, but it was also able to provide quantitative information from the ocular samples. In recent years, PCR technology has been demonstrated to have a great potential in the detection and identification of low copy numbers of a microorganism's DNA in clinical samples [7-12, 15, 16]. It also holds great promise for being able to identify small numbers of organisms in small sample volumes, a situation that is commonly seen when trying to examine intraocular samples from patients with infectious endophthalmitis. We evaluated these PCR techniques in order to determine a reliable and effective protocol for detecting Candida or Aspergillus species DNA in ocular samples. Our specific aims were to try and significantly increase the number of intraocular samples from which a confirmed diagnosis could be made and to reduce the time it took to make a mycologic diagnosis. In many previous reports, DNAs of Candida and Aspergillus species were detected in patients with clinically suspected fungal endophthalmitis [7–10, 15–20]. For example, Candida species such as C. albicans, C. parapsilosis, C. tropicalis, C. guilliermondii, C. glabrata, and C. krusei have been increasingly recognized as being capable of causing fungal endophthalmitis. However, C. albicans has been shown to be the causative agent in the majority of cases of culture-proven endophthalmitis. Moreover, Aspergillus such as A. fumigatus, A. flavus, A. nidulans, A. niger, and A. terreus have also been reported to be the causative species in an unknown ocular infection [17–20]. To detect these fungal species, our present PCR system used paired primers and specific probes that were based upon the 18S rRNA genes of Candida and Aspergillus (see Fig. 1). In one patient who was clinically suspected of having *Candida* endophthalmitis, our new PCR method did not detect any fungal genome in the ocular sample (case 8 in Table 1). However, it should be noted that this sample was aqueous humor and not vitreous fluid. Perhaps if a vitreous sample had been obtained, we might have detected *Candida* DNA, as *Candida* endophthalmitis often results from hematogenous dissemination. In fact, this particular patient received intravascular catheters after his initial surgery. Thus, in order to be able to make an accurate diagnosis, the type of sample that is collected may be very important. Although there are many advantages for using our PCR assay, there is one disadvantage when attempting to diagnose fungal ocular infection. While our PCR examination was able to detect all species of *Candida* and *Aspergillus* DNA, it could not detect other fungi DNA. Recently, Vollmer et al. reported on a novel broad-range real-time PCR assay for the rapid detection of human pathogenic fungi [21]. Their assay targeted a part of the 28S large subunit rRNA (rDNA) gene. Since this PCR assay can examine *Candida* species, *Aspergillus* species, *Cryptococcus* species, among others, we are currently trying to develop a new PCR examination that uses these primers and probes for the diagnosis of fungal ocular infections, including fungal endophthalmitis. In conclusion, utilization of the PCR assay to examine ocular samples in patients with suspected fungal endophthalmitis and idiopathic uveitis or endophthalmitis appears to be clinically useful for detecting *Candida* and *Aspergillus* DNA. Thus, broad-range PCR for the 18S rRNA sequence is a reliable tool for the diagnosis of fungal endophthalmitis and in screening for fungal infections. Moreover, because real-time PCR is an accurate method of quantitating fungal copies, real-time quantitative PCR can be used to determine whether the fungus is related to the endophthalmitis. Since the sensitivity of conventional culture techniques is not high and these cultures tend to take a long time due to their slow growth, the use of a broad-range and real-time PCR system to analyze ocular samples may be a better way to obtain a rapid diagnosis in patients suffering from unknown intraocular infectious disorders. As early treatments are also essential for infectious endophthalmitis, this method may help to ensure that patients receive timely and optimal treatments. However, this is currently a limited research tool and not widely available for clinical labs at the present time. As a next step, we will need to work on making these tests widely available to clinical labs as oppose to only having them in research labs. In the near future, it is assumed that a comprehensive PCR system for examining fungi, bacteria, parasites, and viruses will become available, and be able to be used in the diagnosis of ocular infectious disorders. Acknowledgements We thank Ms. Miki Katayama and Shizu Inoue for their technical assistance. We would like to also thank Drs. Hiroshi Takase and Yoshiharu Sugamoto for obtaining the samples used in this study. This work was supported by a Comprehensive Research on Disability, Health and Welfare grant, along with a Health and Labour Sciences Research Grant from the Ministry of Health, Labour and Welfare, Japan. No financial relationships exist in the publishing of this work. #### References - Edwards JE Jr, Foos RY, Montgomerie JZ, Guze LB (1974) Ocular manifestations of *Candida* septicemia: review of seventysix cases of hematogenous *Candida* endophthalmitis. Medicine 53:47–75 - Rao NA, Hidayat AA (2001) Endogenous mycotic endophthalmitis: variations in clinical and histopathologic changes in candidiasis compared with aspergillosis. Am J Ophthalmol 132:244–251 - Klotz SA, Penn CC, Negvesky GJ, Butrus SI (2000) Fungal and parasitic infection of the eye. Clin Microbiol Rev 13:662–685 - 4. Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, Segal BH, Steinbach WJ, Stevens DA, van Burik JA, Wingard JR, Patterson TF, Infectious Diseases Society of America (2008) Treatment of aspergillosis; clinical practice guidelines of the Infectious Disease Society of America. Clin Infect Dis 46:327–360 - Kunimoto DY, Das T, Sharma S, Jalali S, Majji AB, Gopinathan U, Athmanathan S, Rao TN (1999) Microbiologic spectrum and susceptibility of isolates: part I. Postoperative endophthalmitis. Endophthalmitis Research Group. Am J Ophthalmol 128:240–242 - Puliafito CA, Baker AS, Haaf J, Foster CS (1982) Infectious endophthalmitis. Review of 36 cases. Ophthalmology 89:921–929 - Lohmann CP, Linde HJ, Reischl U (2000) Improved detection of microorganisms by polymerase chain reaction in delayed - endophthalmitis after cataract surgery. Ophthalmology 107:1047-1051 - Ferrer C, Colom F, Frasés S, Mulet E, Abad JL, Alió JL (2001) Detection and identification of fungal pathogens by PCR and by ITS2 and 5.8S ribosomal DNA typing in ocular infections. J Clin Microbiol 39:2873–2879 - Anand AR, Madhavan HN, Sudha NV, Therese KL (2001) Polymerase chain reaction in the diagnosis of Aspergillus endophthalmitis. Indian J Med Res 114:133–140 - Jaeger EE, Carroll NM, Choudhury S, Dunlop AA, Towler HM, Matheson MM, Adamson P, Okhravi N, Lightman S (2000) Rapid detection and identification of *Candida*, *Aspergillus*, and *Fusa-rium* species in ocular samples using nested PCR. J Clin Microbiol 38:2902–2908 - Sugita S, Shimizu N, Watanabe K, Katayama M, Horie S, Ogawa M, Takase H, Sugamoto Y, Mochizuki M (2011) Diagnosis of bacterial endophthalmitis by broad-range quantitative polymerase chain
reaction. Br J Ophthalmol 95:345–349 - 12. Kami M, Fukui T, Ogawa S, Kazuyama Y, Machida U, Tanaka Y, Kanda Y, Kashima T, Yamazaki Y, Hamaki T, Mori S, Akiyama H, Mutou Y, Sakamaki H, Osumi K, Kimura S, Hirai H (2001) Use of real-time PCR on blood samples for diagnosis of invasive aspergillosis. Clin Infect Dis 33:1504–1512 - Akler ME, Vellend H, McNeely DM, Walmsley SL, Gold WL (1995) Use of fluconazole in the treatment of *Candida* endophthalmitis. Clin Infect Dis 20:657–664 - Ito M, Yokoi T, Sugita S, Shinohara N, Nishina S, Azuma N (2010) Endogenous *Candida* chorioretinitis in a healthy infant. Jpn J Ophthalmol 54:629–631 - Tarai B, Gupta A, Ray P, Shivaprakash MR, Chakrabarti A (2006) Polymerase chain reaction for early diagnosis of post-operative fungal endophthalmitis. Indian J Med Res 123:671–678 - Hidalgo JA, Alangaden GJ, Eliott D, Akins RA, Puklin J, Abrams G, Vazquez JA (2000) Fungal endophthalmitis diagnosis by detection of *Candida albicans* DNA in intraocular fluid by use of a species-specific polymerase chain reaction assay. J Infect Dis 181:1198–1201 - 17. Shen X, Xu G (2009) Vitrectomy for endogenous fungal endophthalmitis. Ocul Immunol Inflamm 17:148–152 - Moinfar N, Smiddy WE, Miller D, Miller D, Herschel K (2007) Posttraumatic Aspergillus terreus endophthalmitis masquerading as dispersed lens fragments. J Cataract Refract Surg 33:739–740 - Kramer M, Kramer MR, Blau H, Bishara J, Axer-Siegel R, Weinberger D (2006) Intravitreal voriconazole for the treatment of endogenous Aspergillus endophthalmitis. Ophthalmology 113:1184–1186 - Kalina PH, Campbell RJ (1991) Aspergillus terreus endophthalmitis in a patient with chronic lymphocytic leukemia. Arch Ophthalmol 109:102–103 - Vollmer T, Störmer M, Kleesiek K, Dreier J (2008) Evaluation of novel broad-range real-time PCR assay for rapid detection of human pathogenic fungi in various clinical specimens. J Clin Microbiol 46:1919–1926 # Novel Mouse Xenograft Models Reveal a Critical Role of CD4⁺ T Cells in the Proliferation of EBV-Infected T and NK Cells Ken-Ichi Imadome^{1,9}*, Misako Yajima^{1,9}", Ayako Arai², Atsuko Nakazawa³, Fuyuko Kawano¹, Sayumi Ichikawa^{1,4}, Norio Shimizu⁴, Naoki Yamamoto⁵", Tomohiro Morio⁶, Shouichi Ohga⁷, Hiroyuki Nakamura¹, Mamoru Ito⁸, Osamu Miura², Jun Komano⁵, Shigeyoshi Fujiwara¹* 1 Department of Infectious Diseases, National Research Institute for Child Health and Development, Tokyo, Japan, 2 Department of Hematology, Tokyo Medical and Dental University, Tokyo, Japan, 3 Department of Pathology, National Center for Child Health and Development, Tokyo, Japan, 4 Department of Virology, Division of Medical Science, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan, 5 AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan, 6 Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan, 7 Department of Perinatal and Pediatric Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan, 8 Central Institute for Experimental Animals, Kawasaki, Japan #### **Abstract** Epstein-Barr virus (EBV), a ubiquitous B-lymphotropic herpesvirus, ectopically infects T or NK cells to cause severe diseases of unknown pathogenesis, including chronic active EBV infection (CAEBV) and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH). We developed xenograft models of CAEBV and EBV-HLH by transplanting patients' PBMC to immunodeficient mice of the NOD/Shi-scid/IL-2Rγ^{null} strain. In these models, EBV-infected T, NK, or B cells proliferated systemically and reproduced histological characteristics of the two diseases. Analysis of the TCR repertoire expression revealed that identical predominant EBV-infected T-cell clones proliferated in patients and corresponding mice transplanted with their PBMC. Expression of the EBV nuclear antigen 1 (EBNA1), the latent membrane protein 1 (LMP1), and LMP2, but not EBNA2, in the engrafted cells is consistent with the latency II program of EBV gene expression known in CAEBV. High levels of human cytokines, including IL-8, IFN-γ, and RANTES, were detected in the peripheral blood of the model mice, mirroring hypercytokinemia characteristic to both CAEBV and EBV-HLH. Transplantation of individual immunophenotypic subsets isolated from patients' PBMC as well as that of various combinations of these subsets revealed a critical role of CD4⁺ T cells in the engraftment of EBV-infected T and NK cells. In accordance with this finding, in vivo depletion of CD4⁺ T cells by the administration of the OKT4 antibody following transplantation of PBMC prevented the engraftment of EBV-infected T and NK cells. This is the first report of animal models of CAEBV and EBV-HLH that are expected to be useful tools in the development of novel therapeutic strategies for the treatment of the diseases. Citation: Imadome K-I, Yajima M, Arai A, Nakazawa A, Kawano F, et al. (2011) Novel Mouse Xenograft Models Reveal a Critical Role of CD4⁺ T Cells in the Proliferation of EBV-Infected T and NK Cells. PLoS Pathog 7(10): e1002326. doi:10.1371/journal.ppat.1002326 Editor: Shou-Jiang Gao, University of Texas Health Science Center San Antonio, United States of America Received January 27, 2011; Accepted September 2, 2011; Published October 20, 2011 Copyright: © 2011 Imadome et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This study was supported by grants from the Ministry of Health, Labour and Welfare of Japan (H22-Nanchi-080 and H22-AIDS-002), the Grant of National Center for Child Health and Development (22A-9), a grant for the Research on Publicly Essential Drugs and Medical Devices from The Japan Health Sciences Foundation (KHC1014), and the Grant-in-Aid for Scientific Research (C) (H22-22590374). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. - * E-mail: imadome@nch.go.jp (KI); shige@nch.go.jp (SF) - ¤ Current address: Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore - These authors contributed equally to this work. #### Introduction Epstein-Barr virus (EBV) is a ubiquitous γ-herpesvirus that infects more than 90% of the adult population in the world. EBV is occasionally involved in the pathogenesis of malignant tumors, such as Burkitt lymphoma, Hodgkin lymphoma, and nasopharyngeal carcinoma, along with the post-transplantation lymphoproliferative disorders in immunocompromised hosts. Although EBV infection is asymptomatic in most immunologically competent hosts, it sometimes causes infectious mononucleosis (IM), when primarily infecting adolescents and young adults [1]. EBV infects human B cells efficiently in vitro and transform them into lymphoblastoid cell lines (LCLs) [2]. Experimental infection of T and NK cells, in contrast, is practically impossible except in limited conditions [3,4]. Nevertheless, EBV has been consistently demonstrated in T or NK cells proliferating monoclonally or oligoclonally in a group of diseases including chronic active EBV infection (CAEBV) and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH) [5,6,7,8,9,10]. CAEBV, largely overlapping the systemic EBV⁺ T-cell lymphoproliferative diseases of childhood defined in the WHO classification of lymphomas [11], is characterized by prolonged or relapsing IM-like symptoms, unusual patterns of antibody responses to EBV, and elevated EBV DNA load in the peripheral blood [12,13,14]. CAEBV has a chronic time course with generally poor prognosis; without a proper treatment by hematopoietic stem cell transplantation, the PLoS Pathogens | www.plospathogens.org October 2011 | Volume 7 | Issue 10 | e1002326 1 ## **Author Summary** Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus that infects more than 90% of the adult human population in the world. EBV usually infects B lymphocytes and does not produce symptoms in infected individuals, but in rare occasions it infects T or NK lymphocytes and causes severe diseases such as chronic active EBV infection (CAEBV) and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH). We developed mouse models of these two human diseases in which EBV-infected T or NK lymphocytes proliferate in mouse tissues and reproduce human pathologic conditions such as overproduction of small proteins called "cytokines" that produce inflammatory responses in the body. These mouse models are thought to be very useful for the elucidation of the pathogenesis of CAEBV and EBV-HLH as well as for the development of therapeutic strategies for the treatment of these diseases. Experiments with the models demonstrated that a subset of lymphocytes called CD4-positive lymphocytes are essential for the proliferation of EBV-infected T and NK cells. This result implies that removal of CD4-positive lymphocytes or suppression of their functions may be an effective strategy for the treatment of CAEBV and EBV- majority of cases eventually develop malignant lymphoma of T or NK lineages, multi-organ failure, or other life-threatening conditions. Monoclonal or oligoclonal proliferation of EBVinfected T and NK cells, an essential feature of CAEBV, implies its malignant nature, but other characteristics of CAEBV do not necessarily support this notion. For example, EBV-infected T or NK cells freshly isolated from CAEBV patients, as well as established cell lines derived from them, do not have morphological atypia and do not engraft either in nude mice or scid mice (Shimizu, N., unpublished results). Clinically, CAEBV has a chronic time course and patients may live for many years without progression of the disease [15].
Although patients with CAEBV do not show signs of explicit immunodeficiency, some of them present a deficiency in NK-cell activity or in EBV-specific T-cell responses, implying a role for subtle immunodeficiency in its pathogenesis [16,17,18]. EBV-HLH is the most common and the severest type of virusassociated HLH and, similar to CAEBV, characterized by monoclonal or oligoclonal proliferation of EBV-infected T (most often CD8+ T) cells [5,6]. Clinical features of EBV-HLH include high fever, pancytopenia, coagulation abnormalities, hepatosplenomegaly, liver dysfunction, and hemophagocytosis [19]. Overproduction of cytokines by EBV-infected T cells as well as by activated macrophages and T cells reacting to EBV is thought to play a central role in the pathogenesis [20]. Although EBV-HLH is an aggressive disease requiring intensive clinical interventions, it may be cured, in contrast to CAEBV, by proper treatment with immunomodulating drugs [21]. No appropriate animal models have been so far developed for either CAEBV or EBV-HLH. NOD/Shi-scid/IL-2Rynull (referred here as NOG) is a highly immunodeficient mouse strain totally lacking T, B, and NK lymphocytes, and transplantation of human hematopoietic stem cells to NOG mice results in reconstitution of human immune system components, including T, B, NK cells, dendritic cells, and macrophages [22,23]. These so called humanized mice have been utilized as animal models for the infection of certain human viruses targeting the hemato-immune system, including human immunodeficiency virus 1 (HIV-1) and EBV [24,25,26,27,28,29,30]. Xenotransplantation of human tumor cells to NOG mice also provided model systems for several hematologic malignancies [31,32,33]. To facilitate investigations on the pathogenesis of CAEBV and EBV-HLH and assist the development of novel therapeutic strategies, we generated mouse models of these two EBV-associated diseases by transplanting NOG mice with PBMC isolated from patients with the diseases. In these models, EBV-infected T, NK, or B cells engrafted in NOG mice and reproduced lymphoproliferative disorder similar to either CAEBV or EBV-HLH. Further experiments with the models revealed a critical role of CD4⁺ T cells in the in vivo proliferation of EBV-infected T and NK cells. #### Results Engraftment of EBV-infected T and NK cells in NOG mice following xenotransplantation with PBMC of CAEBV patients Depending on the immunophenotypic subset in which EBV causes lymphoproliferation, CAEBV is classified into the T-cell and NK-cell types, with the former being further divided into the CD4, CD8, and γδT types. The nine patients with CAEBV examined in this study are characterized in Table 1 and include all these four types. Intravenous injection of $1-4\times10^6$ PBMC isolated from these nine patients resulted in successful engraftment of EBV-infected T or NK cells in NOG mice in a reproducible manner (Table 1). The results with the patient 1 (CD4 type), patient 3 (CD8 type), patient 5 (γδT type), and patient 9 (NK type) are shown in Figure 1. Seven to nine weeks post-transplantation, EBV DNA was detected in the peripheral blood of recipient mice and reached the levels of $10^5 - 10^8$ copies/µg DNA (Figure 1A). By contrast, no engraftment of EBV-infected cells was observed when immunophenotypic fractions containing EBV DNA were isolated from PBMC and injected to NOG mice (Figure 1A and Table 2). An exception was the CD4+ T-cell fraction isolated from patients with the CD4 type CAEBV, that reproducibly engrafted when transplanted without other components of PBMC (Figure 1A, Table 2). Flow cytometry revealed that the major population of engrafted cells was either CD4⁺, CD8⁺, TCRγδοr CD16⁺CD56⁺, depending on the type of the donor CAEBV patient (Figure 1B). EBV-infected cells of identical immunophenotypes were found in the patients and the corresponding mice that received their respective PBMC (Figure 1B). Although human cells of multiple immunophenotypes were present in most recipient mice, fractionation by magnetic beads-conjugated antibodies and subsequent real-time PCR analysis detected EBV DNA only in the predominant immunophenotypes that contained EBV DNA in the original patients (Figure 1B, Table 1). The EBV DNA load observed in individual lymphocyte subsets in the patient 3 and a mouse that received her PBMC is shown as supporting data (Table S1). When PBMC from three healthy EBV-carriers were injected intravenously to NOG mice, as controls, no EBV DNA was detected from either the peripheral blood, spleen, or liver (data not shown). Histological analyses of the spleen and the liver of these control mice identified no EBV-encoded small RNA (EBER)positive cells, although some CD3-positive human T cells were observed (Figure S2). Analysis of TCR VB repertoire demonstrated an identical predominant T-cell clone in patients (patients 1 and 3) and the corresponding mice that received their PBMC (Figure 1C). The general condition of most recipient mice deteriorated gradually in the observation period of eight to twelve weeks, with loss of body weight (Figure S1), ruffled hair, and inactivity. NOG mice engrafted with EBV-infected T or NK cells were sacrificed for pathological and virological analyses between eight Table 1. Patients with EBV-T/NK LPD and the results of xenotransplantation of their PBMC to NOG mice. | Patient
number | Diagnosis | Sex | Age | Type of
infected cells | ¹ EBV DNA load in
the patients | ² Engrafted cells
in mice | ³ Engraftment | ¹EBV DNA load
in mice | |-------------------|-----------|-----|-----|---------------------------|--|---|--------------------------|--------------------------| | 1 | CAEBV | F | 25 | CD4 | 9.2×10 ⁵ | CD4, CD8 | 3/3 | 1.0~3.8×10 ⁷ | | 2 | CAEBV | . М | 46 | CD4 | 1.3~7.2×10 ⁵ | CD4, CD8 | 2/2, 3/3 | 2.6~10×10 ⁵ | | 3 | CAEBV | F | 35 | CD8 | 2.1~78×10⁵ | CD8, CD4 | 2/2, 2/2 | 1.1~33×10 ⁶ | | 4 | CAEBV | M | 28 | CD8 | 8.2×10 ⁵ | CD8, CD4 | 3/3 | 1.1~2.5×10 ⁶ | | 5 | CAEBV | M | 10 | γδΤ | 2.2×10 ⁶ | <u>γδΤ,</u> CD4, CD8 | 2/2 | 3.8~6.5×10 ⁶ | | 6 | CAEBV | F | 15 | γδΤ | 6.2×10 ⁵ | <u>γδΤ</u> , CD4, CD8 | 2/2 | 2.2~11×10 ⁵ | | 7 | CAEBV | M | 13 | NK | 1.1~6.7×10 ⁵ | NK, CD4, CD8 | 2/2, 2/2 | 0.6~15×10 ⁴ | | 8 | CAEBV | F | 13 | NK . | 6.3×10 ⁶ | NK, CD4, CD8 | 3/3, 2/2 | 0.8~1.9×10 ⁵ | | 9 | CAEBV | M | 8 | NK | 1.2~8.7×10 ⁵ | NK, CD4, CD8 | 2/2, 3/3 | 1.8~7.2×10 ⁵ | | 10 | EBV-HLH | M | 10 | CD8 | 2.8~38×10 ⁴ | CD8, CD4 | 2/2, 2/2 | 6.5~9.9×10 ⁴ | | 11 | EBV-HLH | M | 50 | CD8 | 6.2×10 ⁵ | CD8, CD4 | 4/4 | 7.0∼45×10 ⁴ | | 12 | EBV-HLH | М | 1 | CD8 | 3.1×10 ⁵ | CD8, CD4 | 2/2 | 6.0~9.1×10 ⁴ | | 13 | EBV-HLH | М | 64 | CD8 | 3.2~3.9×10 ⁵ | CD8, CD4 | 2/2, 2/2 | 5.0~30×10 ⁵ | ¹EBV DNA copies/µg DNA in the peripheral blood. ²EBV DNA was detected only in the cells of the underlined subsets. ³Number of mice with successful engraftment per number of recipient mice is shown for each experiment. doi:10.1371/journal.ppat.1002326.t001 and twelve weeks post-transplantation. On autopsy, the majority of mice presented with splenomegaly, with slight hepatomegaly in occasional cases (Figure 2A). Histopathological findings obtained from a representative mouse (recipient of PBMC from the patient 3 (CD8 type)) are shown in Figure 2B and reveal infiltration of human CD3+CD20 cells to major organs, including the spleen, liver, lungs, kidneys, and small intestine. These cells were positive for both EBER and human CD45RO, indicating that they are EBV-infected human T cells (Figure 2B). In contrast, no EBVinfected T cells were found in mice transplanted with PBMC isolated from a normal EBV carrier (Figure S2). Histopathology of a control NOG mouse is shown in Figure S2. Morphologically, EBV-infected cells are relatively small and do not have marked atypia. The infiltration pattern was leukemic and identical with chronic active EBV infection in children [34]. The architecture of the organs was well preserved in spite of marked lymphoid infiltration. The spleen showed marked expansion of periarterial lymphatic sheath owing to lymphocytic infiltration. In the liver, a dense lymphocytic infiltration was observed in the portal area and in the sinusoid. The lung showed a picture of interstitial pneumonitis and the lymphocytes often formed nodular aggregations around bronchioles and arteries. In the kidney, dense lymphocytic infiltration caused interstitial nephritis. In the small intestine, mild lymphoid infiltration was seen in mucosa. Quantification of EBV DNA in the spleen, liver, lymph nodes, lungs, kidneys, adrenals, and small intestine of this mouse revealed EBV DNA at the levels of $1.5-5.1\times10^7$ copies/µg DNA. Mice transplanted with PBMC derived from CAEBV of other types exhibited similar infiltration of EBV-infected T or NK cells to the spleen, liver, and other organs (Figure 2C and data not shown). # EBV-infected T- and NK-cell lines established from CAEBV patients do not engraft in NOG mice We established EBV-positive cell lines of CD4⁺ T, CD8⁺ T, $\gamma\delta$ T, and CD56⁺ NK lineages from PBMC of the patients listed in Table 1 by the method described previously [35], and confirmed by flow cytometry that the surface phenotypes of EBV-infected cells in the original patients were retained in these cell lines (data not shown). To test whether these cell lines engraft in NOG mice, $1-4\times10^6$ cells were injected intravenously to NOG mice. The results are shown in Figure 3A and indicate that CAEBV-derived cell lines of the CD8+ $\bar{T},\,\gamma\delta T,$ and CD56+ NK phenotypes do not engraft in NOG mice. Neither human CD45-positive cells nor EBV DNA were detected in the peripheral blood of the mice up to twelve weeks post-transplantation. When the recipient mice were sacrificed at twelve weeks post-injection, no EBV DNA could be detected in the spleen, liver, bone marrow, mesenteric lymph nodes, and kidneys. In
contrast, the CD4+T cell lines derived from the CD4-type patients 1 and 2 engrafted in NOG mice and induced T lymphoproliferation similar to that induced by PBMC isolated freshly from these patients (Figure 3A and data not shown). These results, together with the results of transplantation with EBV-containing subsets of PBMC, indicate that EBVinfected T and NK cells, with the exception of those of the CD4⁺ subset, are not able to engraft in NOG mice, when they are separated from other components of PBMC, suggesting that some components of PBMC are essential for the outgrowth EBVinfected T and NK cells in NOG mice. # Engraftment of EBV-infected T and NK cells in NOG mice requires CD4⁺ T cells To identify the cellular component required for the engraftment of EBV-infected T and NK cells in NOG mice, we transplanted PBMC of CAEBV patients after removing individual immunophenotypic subsets by magnetic beads-conjugated antibodies. The results are shown in Figure 3B and summarized in Table 2. With respect to the patients 3 and 4, in whom CD8⁺ T cells are infected with EBV, removal of CD8⁺ cells from PBMC, as expected, resulted in the failure of engraftment, whereas elimination of CD19⁺, CD56⁺, or CD14⁺ cells did not affect engraftment. Importantly, elimination of CD4⁺ cell fraction, that did not contain EBV DNA, resulted in the failure of engraftment of EBV-infected T cells (Figure 3B and data not shown). In the experiments with the patients 5 and 6, in whom γδT cells were infected, removal CD4⁺ cells that did not contain EBV DNA, as well as that of γδT cells, resulted in the failure of engraftment. PLoS Pathogens | www.plospathogens.org Figure 1. Engraftment of EBV-infected T or NK cells in NOG mice following transplantation with PBMC of patients with CAEBV. A. Measurement of EBV DNA levels. PBMC obtained from the CAEBV patients 1 (CD4 type), 3 (CD8 type), 5 (γ δT type), and 9 (NK type) were injected intravenously to NOG mice and EBV DNA load in their peripheral blood was measured weekly by real-time PCR. The results of transplantation with whole PBMC or with isolated EBV DNA-containing cell fraction are shown. B. Flow-cytometric analysis on the expression of surface markers in the peripheral blood lymphocytes of patients (a) with CAEBV and NOG mice (b) that received PBMC from them. Human lymphocytes gated by the pattern of side scatter and human CD45 expression were further analyzed for the expression of various surface markers indicated in the figures. The results from the patients 1, 3, 5, and 9, and the corresponding mice that received their respective PBMC are shown. Circles indicate the fractions that contained EBV DNA. C. Analysis on the expression of TCR Vβ repertoire. Peripheral blood lymphocytes obtained from the patients 1 (CD4 type) and 3 (CD8 type), and from the corresponding mice that received their respective PBMC were analyzed for the expression of Vβ alleles. The percentages of T cells expressing each Vβ allele are shown for the patients (grey bars) and the mice (black bars). Removal of CD8⁺, CD14⁺, CD19⁺, or CD56⁺ cells did not have an influence on the engraftment (Figure 3B and data not shown). Regarding the patients 8 an 9 in whom EBV resided in CD56⁺ NK cells, removal of CD4* as well as CD56* cells resulted in the failure of engraftment, whereas that of CD8*, CD19*, or CD14* cells did not affect engraftment (Figure 3B and data not shown). In . PLo PLoS Pathogens | www.plospathogens.org Table 2. Results of xenotransplantation with subsets of PBMC obtained from CAEBV patients. | Number
of patient | Diagnosis | Phenotype of
infected cells | Cell fraction transplanted | Number of
transplanted cells | Engraftment | |--|--|--|----------------------------|---------------------------------|----------------------------| | 1-20-2 | CAEBV | CD4 | PBMC | 2×10 ⁶ | + | | Northwestern must be a few maners verse | | | CD4 | 2×10 ⁶ | + | | | | | PBMC-CD4 | 3×10 ⁶ | | | | | | PBMC-CD8 | 2×10 ⁶ | + | | | | | PBMC-CD56 | 2×10 ⁶ | | | | A CONTRACTOR OF THE PROPERTY O | | PBMC-CD14 | 2×10 ⁶ | + | | | | | PBMC-CD19 | 2×10 ⁶ | + | | 3 | CAEBV | CD8 | PBMC | 2×10 ⁶ | + | | | | | CD8 | 3×10 ⁶ | | | | TO THE TAXABLE TO STORY OF A STOR | | PBMC-CD4 | 3×10 ⁶ | | | | | | PBMC-CD8 | 3×10 ⁶ | our 🖴 in april 1975 (1985) | | inchinologica Junet, edito, et si | | | PBMC-CD56 | 2×10 ⁶ | + | | | | | PBMC-CD14 | 2×10 ⁶ | | | osnasčeši Alineijo. Pre po je se sapžAme s | | | PBMC-CD19 | 2×10 ⁶ | + | | 5 | CAEBV | γδΤ | PBMC | 2×10 ⁶ | + | | | | | γδΤ | 3×10 ⁶ | = | | | | | PBMC-CD4 | 3×10 ⁶ | | | | The second secon | hand Agency and Artist House Charles and the Co. | ΡΒΜϹ-γδΤ | 3×10 ⁶ | | | | | | PBMC- CD8 | 3×10 ⁶ | + | | | | | PBMC-CD56 | 3×10 ⁶ | + | | | | | PBMC-CD14 | 3×10 ⁶ | 4 | | | Here were New Pour Programmer and a | | PBMC-CD19 | 3×10 ⁶ | + | | 9 | CAEBV | NK | PBMC | 2×10 ⁶ | + | | | | | NK | 3×10 ⁶ | | | | | | PBMC-CD4 | 3×10 ⁶ | | | | | | PBMC-CD8 | 3×10 ⁶ | + | | | asar a sa s | | PBMC-CD56 | 3×10 ⁶ | - 14 Jan 19 | | | | The second secon | PBMC-CD14 | 3×10 ⁶ | + | | | | | PBMC-CD19 | 3×10 ⁶ | + | | 11 | EBV-HLH | CD8 | PBMC | 2×10 ⁶ | + | | | 1000000 | | PBMC-CD4 | 4×10 ⁶ | i i i | doi:10.1371/journal.ppat.1002326.t002 the patients 1 and 2, in whom CD4+T cells were infected, only the removal of CD4+ cells blocked the engraftment of EBV-infected cells and depletion of either CD8+, CD19+, or CD14+ cells had no effect (Figure 3B and data not shown). These results suggested that EBV-infected cells of the CD8⁺, γδT, and CD56⁺ lineages require CD4+ cells for their engraftment in NOG mice. To confirm this interpretation, we performed complementation experiments, in which EBV-containing fractions of the CD8+ (patient 4), γδΤ (patient 5), or CD56+ (patient 7) phenotypes were transplanted together with autologous CD4+ cells. The results are shown in Figure
3A and indicate that EBV-infected CD8⁺, γδT, or CD56⁺ cells engraft in NOG mice when transplanted together with CD4+ cells. Similarly, when EBV-infected cell lines of the CD8⁺, γδT, and CD16+ lineages were injected intravenously to NOG mice together with autologous CD4+ cells, these cell lines engrafted to the mice (Figure 3A). Finally, to further confirm the essential role of CD4⁺ cells, we examined the effect of the OKT-4 antibody that depletes CD4+ cells in vivo [24]. PBMC isolated from the CAEBV patient 3 (CD8 type) and the patient 8 (NK type) were injected intravenously to NOG mice and OKT-4 was administered intravenously for four consecutive days starting from the day of transplantation. The results are shown in Figure 4 and indicate that OKT-4 can strongly suppress the engraftment of EBV-infected T and NK cells. In the mice treated with OKT-4, no splenomegaly was observed and EBV DNA was not detected either in the peripheral blood, spleen, liver, or lungs at eight weeks post-transplantation. # Analysis on the EBV gene expression associated with T or NK lymphoproliferation in NOG mice Previous analysis of EBV gene expression in patients with CAEBV revealed the expression of EBNA1, LMP1, and LMP2A with the involvement of the Q promoter in the EBNA genes transcription and no expression of EBNA2, being consistent with the latency II type of EBV gene expression [36,37,38]. To test whether EBV-infected T and NK cells that proliferate in NOG mice retain this type of viral gene expression, we performed RT-PCR analysis in the spleen and the liver of mice that received PLoS Pathogens | www.plospathogens.org Figure 2. Pathological and immunochemical analyses on NOG mice transplanted with PBMC from CAEBV patients. A. Photographs of a model mouse showing splenomegaly and of the excised spleen. This mouse was transplanted with PBMC from the CAEBV patient 3 (CD8 type). Spleen from a control NOG mouse is also shown. B. Photomicrographs of various tissues of a mouse that received PBMC from the patient 3 (CD8 type). Upper panels: liver tissue was stained with hematoxylin-eosin (HE), antibodies specific to human CD3 or CD20, or by ISH with an EBER probe; the rightmost panel is a double staining with EBER and human CD45RO. Bottom panels: EBER ISH in the spleen, kidney, lung, and small intestine. Original magnification is $\times 200$, except for EBER/CD45RO, that is $\times 400$. C. Photomicrographs of the spleen and liver tissues obtained from NOG mice transplanted with PBMC from the CAEBV patients 2 (CD4 type), 6 ($\gamma \delta T$ type) or 7 (NK type). Tissues were stained by EBER-ISH or by double staining with EBER-ISH and human CD45RO. Original magnification $\times 600$. doi:10.1371/journal.ppat.1002326.g002 Figure 3. Analysis on the conditions of the engraftment of EBV-infected T and NK cells in NOG mice. A. EBV-infected T or NK cells isolated from patients with CAEBV or cell lines derived from them were injected to NOG mice in the conditions described below. Peripheral blood EBV DNA levels were then measured weekly. Upper-left panel: 5×10^6 cells of EBV-infected CD4⁺ T, CD8⁺ T, γ 8T, and CD56⁺ NK cell lines established from the CAEBV patients 1, 4, 6, and 8, respectively, were injected intravenously to NOG mice. Upper-right panel: 5×10^6 cells of the CD8⁺ T, γ 8T, and CD56⁺ NK cell lines established from the patients 3, 6, and 8, respectively, were injected intravenously to NOG mice together with autologous CD4⁺ T cells isolated from 5×10^6 PBMC. Bottom panel: 5×10^6 cells of the CD8⁺ T, γ 8T, and CD56⁺ NK fractions isolated freshly from the patients 4, 5, and 7, respectively, were injected intravenously to NOG mice together with autologous CD4⁺ T cells isolated from 5×10^6 PBMC. B. Transplantation of PBMC devoid of individual immunophenotypic subsets to NOG mice. CD19⁺, CD4⁺, CD8⁺, CD56⁺, or CD14⁺ cells were removed from PBMC obtained from the patient 1 (CD4 type, upper-left panel), 4 (CD8 type, upper-right), 5 (γ 8T type, bottom-left), and 9 (NK type, bottom-right) and the remaining cells were injected intravenously to NOG mice. Thereafter peripheral blood EBV DNA was determined weekly. PBMC from the CAEBV patient 3 (CD8 type). The results are shown in Figure 5A and demonstrate the expression of mRNAs coding for EBNA1, LMP1, LMP2A, and LMP2B, but not for EBNA2. Expression of the EBV-encoded small RNA 1 (EBER1) was also demonstrated. EBNA1 mRNAs transcribed from either the Cp promoter or the Wp promoter were not detected, whereas those transcribed from the Q promoter was abundantly detected. These results indicate that EBV-infected T cells retain the latency PLoS Pathogens | www.plospathogens.org Figure 4. Suppression of the engraftment of EBV-infected T and NK cells by the OKT-4 antibody. PBMC $(5\times10^6 \text{ cells})$ isolated from the CAEBV patient 3 (CD8 type) or 8 (NK type) were injected intravenously to NOG mice. The OKT-4 antibody (100 μ g/mouse) was administered intravenously on the same day of transplantation and the following three consecutive days. As a control, isotype-matched mouse lgG was injected. A. Changes in the peripheral blood EBV DNA level in the recipient mice. Results with the mice transplanted with PBMC of the patient 3 (top) and of the patient 8 (bottom) are shown. B. Photographs of the spleen of an OKT-4-treated mouse (top) and a control mouse (bottom) taken at autopsy. doi:10.1371/journal.ppat.1002326.q004 II pattern of latent EBV gene expression after engraftment in NOG mice. Similar analyses with NOG mice engrafted with EBV-infected NK cells also showed the latency II type of EBV gene expression (data not shown). # NOG mice engrafted with EBV-infected T or NK cells produce high levels of human cytokines In patients with CAEBV, high levels of cytokines have been detected in the peripheral blood and are thought to play important roles in the pathogenesis [20,39,40]. To test whether this hypercytokinemia is reproduced in NOG mice, we examined the levels of various human cytokines in the sera of transplanted mice using ELISA kits that can quantify human cytokines specifically. The results are shown in Figure 5B and indicate that the mice transplanted with PBMC of the patient 3 (CD8 type) or the patient 8 (NK type) contained high levels of RANTES, IFN-γ, and IL-8 in their sera. # Engraftment of EBV-infected T and B cells derived from patients with EBV-HLH in NOG mice To extend the findings obtained from the CAEBV xenograft model to another disease with EBV⁺ T/NK lymphoproliferation, we transplanted NOG mice with PBMC isolated from patients with EBV-HLH. Characteristics of the four EBV-HLH patients examined in this study and the results of transplantation with their PBMC are summarized in Table 1. EBV DNA was detected in the peripheral blood three to four weeks post-transplantation and rapidly reached the levels of 1×10^4 to 1×10^6 copies/µg DNA (results of typical experiments are shown in Figure 6A). Similar to the findings in CAEBV, EBV DNA was not detected in the recipient mice, when CD4⁺ cell fraction was removed from PBMC (Figure 6A). Immunophenotypic analyses on the peripheral blood lymphocytes isolated from EBV-HLH patients and corresponding recipient mice revealed that cells of an identical immunophenotype (CD3+CD8+CD45RO+CD19-CD4-CD45RA-CD16-CD56) were present and contained EBV DNA in both the patients and corresponding mice (Figure 6C and data not shown). The EBV DNA load observed in individual lymphocyte subsets in the patient 10 and a mouse that received his PBMC is shown as supporting data (Table S2). General condition of the recipient mice deteriorated consistently more quickly, with the loss of body weight (Figure S1), ruffling of hair, and general inactivity, than those mice engrafted with EBV-infected T or NK cells derived from CAEBV. The mice were sacrificed around four weeks posttransplantation for pathological analyses. Macroscopical observation revealed moderate to severe splenomegaly (Figure 6D) in the PLoS Pathogens | www.plospathogens.org Figure 5. Analyses on the latent EBV gene expression and cytokine production in NOG mice transplanted with PBMC of CAEBV patients. A. EBV gene expression. Total RNA was purified from the spleen and liver of a mouse that received PBMC from the patient 3 (CD8 type) and applied for RT-PCR assay to detect transcripts from the indicated genes. RNA samples from an EBV-transformed B-lymphoblastoid cell line (LCL) and from EBV-negative Akata cell line were used as positive and negative controls, respectively. The primers used in the experiments are shown in Materials and Methods. B. Quantification of plasma levels of human cytokines in patients with CAEBV and corresponding recipient mice. PBMC were isolated from the patients 3 (CD8 type) and 8 (NK type) in two occasions and transplanted to NOG mice. Plasma cytokine levels of the patients were determined when their PBMC were isolated. Plasma cytokine levels of the corresponding recipient mice, prepared on each occasion of PBMC collection, were determined when they were sacrificed. Concentration of human IL-8, IFN-7, and RANTES were measured by appropriate ELISA kits following the instruction provided by the manufacturer. Plasma samples from healthy adults were used as a control. The bars represent mean values and standard errors from triplicate measurements. doi:10.1371/journal.ppat.1002326.g005 majority of recipient mice, and slight hepatomegaly in a limited fraction of them. A finding characteristic to these mice were massive hemorrhages in the abdominal and/or thoracic cavities, that were not seen in the mice transplanted with CAEBV-derived PBMC (Figure 6D and data not shown). These hemorrhagic lesions may reflect coagulation abnormalities characteristic to PLoS Pathogens | www.plospathogens.org HLH. Histopathological analyses revealed a number of EBER+ cells in the spleen and the liver
(Figure 6E) and quantification of EBV DNA in these tissues revealed 1.4×10^{1} to 2.4×10^{2} copies/µg of EBV DNA. When the tissues were examined by immunostaining and EBER ISH, the EBER+ cells were shown unexpectedly to be mostly CD45RO and CD20+ in all five transplantation experiments with four different patients, indicating that the majority of EBV-infected cells in these tissues are of the B-cell lineage (Figure 6E and data not shown). EBER+ large B cells were seen scattered among numerous reactive small T cells, most of which are CD8+, in the tissues of the spleen, liver, lungs and kidneys. A number of macrophages were also seen in these tissues. Fractionation of mononuclear cells obtained from the liver of a mouse transplanted with PBMC of the EBV-HLH patient 10, followed by real-time PCR, detected EBV DNA (1.4×101 copies/ μg DNA) only in the CD19⁺ B-cell fraction. In addition, an EBVinfected B lymphoblastoid cell line, but not an EBV-positive T cell line, could be established from this liver. Thus the presence of EBV in B cells were demonstrated by three independent methods in the tissues of EBV-HLH mice. Enzyme-linked immunosorbent assay revealed extremely high levels of human cytokines, including IL-8, IFN-7, and RANTES, in the sera of both the original patients and the recipient mice (Figure 6B). The levels of IL-8 and IFN-γ were much higher than those observed in the peripheral blood of patients with CAEBV and mice that received their PBMC. Thus, NOG mice transplanted with EBV-HLHderived PBMC are distinct from those transplanted with CAEBVderived PBMC in the aggressive time course of the disease, internal hemorrhagic lesions, extremely high levels of IL-8 and IFN-γ in the peripheral blood, and the presence of EBV-infected B cells in lymphoid tissues. ## Discussion The mouse xenograft models of CAEBV and EBV-HLH developed here represent the first recapitulation of EBV-associated T/NK lymphoproliferation in experimental animals. Previously, Hayashi and others inoculated rabbits with Herpesvirus papio and succeeded in the generation of T-cell lymphoproliferative disorder with pathological findings suggestive of EBV-HLH [41]. This model, however, is based on an EBV-related virus and not EBV itself, and therefore may contain features irrelevant to the original human disease. Although the CAEBV and EBV-HLH models described here exhibited some common features, including the abundant presence of EBV-infected T or NK cells in the peripheral blood, there were some critical differences between the two models, probably reflecting the divergence of the pathophysiology of the original diseases. First of all, in the EBV-HLH model mouse, EBV was detected mainly in B cells in the spleen and the liver, while it was found mainly in T cells in the peripheral blood. This makes an obvious contrast with the CAEBV model mouse, where EBV was detected in T or NK cells in both the peripheral blood and lymphoid tissues. We do not have an explanation for the apparent discrepancy in the host cell type of EBV infection between the peripheral blood and lymphoid tissues of the EBV-HLH model. It should be, however, noted that histopathology of EBV-HLH tissues has not been fully investigated and therefore it is still possible that significant number of EBVinfected B cells are present in the lymphoid tissues of EBV-HLH patients. Other differences between the two models include much higher plasma levels of IL-8 and IFN-7 more aggressive and fatal outcome, and internal hemorrhagic lesions in EBV-HLH model mice, probably reflecting the differences in the pathophysiology of the original diseases. EBV-positive B-cell proliferation was not seen in CAEBV model mice even in long-term observation beyond twelve weeks. This seems puzzling since low but significant amount of EBV DNA was found also in B19+ B-cell fraction in most patients with CAEBV. It should be noted that EBV-infected T or NK cell lines could be established relatively easily from patients with CAEBV by adding recombinant IL-2 in the medium. In contrast, establishment of EBV-infected B LCLs from these patients has been extremely difficult. In fact, we could establish B-LCLs from a few patients with CAEBV only when their PBMC were cultured on feeder cells expressing CD40 ligand. Therefore, we speculate that in the particular context of CAEBV, both in the patient and the model mouse, proliferation of EBV-infected B cells are somehow inhibited by an unknown mechanism. Analysis on the conditions of engraftment of EBV-infected T/ NK cells using these new xenograft models revealed that EBVinfected T and NK cells of the CD8 $^+$ T, TCR $\gamma\delta$ T and CD56 $^+$ NK lineages and cell lines derived from them require CD4⁺ T cells for their engraftment in NOG mice. Only those EBV-infected cells and cell lines of the CD4⁺ T lineage could engraft in NOG mice on their own. These findings suggest that some factor(s) provided by CD4+ cells are essential for engraftment. Soluble factors produced by CD4⁺ T cells may be responsible for this function and we are currently examining cytokines, including IL-2, for their ability to support the engraftment of EBV-infected T and NK cells. It is also possible that cell to cell contact involving CD4⁺ cells is critical for engraftment. This dependence on CD4+ cells represents an interesting consistency with the previous finding that engraftment of EBV-transformed B lymphoblastoid cells in scid mice required the presence of CD4+ cells [42,43]. It has been speculated that T cells activated by an EBV-induced superantigen may be involved in the engraftment of EBV-infected B lymphoblastoid cells in scid mice [44]. Although a similar superantigen-mediated mechanism might also be assumed in Tand NK-cell lymphoproliferation in NOG mice, the data of TCR repertoire analyses (Figure 1C and data not shown) show no indication for clonal expansion of VB13 T cells that are known to be specifically activated by the EBV-induced superantigen HERV-K18. It seems therefore unlikely that this superantigen is involved in the CD4+T cell-dependent engraftment of EBV-infected T and NK cells. We expect CD4⁺ T cells and/or molecules produced by them may be an excellent target in novel therapeutic strategies for the treatment of CAEBV and EBV-HLH. In fact, administration of the OKT-4 antibody that depletes CD4+ cells in vivo efficiently prevented the engraftment of EBV-infected T cells. As a next step, we plan to test the effect of post-engraftment administration of OKT-4. The dependence of EBV-infected T and NK cells on CD4+ T cells for their engraftment in NOG mice suggests the possibility that these cells are not capable of autonomous proliferation. Consistent with this notion, EBV-infected T and NK cell lines, including that of the CD4+ lineage, are dependent on IL-2 for their in vitro growth and do not engraft in either nude mice or scid mice when transplanted either s.c. or i.v (Shimizu, N., unpublished results). Clinically, CAEBV is a disease of chronic time course and patients carrying monoclonal EBV-infected T or NK cell population may live for many years without progression of the disease [15]. Overt malignant T or NK lymphoma usually develops only after a long course of the disease. Taking all these findings in consideration, we suppose that EBV-infected cells are not truly malignant at least in the early phase of the disease, even when they appear monoclonal. Because infection of EBV in T or NK cells is not unique to CAEBV and has been recognized also in infectious mononucleosis [45,46], the critical deficiency in Figure 6. Engraftment of EBV-infected T and B cells in NOG mice transplanted with PBMC of patients with EBV-HLH. A. Peripheral blood EBV DNA load. Following transplantation with PBMC or PBMC devoid of CD4+ cells of the patient 11, EBV DNA was measured weekly by realtime PCR. Results of two mice prepared in an experiment are shown. B. Cytokine levels in the peripheral blood of the patient 12 and a mouse that received his PBMC. The levels of IL-8, IFN-γ, and RANTES were measured by ELISA in triplicates and the means and the standard errors are shown. A plasma sample of healthy person was used as a control. C. Immunophenotypic analyses on the peripheral blood lymphocytes of the EBV-HLH patient 10 (a) and a mouse that received his PBMC (b). Lymphocytes were gated by the pattern of the side scatter and the expression of human CD45, and analyzed for the expression of the indicated markers. The circles indicate the fractions that contained EBV DNA. D. Photograph of a mouse showing splenomegaly (red arrow) and hemorrhagic lesions (yellow arrow). Spleens excised from this mouse and a control mouse are shown at the bottom. E. Photomicrographs of the tissues of mice transplanted with EBV-HLH-derived PBMC. Liver and spleen tissues of a mouse transplanted with PBMC of the patient 11 were examined by EBER-ISH (left), double staining with an anti-human CD20 monoclonal antibody and EBER-ISH (middle), and double staining with an anti-human CD45RO monoclonal antibody and EBER-ISH (right). Original magnification \times 600. doi:10.1371/journal.ppat.1002326.g006 CAEBV may be its inability to immunologically remove EBVinfected T and NK cells. In this context, it should be emphasized that EBV-infected T or NK cells usually exhibit the latency II pattern of EBV gene expression and do not express EBNA3s, that possess immuno-dominant epitopes recognized by EBV-specific T cells [47]. EBV-infected T and NK cells are thus not likely to be removed by cytotoxic T cells as efficiently as EBV-infected B cells that express EBNA3s. The reported lack of cytotoxic T cells specific to LMP2A [17], one of the few immuno-dominant EBV proteins expressed in the virus-infected T and NK cells, may therefore seriously affect the host's capacity to control their proliferation. A genetic defect in the perforin gene was recently identified in a patient with clinical and pathological
features resembling CAEBV, suggesting that defects in genes involved in immune responses can result in clinical conditions similar to CAEBV [48]. Engraftment of EBV-infected T and NK cells in NOG mice was in most cases accompanied by co-engraftment of un-infected cell populations. These un-infected cells might have been maintained and induced to proliferate by certain factors produced by EBVinfected T or NK cells. Abundant cytokines produced by these cells may be responsible for this activity. It is also possible that the proliferation of these un-infected cells represents immune responses. Experiments are underway to test whether these uninfected T cells contain EBV-specific cells. These un-infected T cells might also be reacting to host murine tissues. Intravenous injection of PBMC obtained from normal humans to immunodeficient mice including NOG mice has been shown to induce acute or chronic graft versus host disease (GVHD) [49,50]. However, because much less PBMC were injected to mice in the present study as compared to those previous studies, it is not likely that major GVHD was induced in NOG mice transplanted with PBMC of patients with CAEBV or EBV-HLH. CAEBV has been treated by a variety of regimens, including antiviral, cytocidal, and immunomodulating agents with more or less unsatisfactory results. Although hematopoietic stem cell transplantation, especially that with reduced intensity conditioning can give complete remission in a substantial number of patients [51,52], it is still desirable to develop safer and more effective treatment, possibly with pharmaceutical agents. The xenograft model of CAEBV generated in this study may be an excellent animal model to test novel experimental therapies for the disease. In fact, the OKT-4 antibody that depletes CD4⁺ T cells in vivo gave a promising result implying its effectiveness as a therapeutic to CAEBV. #### Materials and Methods #### Ethics statement Protocols of the experiments with materials obtained from patients with CAEBV and EBV-HLH and from control persons have been reviewed and approved by the Institutional Review Boards of the National Center for Child Health and Development and of the National Institute of Infectious diseases (NIID). Blood samples of the patients and control persons were collected after obtaining written informed consent. Protocols of the experiments with NOG mice are in accordance with the Guidelines for Animal Experimentation of the Japanese Association for Laboratory Animal Science and were approved by the Institutional Animal Care and Use Committee of NIID. ## Patients with CAEBV and EBV-HLH Characteristics of the nine patients with CAEBV and the four patients with EBV-HLH examined in this study are summarized in Table 1. Diagnosis of CAEBV and EBV-HLH was made on the basis of the published guidelines [19,53] and confirmed by identification of EBV-infected T or NK cells in their peripheral blood by flow cytometry and real-time PCR. ## NOD/Shi-scid/IL2Rγ^{null} (NOG) mice Mice of the NOD/Shi-scid/IL-2Ry^{ull} (NOG) strain [22] were obtained from the Central Institute for Experimental Animals (Kawasaki, Japan) and maintained under specific pathogen free (SPF) conditions in the animal facility of NIID, as described [22]. # Transplantation of PBMC or their subfractions to NOG mice PBMC were isolated by centrifugation on Lymphosepar I (Immuno-Biological Laboratories (IBL)) and injected intravenously to the tail vein of NOG mice at the age of 6-8 weeks. Depending on the recovery of PBMC, $1-4\times10^6$ cells were injected to 2 to 4 mice in a typical experiment with a blood sample. For transplantation with individual cellular fractions containing EBV DNA, CD4+ T cells, CD8+ T cells, and CD56+ NK cells were separated with the IMag Cell Separation Systems (BD Pharmingen) following the protocol supplied by the manufacturer. To isolate $\gamma\delta T$ cells, CD19⁺, CD4⁺, CD8⁺, CD56⁺, and CD14⁺ cells were serially removed from PBMC by the IMag Cell Separation Systems. From the remaining CD19⁺CD4⁺CD8⁺CD56⁺CD14⁺ population, CD3⁺ cells were positively selected by the same kit and defined as the γδT cell fraction. To transplant PBMC lacking individual immunophenotypic subsets, CD19⁺, CD4⁺, CD8⁺, CD56⁺ or CD14⁺ cells were removed from PBMC by the IMag Cell Separation Systems and the remaining cells were injected to mice. To prepare PBMC lacking γδΤ cells, CD19⁺, CD4⁺, CD8⁺, CD56⁺, and CD14⁺ cells isolated from PBMC in the process of obtaining γδT cell fraction (see above) were pooled and mixed with the CD19 CD4 CD8 CD56 --CD14 cells that did not react with anti-CD3 antibody. For complementation experiments, an EBV-containing cell fraction and the CD4+ cell fraction were isolated from a sample of PBMC as described above and the mixture of these two fractions were injected to NOG mice. The approximate numbers of injected cells are shown in Table 2. # Analysis of immunophenotypes and TCR repertoire expression by flow cytometry PBMC isolated from the patients and the recipient NOG mice as described above were incubated for 30 min on ice with a mixture of appropriate combinations of fluorescently labeled monoclonal antibodies. After washing, five-color flow-cytometric analysis was carried out with the Cytomics FC500 analyzer (Beckman Coulter). The following directly labeled antibodies were used: phycoerythrin (PE)-conjugated antibodies to CD3, CD8, and TCR α/β , fluorescein isothiocyanate (FTTC)-conjugated antibodies to CD3, CD4, CD8, CD19, TCRV γ 9, TCRV δ 2, and TCR γ/δ , and Phycoerythrin Texas Red (ECD)-conjugated antibody to CD45RO from Beckman Coulter; PE-conjugated antibodies to CD16, CD40, and CD40L, and FTTC-conjugated antibody to CD56 from BD Pharmingen. TCR V β repertoire analysis was performed with the Multi-analysis TCR V β antibodies Kit (Beckman Coulter) according to the procedure recommended by the manufacturer. ## Treatment of mice with the OKT-4 antibody NOG mice were injected intravenously with 5×10^6 PBMC isolated from the CAEBV patient 3 (CD8 type) or 8 (NK type) and were subsequently injected intravenously with 100 µg of the OKT-4 antibody on the same day of transplantation. Additional PLoS Pathogens | www.plospathogens.org administration of the antibody was carried out by the same dose and route for the following three consecutive days. Peripheral blood EBV DNA load was then monitored every week. Mice were finally sacrificed four weeks post-transplantation and applied for pathological and virological analyses. # Quantification of EBV DNA by real time PCR and analysis of EBV gene expression by RT-PCR Quantification of EBV DNA was carried out by real-time quantitative PCR assay based on the TaqMan system (Applied Biosystems), as described [54]. Analysis of EBV gene expression by RT-PCR was carried out as previously described with the following primers [55]. EBNA1: sense, gatgagcgtttgggagagctgattctgca; antisense, tectegtecatggttateae. EBNA2: sense, agaggaggtggtaageggtte; antisense, tgacgggtttccaagactatcc. LMP1: sense, ctctccttctcctcctcttg; antisense, caggagggtgatcatcagta. LMP2A: sense, atgactcatctcaacacata; antisense, catgttaggcaaattgcaaa. LMP2B: sense, cagtgtaatctgcacaaaga; antisense, catgttaggcaaattgcaaa. EBER1: sense, agcacctacgetgecetaga; antisense, aaaacatgeggaceaceage. Cp-EBNA1: sense, cactacaagacctacgcctctccattcatc; anti sense, ttcggtctcccctaggccctg. Wp/Cp-EBNA1: sense, tcagagcgccaggagtccacacaaat; antisense, ttcggtctcccctaggccctg. Qp-EBNA1: sense, aggcgcgggatagcgtgcgctaccgga; antisense, tcctcgtccatggttatcac. RT-PCR primers for β-actin were purchased from Takara (Osaka, Japan). #### Histopathology, EBER ISH, and immunohistochemistry Tissue samples were fixed in 10% buffered formalin, embedded in paraffin, and stained with hematoxylin and eosin. For phenotypic analysis of engrafted lymphocytes, immunostaining for CD3, CD8 (Nichirei), CD45RO, and CD20 (DAKO) was performed on paraffin sections. EBV was detected by in situ hybridization (ISH) with EBV small RNA (EBER) probe. Immunohistochemistry and ISH were performed on an automated stainer (BENCHMARK XT, Ventana Medical Systems) according to the manufacturer's recommendations. To determine the cell lineage of EBV infected cells, paraffin sections were applied to double staining with EBER ISH and immunohistochemistry. Immediately following EBER ISH, immunostaining for CD45RO or CD20 was performed. Photomicrographs was acquired with a OLYMPUS BX51 microscope equipped with 40x/0.75 and 20x/ 0.50 Uplan Fl objective lens, a Pixera Penguin 600CL digital camera (Pixera), and Viewfinder 3.01 (Pixera) for white balance, contrast, and brightness correction. ## Quantification of cytokines The levels of human IL-8, IFN-γ, and RANTES in plasma samples were measured with the Enzyme-linked immunosorbent assay (ELISA) kit provided by R&D Systems following instructions provided by the manufacturer. #### References - Rickinson AB, Kieff ED (2007) Epstein-Barr virus. In: Knipe DM, Howley PM, eds. Fields Virology 5, ed. Philadelphia: Lippincott Williams and Wilkins, pp 2655–2700. - Kieff ED, Rickinson AB (2007) Epstein-Barr virus and its replication. In: Knipe DM, Howley PM, eds. Fields Virology. Philadelphia: Lippincott Williams and Wilkins. pp 2603–2654. - Fujiwara S, Ono Y (1995) Isolation of Epstein-Barr virus-infected clones of the human T-cell line MT-2: use of recombinant viruses with a positive selection marker. J Virol 69: 3900–3903. - Warry D. Hedrick JA, Siervo S, Rhodes G, Lamberti JJ, et al. (1991) Infection of human thymocytes by Epstein-Barr virus. J Exp Med 173: 971–980. #### Accession numbers The Swiss-Prot accession numbers for the proteins described in this article are as follows: P13501 for RANTES; P10145 for IL-8; P01579 for IFN-γ; P03211 for EBNA1; P12978 for EBNA2; P12977 for EBNA3; P03230 for LMP1; and Q66562 for LMP2. The DDBI accession number for EBER is A]315772. #### **Supporting Information** **Figure
S1** Changes in the body weight of NOG mice transplanted with PBMC derived from patients with CAEBV or EBV-HLH. Body weight of the five CAEBV mice shown in Figure 1A (transplanted with PBMC from the patient 1, 3, 5, and 9, and with the CD4⁺ fraction from the patient 1, respectively) and two EBV-HLH mice shown in Figure 6A (both transplanted with PBMC from the patient 11) were recorded weekly. (TIF) Figure S2 Histopathological analysis of a control NOG mouse. A. a NOG mouse without xenograft. A 20-week old female NOG mouse was sacrificed and examined as a reference. No human cells are identified in these tissues. Upper panels: liver tissue was stained with hematoxylin-eosin (HE), antibodies specific to human CD3 or CD20, or by ISH with an EBER probe; the rightmost panel is a double staining with EBER and human CD45RO. Bottom panels: EBER ISH in the spleen, kidney, and small intestine. B. a NOG mouse transplanted with PBMC of a healthy EBV carrier. A six-week old female NOG mouse was transplanted with 5×106 PBMC isolated from a normal EBV-seropositive person and sacrificed at eight weeks post-transplantation for histological analysis. Liver and Spleen tissues were stained with HE, antibodies specific to human CD3 or CD20, or by ISH with an EBER probe. No EBER-positive cells were identified in these tissues. Original magnification is ×200 for both A and B. (TIF) **Table S1** EBV DNA load in lymphocyte subsets of a patient with CAEBV and a corresponding mouse derived from her PBMC. (DOC) **Table S2** EBV DNA load in lymphocyte subsets of a patient with EBV-HLH and a corresponding mouse derived from his PBMC. (DOC) ## Acknowledgments We thank Kumiko Tanaka, Ken Watanabe, and Miki Katayama for technical assistance. #### **Author Contributions** Conceived and designed the experiments: KI MY NS NY SF, Performed the experiments: KI MY AN FK SI HN. Analyzed the data: KI MY AN SF, Contributed reagents/materials/analysis tools: AA TM SO MI OM JK. Wrote the paper: KI SF. - Kikuta H, Sakiyama Y, Matsumoto S, Oh-Ishi T, Nakano T, et al. (1993) Fatal Epstein-Barr virus-associated hemophagocytic syndrome. Blood 82: 3259–3264. - Kawaguchi H, Miyashita T, Herbst H, Niedobitek G, Asada M, et al. (1993) Epstein-Barr virus-infected T lymphocytes in Epstein-Barr virus-associated hemophagocytic syndrome. J Clin Invest 92: 1444-1450. Kawa-Ha K, Ishihara S, Ninomiya T, Yumura-Yagi K, Hara J, et al. (1989) - Kawa-Ha K, Ishihara S, Ninomiya T, Yumura-Yagi K, Hara J, et al. (1989) CD3-negative lymphoproliferative disease of granular lymphocytes containing Epstein-Barr viral DNA. J Clin Invest 84: 51 –55. - Jones JF, Shurin S, Abramowsky C, Tubbs RR, Sciotto CG, et al. (1988) T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infections. N Engl J Med 318: 733-741. - 9. Kikuta H. Taguchi Y. Tomizawa K. Kojima K. Kawamura N. et al. (1988) Epstein-Barr virus genome-positive T lymphocytes in a boy with chronic active EBV infection associated with Kawasaki-like disease. Nature 333: 455-457. Ishihara S, Tawa A, Yumura-Yagi K, Murata M, Hara J, et al. (1989) Clonal T-cell lymphoproliferation containing Epstein-Barr (EB) virus DNA in a patient - with chronic active EB virus infection. Jpn J Cancer Res 80: 99 101. 11. Jaffe ES (2009) The 2008 WHO classification of lymphomas: implications for - clinical practice and translational research. Hematology Am Soc Hematol Educ Program 2009: 523-531, - Okano M (2002) Overview and problematic standpoints of severe chronic active Epstein-Barr virus infection syndrome. Crit Rev Oncol Hematol 44: 273-282. - Straus SE (1992) Acute progressive Epstein-Barr virus infections. Annu Rev Med 43-437-449 - 14. Kimura H (2006) Pathogenesis of chronic active Epstein-Barr virus infection: is this an infectious disease, lymphoproliferative disorder, or immunodeficiency? Rev Med Virol 16: 251-261. - Kimura H, Morishima T, Kanegane H, Ohga S, Hoshino Y, et al. (2003) Prognostic factors for chronic active Epstein-Barr virus infection. J Infect Dis 187: 527-533. - Tsuge I, Morishima T, Kimura H, Kuzushima K, Matsuoka H (2001) Impaired cytotoxic T lymphocyte response to Epstein-Barr virus-infected NK cells in patients with severe chronic active EBV infection. J Med Virol 64: 141-148. - Sugaya N, Kimura H, Hara S, Hoshino Y, Kojima S, et al. (2004) Quantitative analysis of Epstein-Barr virus (EBV)-specific CD8+ T cells in patients with - chronic active EBV infection, J Infect Dis 190: 985-988. Aoukary A, Lee IF, Wu J, Tan R (2003) Chronic active Epstein-Barr virus infection associated with low expression of leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) on natural killer cells. J Clin Immunol 23: 141 - Henter JI, Horne A, Arico M, Egeler RM, Filipovich AH, et al. (2007) HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistio-cytosis. Pediatr Blood Cancer 48: 124-131. - 20. Lay JD, Tsao CJ, Chen JY, Kadin ME, Su IJ (1997) Upregulation of tumor necrosis factor-alpha gene by Epstein-Barr virus and activation of macrophages in Epstein-Barr virus-infected T cells in the pathogenesis of hemophagocytic syndrome. J Clin Invest 100: 1969-1979. - Imashuku S, Hibi S, Ohara T, Iwai A, Sako M, et al. (1999) Effective control of Epstein-Barr virus-related hemophagocytic lymphohisticcytosis with immuno-chemotherapy. Histocyte Society. Blood 93: 1869-1874. - Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, et al. (2002) NOD/ SCID/gamma(c)(mill) mouse; an excellent recipient mouse model for engraftment of human cells. Blood 100; 3175-3182, - Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, et al. (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174: 6477-6489. - 24. Strowig T, Gurer C, Ploss A, Liu YF, Arrey F, et al. (2009) Priming of protective T cell responses against virus-induced tumors in mice with human immune ystem components. J Exp Med 206: 1423-1434. - Watanabe S, Terashima K, Ohta S, Horibata S, Yajima M, et al. (2007) Hematopoietic stem cell-engrafied NOD/SCID/IL2Rgamma null mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific - humoral immune responses, Blood 109: 212-218. Yajima M, Imadome K, Nakagawa A, Watanabe S, Terashima K, et al. (2008) A new humanized mouse model of Epstein-Barr virus infection that reproduces persistent infection, lymphoproliferative disorder, and cell-mediated and humoral immune responses. J Infect Dis 198: 673-682. - Traggiai E. Chicha L., Mazzucchelli L., Bronz L., Piffaretti JC, et al. (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304: 104-107. - Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J. Denton PW, et al. (2006) Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 12: 1316–1322. - 29. Baenziger S, Tussiwand R, Schlaepfer E, Mazzucchelli L, Heikenwalder M, et al. (2006) Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2-/-gamma c-/- mice. Proc Natl Acad Sci U S A 103: - 30. Zhang L, Kovalev GI, Su L (2007) HIV-1 infection and pathogenesis in a novel humanized mouse model, Blood 109: 2978-2981. - Dewan MZ, Watanabe M, Ahmed S, Terashima K, Horiuchi S, et al. (2005) Hodgkin's lymphoma cells are efficiently engrafted and tumor marker CD30 is expressed with constitutive nuclear factor-kappaB activity in unconditioned NOD/SCID/gammac(null) mice. Cancer Sci 96: 466-473. - Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, et al. (2007) Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 25: 1315–1321. 33. Durig J, Ebeling P, Grabellus F, Sorg UR, Mollmann M, et al. (2007) A novel - nonobese diabetic/severe combined immunodeficient xenografi model for - chronic lymphocytic leukemia reflects important clinical characteristics of the disease, Cancer Res 67: 8653-8661 - Nakagawa A, Ito M, Saga S (2002) Fatal cytotoxic T-cell proliferation in chronic active Epstein-Barr virus infection in childhood. Am J Clin Pathol 117: 283-290. - Nagata H, Konno A, Kimura N, Zhang Y, Kimura M, et al. (2001) Characterization of novel natural killer (NK)-cell and gammadelta T-cell lines established from primary lesions of nasal T/NK-cell lymphomas associated with the Epstein-Barr virus. Blood 97: 708-713. - Imai S, Sugiura M, Oikawa O, Koizumi S, Hirao M, et al. (1996) Epstein-Barr virus (EBV)-carrying and -expressing T-cell lines established from severe chronic active EBV infection. Blood 87: 1446-1457. - Yoshioka M, Ishiguro N, Ishiko H, Ma X, Kikuta H, et al. (2001) Heterogeneous, restricted patterns of Epstein-Barr virus (EBV) latent gene expression in patients with chronic active EBV infection. J Gen Virol 82: - Kimura H, Hoshino Y, Hara S, Sugaya N, Kawada J, et al. (2005) Differences between T cell-type and natural killer cell-type chronic active Epstein-Barr virus infection. J Infect Dis 191: 531-539. - Xu J, Ahmad A, Jones JF, Dolcetti R, Vaccher E, et al. (2000) Elevated serum transforming growth factor beta1 levels in Epstein-Barr virus-associated diseases and their correlation with virus-specific immunoglobulin A (IgA) and IgM, I Virol 74: 2443 2446. - Ohga S, Nomura A, Takada H, Ihara K, Kawakami K, et al. (2001) Eustein-Barr virus (EBV) load and cytokine gene expression in activated T cells of chronic active EBV infection, J Infect Dis 183: 1-7. - Hayashi K, Ohara N, Teramoto N, Onoda S, Chen HL, et al. (2001) An animal model for human EBV-associated hemophagocytic syndrome: herpesvirus papio frequently induces fatal lymphoproliferative disorders with hemophagocytic syndrome in rabbits. Am J Pathol 158: 1533-1542. - Veronese ML, Veronesi A, D'Andrea E, Del Mistro A, Indraccolo S, et al. (1992) Lymphoproliferative disease in human peripheral blood mononuclear cell-injected SCID mice. I. T
lymphocyte requirement for B cell tumor generation. J Exp Med 176: 1763 1767. - Johannessen I, Asghar M. Crawford DH (2000) Essential role for T cells in human B-cell lymphoproliferative disease development in severe combined immunodeficient mice. Br J Haematol 109: 600-610. - Sutkowski N, Palkama T, Ciurli C, Sekaly RP, Thorley-Lawson DA, et al. (1996) An Epstein-Barr virus-associated superantigen, J Exp Med 184: 971–980 - Anagnostopoulos I, Hummel M, Kreschel C, Stein H (1995) Morphology, immunophenotype, and distribution of latently and/or productively Epstein-Barr virus-infected cells in acute infectious mononucleosis: implications for the interindividual infection route of Epstein-Barr virus. Blood 85: 744-750. - Hudnall SD, Ge Y, Wei L, Yang NP, Wang HQ, et al. (2005) Distribution and phenotype of Epstein-Barr virus-infected cells in human pharyngeal tonsils. Mod Pathol 18: 519-527. - Hislop AD, Taylor GS, Sauce D, Rickinson AB (2007) Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol 25: 587-617 - Katano H, Ali MA, Patera AC, Catalfamo M, Jaffe ES, et al. (2004) Chronic active Epstein-Barr virus infection associated with mutations in perforin that impair its maturation. Blood 103: 1244-1252. - van Rijn RS, Simonetti ER, Hagenbeck A, Hogenes MC, de Weger RA, et al. (2003) A new xenograft model for graft-versus-host disease by intravenous transfer of human peripheral blood mononuclear cells in RAG2-/- gammac-/double-mutant mice. Blood 102: 2522-2531. Ito R, Katano I, Kawai K, Hirata H, Ogura T, et al. (2009) Highly sensitive - model for xenogenic GVHD using severe immunodeficient NOG mice. Transplantation 87: 1654-1658. - Kawa K, Sawada A, Sato M, Okamura T, Sakata N, et al. (2011) Excellent outcome of allogeneic hematopoietic SCT with reduced-intensity conditioning for the treatment of chronic active EBV infection. Bone Marrow Transplant 46: - Sato E. Ohga S, Kuroda H, Yoshiba F, Nishimura M, et al. (2008) Allogeneic hematopoietic stem cell transplantation for Epstein-Barr virus-associated T/ natural killer-cell lymphoproliferative disease in Japan. Am J Hematol 83: - Okano M, Kawa K, Kimura H, Yachie A, Wakiguchi H, et al. (2005) Proposed guidelines for diagnosing chronic active Epstein-Barr virus infection. Am J Hematol 80: 64-69. - Kimura H, Morita M, Yabuta Y, Kuzushima K, Kato K, et al. (1999) Quantitative analysis of Epstein-Barr virus load by using a real-time PCR assay. J Clin Microbiol 37: 132-136. - Nakamura H, Iwakiri D, Ono Y, Fujiwara S (1998) Epstein-Barr-virus-infected human T-cell line with a unique pattern of viral-gene expression. Int J Cancer 76: 587-594.