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Introduction

Abstract

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the
central nervous system (CNS) white matter mediated by an autcimmune
process triggered by a complex interplay between genetic and environmental
factors, in which the precise molecular pathogenesis remains to be compre-
hensively characterized. The global analysis of genome, transcriptome,
proteome and metabolome, collectively termed omics, promotes us to
characterize the genome-wide molecular basis of MS. However, as omics
studies produce high-throughput experimental data at one time, it is often
difficuit to find out the meaningful biological implications from huge data-
sets. Recent advances in bioinformatics and systems biology have made
major breakthroughs by iliustrating the cell-wide map of complex molecular
interactions with the aid of the literature-based knowledgebase of molecular
pathways. The integration of omics data derived from the disease-affected
cells and tissues with underlying molecular networks provides a rational
approach not only to identifying the disease-relevant molecular markers and
pathways, but also to designing the network-based effective drugs for MS.
(Clin. Exp. Neuroimmunol. doi: 10.1111/}.1759-1961.2010.00013.%, September
2010)

remyelination, oligodendrocyte apoptosis, and
axonal degeneration.®> Currently available drugs in

Multiple sclerosis (MS) is an inflammatory demye-
linating disease affecting exclusively the central ner-
vous system (CNS) white matter mediated by an
autoimmune process triggered by a complex inter-
play between genetic and environmental factors.'
Intravenous administration of interferon-gamma
(IFNy) provoked acute relapses of MS, indicating a
pivotal role of proinflammatory T helper type 1
(Thl) lymphocytes. More recent studies proposed
the pathogenic role of Th17 lymphocytes in
sustained tissue damage in MS.> MS shows a great
range of phenotypic variability. The disease is classi-
fied into relapsing-remitting MS (RRMS), secondary
progressive MS (SPMS) or primary progressive
MS (PPMS) with respect to the clinical course.
Pathologically, MS shows a remarkable heterogene-
ity in the degree of inflammation, complement
activation, antibody deposition, demyelination and

© 2010 Japanese Society for Neuroimmunology

clinical practice of MS, including interferon-beta
(IENB), glatiramer acetate, mitoxantrone, FTY720
and natalizumab, have proven only limited efficacies
in subpopulations of the patients.* These observations
suggest the hypothesis that MS is a kind of neurologi-
cal syndrome caused by different immunopathological
mechanisms leading to the final common pathway
that provokes inflammatory demyelination. There-
fore, the identification of specific biomarkers relevant
to the heterogeneity of MS is highly important to
establish the molecular mechanism-based personal-
ized therapy in MS.

After the completion of the Human Genome Pro-
ject in 2003, the global analysis of genome, tran-
scriptome, proteome and metabolome, collectively
termed omics, promotes us to characterize the gen-
ome-wide molecular basis of the diseases, and helps
us to identify disease-specific molecular signatures
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and biomarkers for diagnosis and prediction of prog-
nosis. Actually, the genome-wide association study
(GWAS) of MS revealed novel risk alleles for suscep-
tibility of MS.® The comprehensive transcriptome
and proteome profiling of brain tissues and lympho-
cytes identified key molecules aberrantly regulated
in MS, whose role has not been previously predicted
in the pathogenesis of MS.*” Most recently, the
application of next-generation sequencing technol-
ogy to personal genomes has enabled us to investi-
gate the genetic basis of MS at the level of
individual patients.®

Because omics studies usually produce high-
throughput experimental data at one time, it is often
difficult to find out the meaningful biological impli-
cations from such a huge dataset. Recent advances
in bioinformatics and systems biology have made
major breakthroughs by showing the cell-wide map
of complex molecular interactions with the aid of
the literature-based knowledgebase of molecular
pathways.” The logically arranged molecular net-
works construct the whole system characterized by
robustness, which maintains the proper function of
the system in the face of genetic and environmental
perturbations.'® In the scale-free molecular network,
targeted disruption of limited numbers of critical
components designated the hub, on which the bio-
logically important molecular connections concen-
trate, could disturb the whole cellular function by
destabilizing the network.'' From the point of these
views, the integration of omics data derived from
the disease-affected cells and tissues with underlying
molecular networks provides a rational approach not
only to characterizing the disease-relevant pathways,
but also to identifying the network-based effective
drug targets.

Increasing numbers of human disease-oriented
omics data have been deposited in public data-
bases, such as the Gene Expression Omnibus (GEO)
repository  (http://www.ncbi.nlm.nih.gov/geo) and
the ArrayExpress archive (http://www.ebi.ac.uk/
microarray-as/ae). Most of these are transcriptome
datasets. Importantly, they really include the data
that have potentially valuable information on
molecular biomarkers and networks of the dis-
eases, when they are reanalyzed by appropriate bio-
informatics approaches, followed by validation of
in silico observations with in vitro and in vivo
experiments.'?

The present review has focused on bioinformatics
approaches to identifying MS-associated molecular
biomarkers and networks from high-throughput data
of omics studies.
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Global gene expression analysis

DNA microarray technology is an innovative
approach that allows us to systematically monitor
the genome-wide gene expression pattern of disease-
affected tissues and cells. This approach enables us
to illustrate most efficiently a global picture of cellu-
lar activity by the messenger RNA (mRNA) expres-
sion levels as an indicator, although the levels of
mRNA do not always correlate with the levels of
proteins directly involved in cellular {function. How-
ever, the use of DNA microarray is more convenient
to collect temporal and spatial snapshots of gene
expression than the conventional mass spectrometry,
which is often hampered by limited resolution of
protein separation. In transcriptome analysis, we
could logically assume that a set of coregulated
genes might have similar biological functions within
the cells.

First of all, T would like to briefly overview the
gene expression analysis (Fig. 1). In general, total
RNA fractions containing mRNA species are
extracted from cells and tissues, individually labeled
with fluorescent dyes, and processed for hybridiza-
tion with thousands of oligonucleotides of known
sequences immobilized on the arrays. After wash-
ing, they are processed for signal acquisition on a
scanner. Various types of microarrays are currently
available, although the MicroArray Quality Control
{MAQC) project verified that the core results are
well reproducible among different platforms used.'®
However, it is recommended that each experiment
should contain biological replicates to validate
reproducibility of the observations. The raw data
are normalized by representative methods, indud-
ing the quantile normalization method and the
Robust MultiChip Average (RMA) method using
the r software of the Bioconductor package (cran.r-
project.org) or the GeneSprING software (Agilent
Technology, Palo Alto, CA, USA).

To identify differentially expressed genes (DEG)
among distinct samples, the normalized data are
processed for statistical analysis using z-test for com-
parison between two groups or analysis of variance
{anova) for comparison among more than three
groups, followed by the multiple comparison test
with the Bonferroni correction or by controlling
false discovery rate (FDR) below 0.05 to adjust
P-values.

In the next step, the levels of expression of DEG
should be validated by quantitative reverse transcrip-
tion polymerase chain reaction (QRT-PCR). The nor-
malized data are also processed for hierarchical
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Figure 1 The load map from global gene expression profiling to molecular network analysis. Total RNA samples labeled with fluorescent dyes are
processed for hybridization with oligonucleotide probes on the arrays, which should include biological replicates. They are processed for signal acquisi-
tion on a scanner. To identify the list of differentially expressed genes (DEG) among the samples, the normalized data are processed for statistical anal-
ysis, followed by validation by quantitative reverse transcription polymerase chain reaction (QRT-PCR). They are also processed for hierarchical
clustering analysis and gene ontology and function analysis. To identify biologically relevant molecular pathways, the list of DEG is imported into path-
way analysis tools endowed with a comprehensive knowledgebase. ANOVA, analysis of variance; DAVID, Database for Annotation, Visualization and
Integrated Discovery; FDR, false discovery rate; GSEA, Gene Set Enrichment Analysis; IPA, Ingenuity Pathways Analysis; KEGG, Kyoto Encyclopedia of
Genes and Genomes; MCT, multiple comparison test; PANTHER, Protein Analysis Through Evolutionary Relationships; and STRING; Search Tool for the

Retrieval of Interacting Genes/Proteins.

clustering analysis to classify the expression of pro-
file-based groups of genes and samples by using
GeNESPRING Or the open-access resources, such as
CrustER 3.0 (bonsai.ims.u-tokyo.ac.jp/~mdehoon/
software/cluster) and TreeView (sourceforge.net/pro-
jects/jtreeview). The Gene ID Conversion tool of the
Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) (david.abcc.ncifcrf.gov)'®
converts the large-scale array-specific probe IDs into
the corresponding Entrez Gene IDs, HUGO Gene
Symbols, Ensembel Gene IDs or UniProt IDs, being
more convenient for application to the downstream
analysis. Both the DAVID Functional annotation
tool and the Gene Set Enrichment Analysis (GSEA)
tool (www.broad.mit.edu/gsea/downloads.jsp)'’ are
open-access resources that help us to identify a set
of enriched genes with a specified functional anno-
tation in the entire list of genes. Many other

approaches for preprocessing microarray data
are applicable, and the resources are available
elsewhere.

© 2010 Japanese Society for Neuroimmunology

Molecular network analysis

To identify biologically relevant molecular pathways
from large-scale data, we could analyze them by
using a battery of pathway analysis tools endowed
with a comprehensive knowledgebase; that is, Kyoto
Encyclopedia of Genes and Genomes (KEGG; http://
www .kegg.jp), the Protein Analysis Through Evolu-
tionary Relationships (PANTHER) classification sys-
tem (http://www.pantherdb.org), Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING;
string.embl.de), Ingenuity Pathways Analysis (IPA;
Ingenuity Systems, http://www.ingenuity.com) and
KeyMolnet (Institute of Medicinal Molecular Design,
http://www.immd.co.jp) (Fig. 1). KEGG, PANTHER
and STRING are open-access databases, whereas IPA
and KeyMolnet are commercial databases updated
regularly. Both transcriptome and proteome data are
acceptable for all the databases described here.
KEGG systematically integrates genomic and
chemical information to create the whole biological
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system in silico.'® KEGG includes manually curated
reference pathways that cover a wide range of meta-
bolic, genetic, environmental and cellular processes,
and human diseases. Currently, KEGG contains
108 983 pathways generated from 358 reference
pathways. PANTHER, operating on the computa-
tional algorithms that relate the evolution of protein
sequences to the evolution of protein functions and
biological roles, provides a structured representation
of protein function in the context of biological reac-
tion networks.'” PANTHER includes the information
on 165 regulatory and metabolic pathways, manu-
ally curated by expert biologists. By uploading the
list of Gene IDs, the PANTHER gene expression data
analysis tool identifies the genes in terms of over- or
under-representation in canonical pathways, fol-
lowed by statistical evaluation by multiple compari-
son test with the Bonferroni correction. STRING is a
database that contains physiological and functional
protein-protein interactions composed of 2 590 259
proteins from 630 organisms.'® STRING integrates
the information from numerous sources, including
experimental repositories, computational prediction
methods and public text collections. By uploading
the list of UniProt IDs, STRING illustrates the union
of all possible association networks.

IPA is a knowledgebase that contains approxi-
mately 2 270 000 biological and chemical interac-
tions and functional annotations with definite
scientific evidence, curated by expert biologists.'® By
uploading the list of Gene IDs and expression values,
the network-generation algorithm identifies focused
genes integrated in a global molecular network. IPA
calculates the score P-value, the statistical signifi-
cance of association between the genes and the net-
works by the Fisher’s exact test.

KeyMolnet contains knowledge-based content on
123 000 relationships among human genes and pro-
teins, small molecules, diseases, pathways and drugs,
curated by expert biologists.”® They are categorized
into the core content collected from selected review
articles with the highest reliability or the secondary
contents extracted from abstracts of PubMed and
Human Reference Protein database (HPRD). By
importing the list of Gene ID and expression values,
KeyMolnet automatically provides corresponding
molecules as a node on networks. The “common
upstream”” network-search algorithm enables us to
extract the most relevant molecular network com-
posed of the genes coordinately regulated by puta-
tive common upstream transcription factors. The
“neighboring” network-search algorithm selected
one or more molecules as starting points to generate
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the network of all kinds of molecular interactions
around starting molecules, including direct activa-
tiornv/inactivation, transcriptional activation/repres-
sion, and the complex formation within the
designated number of paths from starting points. The
“N-points to N-points” network-search algorithm
identifies the molecular network constructed by the
shortest route connecting the start-point molecules
and the end-point molecules. The generated net-
work was compared side-by-side with 430 human
canonical pathways of the KeyMolnet library. The
algorithm counting the number of overlapping
molecular relations between the extracted network
and the canonical pathway makes it possible to iden-
tify the canonical pathway showing the most signifi-
cant contribution to the extracted network. The
significance in the similarity between both is scored
following the formula, where O is the number
of overlapping molecular relations between the
extracted network and the canonical pathway, V is
the number of molecular relations located in the
extracted network, C is the number of molecular
relations located in the canonical pathway, T is the
number of total molecular relations, and X is the
sigma variable that defines coincidence.

Score = —log, (Score[P])
Min(C,V)
Score(P) = Z f(x)

x=0
f(x) = c¢Cs - 1-¢Cv-x/7Cv

Biomarkers for predicting MS relapse

Molecular mechanisms underlying acute relapse of
MS remain currently unknown. I molecular biomar-
kers for MS relapse are identified, we could predict
the timing of relapses, being invaluable to start the
earliest preventive intervention.

By gene expression profiling with Affymetrix
Human Genome U133 plus 2.0 arrays, Corvol et al.
identified 975 genes that separate clinically isolated
syndrome (CIS) into four groups.*' Surprisingly,
92% of patients in group 1 were characterized by a
subset of 108 genes converted to clinically definite
MS (CDMS) within 9 months of the first attack.
They suggest downregulation of TOB1, a negative
regulator of T cell proliferation as a marker predict-
ing the conversion from CIS to CDMS.

By gene expression profiling with Affymetrix
Human Genome UI133A2 arrays, Achiron et al.
showed that 1578 DEG of peripheral blood mono-
nuclear cells (PBMC) of RRMS patients, differentiating

© 2010 Japanese Society for Neuroimmunology

—199 —



J. Satoh

acute relapse from remission, are enriched in the
apoptosis-related pathway, in which proapoptotic
genes are downregulated, whereas antiapoptotic
genes are upregulated during acute relapse.?> The
same group also compared 62 patients with CDMS
and 32 patients with CIS by combining gene expres-
sion profiling with the support vector machine
(SVM)-based prediction of time to the next acute
relapse, setting a two stage predictor composed of
First Level Predictors (FLP) and Fine Turning Predic-
tors (FTP).?*> They identified three sets of the best
10-gene FLP that predict the next relapse with a res-
olution of 500 days and four sets of the best 9-gene
FTP that predict the forthcoming relapse with a reso-
lution of 50 days. The predictor genes are enriched
in the TGFB2-related signaling pathway. More
recently, Achiron et al. compared nine subjects who
developed MS during a 9-year follow-up period (the
preactive stage of MS; MS-to-be) and 11 control sub-
jects unaffected with MS (MS-free) by gene expres-
sion profiling.>* They found downregulation of
nuclear receptor NR4Al in the preactive  stage of
MS, suggesting that self-reactive T cells are not elim-
inated in the MS-to-be population, owing to a defect
in the NR4A1-dependent apoptotic mechanism.

By gene expression profiling with a custom micro-
array of the Peter MacCallum Cancer Institute,
Arthur et al. showed that a set of dysregulated genes
in peripheral blood cells during the relapse and the
remission phases of RRMS are enriched in the cate-
gories involved in apoptosis and inflammation, when
annotated according to the GOstat program.?” They
also found upregulation of TGFB1 during the
relapse. These observations support the working
hypothesis that MS relapse involves an imbalance
between promoting and preventing apoptosis of
autoreactive and regulatory T cells. By gene expres-
sion analysis with Affymetrix Human Genome U133
plus 2.0 arrays, Brynedal etal. showed that MS
relapses reflect the gene expression change in PBMC,
but not in cerebrospinal fluid (CSF) lymphocytes,
suggesting the importance of initial events triggering
relapses occurring outside the CNS.>¢

By gene expression profiling with a custom DNA
microarray (Hitachi Life Science, Saitama, Japan), we
identified 43 DEG in peripheral blood CD3* T cells
between the peak of acute relapse and the complete
remission of RRMS patients.”” We isolated highly
purified CD3* T cells, because autoreactive patho-
genic and regulatory cells, which potentially play a
major role in MS relapse and remission, might be
enriched in this fraction. By using 43 DEG as a set of
discriminators, hierarchical clustering separated the

© 2010 Japanese Society for Neuroimmunology
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cluster of relapse from that of remission. The molecu-
lar network of 43 DEG extracted by the common
upstream search of KeyMolnet showed the most sig-
nificant relationship with transcriptional regulation
by the nuclear factor-kappa B (NF-xB). NF-xB is a
central regulator of innate and adaptive immune
responses, cell proliferation, and apoptosis.”® A con-
siderable number of NF-xB target genes activate
NE-xB itself, providing a positive regulatory loop that
amplifies and perpetuates inflammatory responses,
leading to persistent activation of autoreactive T cells
in MS. These observations support the logical hypoth-
esis that NF-xB plays a central role in triggering
molecular events in T cells responsible for induction
of acute relapse of MS, and suggest that aberrant gene
regulation by NE-«B on T-cell transcriptome serves as
a molecular biomarker for monitoring the clinical
disease activity of MS. Supporting this hypothesis,
increasing evidence has shown that NF-kB represents
a central molecular target for MS therapy.”’

We also studied the gene expression profile of
purified CD3™ T cells isolated from four Hungarian
monozygotic MS twin pairs with a custom DNA
microarray (Hitachi Life Science, Saitama, Japan).*®
By comparing three concordant pairs and one discor-
dant pair, we identified 20 DEG aberrantly regulated
between the MS patient and the genetically identical
healthy subject. The molecular network of 20 DEG
extracted by the common upsiream search of Key-
Molnet showed the most significant relationship with
transcriptional regulation by the Ets transcription
factor family. Ets transcription factor proteins, by
interacting with various co-regulatory factors, control
the expression of a wide range of target genes essen-
tial for cell proliferation, differentiation, transforma-
tion and apoptosis. Importantly, Ets-1, the prototype
of the FEts family members, acts as a negative
regulator of Th17 cell differentiation.”" It is worthy to
note that discordant monozygotic MS twin siblings
do not show any genetic or epigenetic differences, as
validated by whole genome sequencing analysis and
genome-scale DNA methylation profiling.®

Biomarkers for predicting IFN§ responders

Although recombinant IFN therapy is widely used
as the gold standard to reduce disease activity of MS,
up to 50% of the patients continue to have relapses,
followed by progression of disability. If molecular
biomarkers for IENB responsiveness are identified,
we could use the best treatment options depending
on the patients, being invaluable to establish the
personalized therapy of MS. )
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By genome-wide screening of single-nucleotide
polymorphisms (SNP) with Affymetrix Human 100K
SNP arrays, Byun et al. identified allelic differences
between IFNB responders and non-responders of
RRMS patients in several genes, including HAPLNI,
GPC5, COL25A1, CAST and NPAS3, although odds
ratios of SNP differences of individual genes are
fairly low.>?

By gene expression profiling with Affymetrix
Human Genome U133A Plus 2.0 arrays, Comabella
et al. showed that IFNB non-responders of RRMS
patients after treatment for 2 years are characterized
by the overexpression of type I IFN-induced genes
in PBMC, associated with increased endogenous
production of type I IFN by monocytes at pre-
treatment.”> These observations suggest that a
preactivated type I IFN signaling pathway is attribut-
able to IFNP non-responsiveness in MS. By gene
expression profiling with Affymetrix Human Gen-
ome Focus arrays, Sellebjerg et al. showed that
in vivo injection of IFNB rapidly induces elevation of
IFI27, CCL2 and CXCL10 in PBMC of MS patients,
even after 6 months of treatment,®* consistent with
previous studies.”” The induction of IFN-responsive
genes is greatly reduced in patients with neutralizing
antibodies (NAbs) against IFNB.>* In contrast, there
exist no global differences in gene expression profiles
of PBMC of RRMS patients between NAbs-negative
IFNB non-responders and responders.>®

By gene expression profiling with Affymetrix
Human Genome U133A/B arrays, Goertsches et al.
found that IFNB administration in vivo elevates a
panel of IFN-responsive genes in PBMC of RRMS
patients during a 2-year treatment, but it also down-
regulates several genes, including CD20, a known
target of B-cell depletion therapy in MS.*” By using
the Pataway Arcurrect software (Stratagene, La Jolla,
CA, USA), they identified two major gene networks
where upregulation of STAT1 and downregulation
of ITGA2B act as a central molecule, although they
did not further characterize the responder/non-
responder-linked gene expression profiles.

By gene expression profiling with a custom array
of the National Institutes of Health (NIH)/National
Institute of Neurological Disorders and Stroke
(NINDS) Microarray Consortium, Fernald et al.
showed that a 1-week IFNB administration in vivo
induces a set of coregulated genes whose networks
are related to immune- and apoptosis-regulatory
functions, involving JAK-STAT and NF-«B cascades,
whereas the networks of untreated subjects are com-
posed of the genes of cellular housekeeping func-
tions.*® By combining kinetic RT-PCR analysis of
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expression of 70 genes in PBMC of RRMS with the
integrated Bayesian inference system approach, the
same group previously reported that nine sets of
gene triplets detected at pretreatment, including a
panel of caspases, well predict the response to IFNB
with up to 86% accuracy.>”

By gene expression profiling with a custom
microarary (Hitachi), we previously identified a set
of interferon-responsive genes expressed in purified
peripheral blood CD3" T cells of RRMS patients
receiving IFNB treatment.*® IFNB immediately
induces a burst of expression of chemokine genes
with potential relevance to IFNB-related early
adverse effects in MS.*' The majority of the top 30
most significant DEG in CD3* T cells between
untreated MS patients and healthy subjects are cate-
gorized into apoptosis signaling regulators.*? Further-
more, we found that T cell gene expression profiling
classifies a heterogeneous population of Japanese
MS patients into four distinct subgroups that differ
in the disease activity and therapeutic response to
IFNB.*> We identified 286 DEG expressed between
72 untreated Japanese MS patients and 22 age- and
sex-matched healthy subjects. By importing the list
of 286 DEG into the common upstream search of
KeyMolnet, the generated network showed the most
significant relationship with transcriptional regula-
tion by NF-kB.>® Although none of the single genes
alone serve as a MS-specific biomarker gene, NR4A2
(NURR1), a target of NF-kB acting as a positive regu-
lator of TL-17 and IFNY production, is highly upregu-
lated in MS T cells.**** It is worthy to note that
IFNP is beneficial in the disease induced by Thl
cells, but detrimental in the disease mediated by
Th17 cells in mouse experimental autoimmune
encephalomyelitis (EAE), and IFNB non-responders
in RRMS patients show higher serum IL-17F levels,
suggesting that IL-17 serves as a biomarker predict-
ing a poor IFNP response in MS.**

Molecular networks of MS brain lesion proteome

Recently, Han et al. investigated a comprehensive
proteome of six frozen MS brains.” Proteins were
prepared from small pieces of brain tissues isolated
by laser-captured microdissection (LCM), and they
were characterized separately by the standard histo-
logical examination, and classified into acute plaques
(AP), chronic active plaques (CAP) or chronic
plaques (CP) based on the disease activity. The pro-
teins were then separated on one-dimensional SDS-
PADE gels, digested in-gel with trypsin, and peptide
fragments were  processed for mass spectrometric

© 2010 Japanese Society for Neuroimmunology
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Table 1 Multiple sclerosis-linked molecules
of the KeyMolnet library

© 2010 Japanese Society for Neuroimmunology
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KeyMolnet ID KeyMolnet symbol Description

KMMC:04422 2,3cnPDE 2'3"-cyclic nucleotide 3’-phosphodiesterase
KMMC:04421 aBcrystallin Alpha crystallin B chain
KMMC:01024 ADAM17 A disintegrin and metalloproteinase 17
KMMC:04753 AMPAR AMPA-type glutamate receptor
KMMC:00019 APP Amyloid beta A4 protein
KMMC:07424 AQP4 Aquaporin 4

KMMC:06672 b-arrestini Beta-arrestin 1

KMMC:04017 BAFF B-cell activating factor
KMMC:00868 Bd-2 B-cell lymphoma 2

KMMC:00728 Ca Calcium ion

KMMC:00605 caspase-1 Caspase-1

KMMC:00429 ccL2 Chemokine (C-C motif) ligand 2
KMMC:00425 CCL3 Chemokine (C-C motif) ligand 3
KMMC:00424 s Chemokine (C-C motif} ligand 5
KMMC:00450 CCR1 Chemokine (C-C motif) receptor 1
KMMC:00454 CCR5 Chemokine (C-C motif} receptor 5
KMMC:03088 (D28 T-cell-specific surface glycoprotein CD28
KMMC:00530 cD8o T-lymphocyte activation antigen CD80
KMMC:03089 CTLA4 Cytotoxic T-lymphocyte protein 4
KMMC:00418 CXcLio Chemokine (C-X-C motif) ligand 10
KMMC:00447 CXCR3 Chemokine (C-X-C motif) receptor 3
KMMC:00271 ERa Estrogen receptor alpha
KMMC:00362 FGF-2 Fibroblast growth factor 2
KMMC:04423 GFAP Glial fibrillary acidic protein
KMMC01120 Glu Glutamic acid

KMMC:00396 glucocorticoid Glucocorticoid

KMMC:03232 hH1R Histamine H1 receptor
KMMC:00344 HLA class Il HLA class Il histocompatibility antigen
KMMC:09224 HLA-C5 HLA-C5

KMMC:09221 HLA-DQA1*0102 HLA-DQA1*0102

KMMC:06358 HLA-DQA1*0301 HLA-DQA1*0301

KMMC:06359 HLA-DQB1*0302 HLA-DQB1*0302

KMMC:09222 HLA-DQB1*0602 HLA-DQB1*0602

KMMC:06309 HLA-DRB1 HLA-DRB1

KMMC:06315 HLA-DRB1*0301 HLA-DRB1*0301

KMMC:09223 HLA-DRB1#*0405 HLA-DRB1*0405

KMMC:09191 HLA-DRB1*11 HLA-DRB1*11

KMMC:07762 HLA-DRB1*15 HLA-DRB1*15

KMMC:06903 HLA-DRB1*1501 HLA-DRB1*1501

KMMC07763 HLA-DRB1*1503 HLA-DRB1*1503

KMMC:09220 HLA-DRB5*0101 HLA-DRB5*0101

KMMC:04418 HSP105 Heat-shock protein 105 kDa
KMMC:00526 IFNb Interferon beta

KMMC:00404 IFNg Interferon gamma

KMMC:00292 IGF1 Insulin-like growth factor 1
KMMC:03611 lgG Immunoglobulin G

KMMC:00402 L-10 Interleukin-10

KMMC:03248 L-12 Interleukin-12

KMMC:04266 1L-12Rb2 Interleukin-12 receptor beta-2 chain
KMMC:03129 L-17 Interleukin-17

KMM(C:03383 IL-18 Interleukin-18

KMMC00521 IL-1b Interleukin-1 beta

KMMC:00296 iL-2 Interleukin-2

KMMC:06578 IL-23 Interleukin-23

KMMC:00533 IL-2Rac Interleukin-2 receptor alpha chain
KMMC:00400 IL-4 Interleukin-4

KMMC:03255 IL-5 Interleukin-5

—202 —
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KeyMolnet ID KeyMolnet symbol Description

KMMC:00108 IL-6 Interleukin-6

KMMC:03257 IL-7Rac Interleukin-7 receptor alpha chain
KMMC:00523 -9 interleukin-9

KMMC:00555 iNOS Inducible nitric oxide synthase
KMMC:00982 int-a4/b1 Integrin alpha-4/beta-1

KMMC:00968 int-aM Integrin alpha-M

KMMC:00970 int-aX Integrin alpha-X

KMMC:04094 MBP Myelin basic protein

KMMC:06533 mGIuR Metabotropic glutamate receptor
KMMC:04420 MOG Myelin-oligodendrocyte glycoprotein
KMMC:04419 MPLP Myelin proteolipid protein

KMMC:03210 N-VDCC Voltage dependent N-type calcium channel
KMMC:04712 NCAM Neural cell adhesion molecule
KMMC:06537 NCE Na(+)-Ca®* exchanger

KMMC:05576 NeuroF Neurofilament protein

KMMC:09225 neurofascin Neurofascin

KMMC:05903 NF-H Neurofilament triplet H protein
KMMC:05904 NF-L Neurofilament triplet L protein
KMMC:03785 NMDAR N-rethyl-D-aspartate receptor
KMMC:07764 NMDAR1 N-methyl-D-aspartate receptor subunit NR1
KMMC:07765 NMDAR2C N-methyl D-aspartate receptor subtype 2C
KMMC:07766 NMDAR3A N-methyl-D-aspartate receptor subtype NR3A
KMMC:02064 NO Nitric oxide

KMMC:07767 Olig-1 Oligodendrocyte transcription factor 1
KMMC:01005 OPN Osteopontin

KMMC:03073 PDGF Platelet derived growth factor
KMMC:06225 Sema3A Semaphorin 3A

KMMC:06229 Sema3F Semaphorin 3F

KMMC:00111 SMAD3 Mothers against decapentaplegic homolog 3
KMMC:03839 tau Microtubule-associated protein tau
KMMC:00349 TNFa Tumor necrosis factor alpha

KMMC:00545 VCAM-1 Vascular cell adhesion protein 1
KMMC:03832 VD Vitamin D

KMMC:03711 VDR Vitamin D3 receptor

Table 1 (Continued)

J. Satoh

91 multiple sclerosis-linked molecules of the KeyMolnet library are listed in alphabetical order.

analysis. Among 2574 proteins determined with high
confidence, the INTERSECT/INTERACT program iden-
tified 158, 416 and 236 lesion-specific proteins
detected exclusively in AP, CAP and CP, respectively.
They found that overproduction of five molecules
involved in the coagulation cascade, including tissue
factor and protein C inhibitor, plays a central role
in molecular events ongoing in CAP. Furthermore,
in vivo administration of coagulation cascade inhibitors
really reduced the clinical severity in EAE, support-
ing the view that the blockade of the coagulation
cascade would be a promising approach for treat-
ment of MS.*> However, nearly all remaining
proteins are uncharacterized in terms of their
implications in MS brain lesion development.

We studied molecular networks and pathways of
the proteome dataset of Han et al. by using four

134

different bioinformatics tools for molecular network
analysis, such as KEGG, PANTHER, KeyMolnet
and IPA.* KEGG and PANTHER showed the rele-
vance of extracellular matrix (BECM)-mediated focal
adhesion and integrin signaling to CAP and CP
proteome. KeyMolnet by the N-points to N-points
search disclosed a central role of the complex inter-
action among diverse cytokine signaling pathways
in brain lesion development at all disease stages, as
well as a role of integrin signaling in CAP and
CP. IPA identified the network constructed with
a wide range of ECM components, such as
COL1Al, COL1A2, COL6A2, COL6A3, FN1, FBLN2,
LAMAL, VIN and HSPG2, as one of the networks
highly relevant to CAP proteome. Thus, four
distinct tools commonly suggested a role of ECM
and integrin signaling in development of chronic

© 2010 Japanese Society for Neuroimmunology
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Extracetlular

Cytoplasin

Mitochoadria

B

Extracelinlar

Cyloplasm

Figure 2 Molecular network of 91 MS-linked molecules. (a) By importing 91 MS-linked molecules into KeyMolnet, the neighboring search within one
path from starting points generates the highly complex molecular network composed of 913 molecules and 1005 molecular relations. (b} The
extracted network shows the most significant relationship with transcriptional regulation by vitamin D receptor (VDR) that has direct connections with
118 closely related molecules of the extracted network. VDR is indicated by blue circle. Red nodes represent start point molecules, whereas white
nodes show additional molecules extracted automatically from core contents to establish molecular connections. The molecular relation is shown by a
solid line with an arrow (direct binding or activation), solid line with an arrow and stop (direct inactivation), solid line without an arrow (complex
formation), dash line with an arrow (transcriptional activation), and dash line with an arrow and stop (transcriptional repression). Please refer high reso-
lution figures to URL (www.my-pharm.ac.jp/ satoj/sub22.html). -

MS lesions, showing that the selective blockade of the
interaction between ECM and integrin molecules
in brain lesions in situ would be a target for

KeyMolnet identifies a candidate of molecular
targets for MS therapy

therapeutic intervention to terminate ongoing events
responsible for the persistence of inflammatory
demyelination.

@ 2010 Japanese Society for Neuroimmunology

The KeyMolnet library includes 91 MS-linked mole-
cules, collected from selected review articles with
the highest reliability (Table 1). By importing the list
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Table 2 Molecules constucting the

KeyMolnet ID KeyMolnet symbol Description transcriptional regulation by vitamin D

KMMC:02959 12,25(0H)2D3 1 alpha, 25-dihydroxyvitamin D3 receptor network

KMMC:00751 amphiregulin Amphiregulin

KMMC:03795 ANP Atrial natriuretic peptide

KMMC:00090 b-catenin beta-catenin

KMMC:00301 c-Fos Protooncogene c-fos

KMMC:00183 c-Jun Protooncogene c-jun

KMMC:00626 c-Myc Protooncogene c-myc

KMMC:03813 CA-ll Carbonic anhydrase 1l

KMMC:04105 CalbindinD28K Vitamin D-dependent calcium-binding protein,
avian-type

KMMC:03531 CalbindinD9K Vitamin D-dependent calcium-binding protein,
intestinal

KMMC:00289 caseink2 Casein kinase 2

KMMC:04195 CaSR Extracellular calcium-sensing receptor

KMMC:00268 CBP CREB binding protein

KMMC:00922 CD44 CD44 antigen

KMMC:00136 CDK2 Cyclin dependent kinase 2

KMMC:00135 CDK6 Cyclin dependent kinase 6

KMMC:01008 collagen Collagen

KMMC:06770 collagenase-! Type | collagenase

KMMC:04081 CRABP2 Cellular retinoic acid-binding protein i

KMMC:00060 CRT Calreticulin

KMMC:00401 CXCL8 Chemokine (C-X-C motif) ligand 8 (IL8)

KMMC:00137 cyclinA Cyclin A

KMMC:00061 cyclinD1 Cyclin D1

KMMC:05926 cyclinD3 Cyclin D3

KMMC:00093 cyclink Cyclin E

KMMC:02960 CYP24A1 Cytochrome P450 24A1

KMMC:02958 CYP27B1 Cytochrome P450 2781

KMMC:04593 CYP3A4 Cytochrome P450 3A4

KMMC:06769 cystatin M Cystatin M

KMMC:06762 Cytokeratin 13 Keratin, type | cytoskeletal 13

KMMC:06751 Cytokeratin 16 Keratin, type | cytoskeletal 16

KMMC:00053 DHTR Dihydrotestosterone receptor

KMMC:00928 E-cadherin E-cadherin

KMMC:00594 ErbB1 Receptor protein-tyrosine kinase erbB-1

KMMC:00068 filamin Filamin

KMMC:00341 FN1 Fibronectin 1

KMMC:06760 FREAC-1 Forkhead box protein F1

KMMC:06763 GOS2 GO/G1 switch protein 2

KMMC:00617 GM-CSF Granulocyte macrophage colony stimulating
factor

KMMC:06755 Hairless Hairless protein

KMMC:05978 HOXA10 Homeobox protein Hox-A10

KMMC:06767 HOXB4 Homeobox protein Hox-B4

KMMC:00404 IFNg Interferon gamma

KMMC:00579 IGF-BP3 Insulin-like growth factor binding protein 3

KMMC:04498 IGF-BP5 Insulin-like growth factor binding protein 5

KMMC:00402 IL-10 Interleukin-10

KMMC:03241 IL-10R Interleukin-10 receptor

KMMC:03239 [L-10Rac Interleukin-10 receptor alpha chain

KMMC:03240 IL-10Rbc Interleukin-10 receptor beta chain

KMMC:03248 IL-12 Interleukin-12

KMMC:03246 IL-12A Interleukin-12 alpha chain

KMMC:00403 IL-12B Interleukin-12 beta chain

KMMC:00296 IL-2 Interleukin-2

KMMC:00108 IL-6 Interleukin-6
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Table 2 (Continued)
KeyMolnet ID

KeyMolnet symbol

Description

KMMC:00973
KMMC:03747
KMMC:00629
KMMC:04334
KMMC:06764
KMMC:06765
KMMC:04635
KMMC:06757
KMMC:06722
KMMC:00595
KMMC03104
KMMC:00631
KMMC:00556
KMMC:00927
KMMC:00074
KMMC:00075
KMMC:00080
KMMC:00282
KMMC:00270
KMMC:00392
KMMC:00104
KMMC:03120
KMMC:01005
KMMC:00304
KMMC:00100
KMMC:00155
KMMC:00195
KMMC:03204
KMMC:03295
KMMC:00724
KMMC:04869
KMMC:06772
KMMC:06766

KMMC:00786
KMMC:03442
KMMC:03710
KMMC:00346
KMMC03115
KMMC:04537
KMMC:00091
KMMC:00383
KMMC:06771
KMMC:05340
KMMC:04103
KMMC:05702
KMMC:06753
KMMC:06752
KMMC:04955
KMMC:03075
KMMC:06754
KMMC:04089
KMMC:06768
KMMC:04184
KMMC:05986
KMMC:04104
KMMC:00349

int-b3
VL
JunB
JunD
KLK10
KLK6
Mad1
Metallothionein
MKP-5
MMP-2
MMP-3
MMP-9
MnSOD
N-cadherin
NCOA1
NCOA2
NCOA3
NCOR1
NCOR2
NFAT
NFkB
OPG
OPN
osteocalcin
p21CIP1
p27KIP1
p300
PLCb1
PLCd1
PLCg1
plectini
PMCA1
PP1c

PP2A
PPARd
PTH
PTHIP
RANKL
RelB
RiP140
RXR
SCCA
SKIP
SUG1
TAFII130
TAFII28
TAFIISS
TCF-1
TCF-4
TFlA
TFiIB
TGase |
TGFb1
TGFb2
TIF1
TNFa

Integrin beta-3

Involucrin

Protooncogene jun-B
Protooncogene jun-D
Kallikrein-10

Kallikrein-6

Max dimerization protein 1
Metallothionein

MAP kinase phosphatase 5
Matrix metalloproteinase 2
Matrix metalloproteinase 3
Matrix metalloproteinase 9
Manganese superoxide dismutase
N-cadherin

Nuclear receptor coactivator 1
Nuclear receptor coactivator 2
Nuclear receptor coactivator 3
Nuclear receptor corepressor 1
Nuclear receptor corepressor 2
Nuclear factor of activated T cells
Nuclear factor kappa B
Osteoprotegerin

Osteopontin

Osteocalcin

Cyclin dependent kinase inhibitor 1
Cyclin dependent kinase inhibitor 1B
E1A binding protein p300
Phospholipase C beta 1
Phospholipase C delta 1
Phospholipase C gamma 1
Plectin 1

Plasma membrane calcium-transporting ATPase 1

Serine/threonine protein phosphatase PP1
catalytic subunit
Serine/threonine protein phosphatase 2A

Peroxisome proliferator activated receptor delta

Parathyroid hormone

Parathyroid hormone-related protein
Receptor activator of NFkB ligand
Transcription factor RelB

Nuclear factor RIP140

Retinoid X receptor

Squamous cell carcinoma antigen
Ski-interacting protein

26S protease regulatory subunit 8
Transcription initiation factor TFID subunit 4
Transcription initiation factor TFID subunit 11
Transcription initiation factor TFIID subunit 7
T-cell-specific transcription factor 1
T-cell-specific transcription factor 4
Transcription initiation factor lIA
Transcription initiation factor 1B
Transglutaminase |

Transforming growth factor beta 1
Transforming growth factor beta 2
Transcription intermediary factor 1

Tumor necrosis factor alpha

© 2010 Japanese Society for Neuroimmunology
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Table 2 (Continued)
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KeyMolnet ID KeyMolnet symbol Description
KMMC:00277 TRAP220 Thyroid hormone receptor-associated protein
complex component TRAP220
KMMC:06759 TRPV5 TRP vanilloid receptor 5
KMMC:06758 © TRPV6 TRP vanilloid receptor 6
KMMC:06756 TRR1 Thioredoxin reductase 1
KMMC:03711 VDR Vitamin D3 receptor
KMMC:04853 VDUP1 Vitamin D3 up-regulated protein 1
KMMC:06761 ZNF-44 Zinc finger protein 44
KMMC:05147 Z0-1 Tight junction protein ZO-1
KMMC:05811 Z0-2 Tight junction protein ZO-2

118 molecules constucting the transcriptional regulation by VDR network are listed in alphabetical

order.

of these molecules into KeyMolnet, the neighboring
search within one path from starting points gen-
erates the highly complex molecular network
composed of 913 molecules and 1005 molecular
relations (Fig. 2a). The extracted network shows the
most significant relationship with transcriptional reg-
ulation by vitamin D receptor (VDR) with P-value of
the score = 4.415E-242. Thus, VDR, a hub that has
direct connections with 118 closely related molecules
of the extracted network (Fig. 2b, Table 2), serves as
one of the most promising molecular target candi-
dates for MS therapy, because the adequate manipu-
lation of the VDR network capable of producing
a great impact on the whole network could effi-
ciently disconnect the pathological network of MS.
Indeed, vitamin D plays a protective role in MS by
activating VDR, a transcription factor that regulates
the expression of as many as 500 genes, although the
underlying molecular mechanism remains largely
unknown.*¢

Conclusion

MS is a complex disease with remarkable hetero-
geneity caused by the intricate interplay between
various genetic and environmental factors. Recent
advances in bioinformatics and systems biology have
made major breakthroughs by illustrating the cell-
wide map of complex molecular interactions with
the aid of the literature-based knowledgebase of
molecular pathways. The efficient integration of
high-throughput experimental data derived from the
disease-affected cells and tissues with underlying
molecular networks helps us to characterize the
molecular markers and pathways relevant to MS
heterogeneity, and promotes us to identify the net-
work-based effective drug targets for personalized
therapy of MS.

138

Acknowledgements

This work was supported by grants from the
Research on Intractable Diseases, the Ministry of
Health, Labour and Welfare of Japan (H22-Nanchi-
Ippan-136), and the High-Tech Research Center
Project, the Ministry of Education, Culture, Sports,
Science and Technology (MEXT), Japan (S0801043).
The author thanks Dr Takashi Yamamura, Depart-
ment of Immunology, National Institute of Neuro-
sciences, NCNP for his continuous help with our
studies.

References

1. Sospedra M, Martin R. Immunology of multiple sclerosis.
Annu Rev Immunol. 2005; 23: 683-747.

2. Steinman L. A brief history of Ty17, the first major revi-
sion in the Ty1/Tu2 hypothesis of T cell-mediated tissue
damage. Nat Med. 2007; 13: 139-45.

3. Lucchinetti C, Briick W, Parisi J, Scheithauer B, Rodriguez
M, Lassmann H. Heterogeneity of multiple sclerosis
lesions: implications for the pathogenesis of demyelina-
tion. Ann Neurol. 2000; 47: 707-17.

4. Rudick RA, Lee JC, Simon J, Ransohoff RM, Fisher E.
Defining interferon B response status in multiple sclero-
sis patients. Ann Neurol. 2004; 56: 548-55.

5. International Multiple Sclerosis Genetics Consortium,
Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ,
et al. Risk alleles for multiple sclerosis identified by a
genomewide study. N Engl J Med. 2007; 357: 851-62.

6. Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E,
Garren H, et al. Gene-microarray analysis of multiple
sclerosis lesions yields new targets validated in auto-
immune encephalomyelitis. Nature Med. 2002; 8: 500-8.

7. Han MH, Hwang SI, Roy DB, Lundgren DH, Price JV,
Ousman SS, et al. Proteomic analysis of active multiple
sclerosis lesions reveals therapeutic targets. Nature.
2008; 451: 1076-81.

© 2010 Japanese Society for Neuroimmunology

- 207 -



J. Satoh

8.

10.

i1

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Baranzini SE, Mudge J, van Velkinburgh JC, Khankhanian
P, Khrebtukova I, Miller NA, et al. Genome, epigenome
and RNA sequences of monozygotic twins discordant
for multiple sclerosis. Nature. 2010; 464: 1351-6.

. Viswanathan GA, Seto J, Patil S, Nudelman G, Sealfon

SC. Getting started in biological pathway construction
and analysis. PLoS Comput Biol. 2008; 4: e16.

Kitano H. A robustness-based approach to systems-
oriented drug design. Nat Rev Drug Discov. 2007; 6:
202-10.

Albert R, Jeong H, Barabasi AL. Error and attack toler-
ance of complex networks. Nature. 2000; 406: 378--82.
Satoh J, Tabunoki H, Arima K. Molecular network analy-
sis suggests aberrant CREB-mediated gene regulation in
the Alzheimer disease hippocampus. Dis Markers. 2009;
27: 239-52.

MAQC Consortium, Shi L, Reid LH, Jones WD, Shippy R,
Warrington JA, et al. The MicroArray Quality Control
(MAQQ) project shows inter- and intraplatform repro-
ducibility of gene expression measurements. Nat
Biotechnol. 2006; 24: 1151-61.

Huang DW, Sherman BT, Lempicki RA. Systematic and
integrative analysis of large gene lists using DAVID bio-
informatics resources. Nat Protoc. 2009; 4: 44-57.
Subramanian A, Tamayo P, Mootha VK, Mukherjee S,
Ebert BL, Gillette MA, et al. Gene set enrichment analy-
sis: a knowledge-based approach for interpreting gen-
ome-wide expression profiles. Proc Natl Acad Sci USA.
2005; 102: 15545-50.

Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa
M. KEGG for representation and analysis of molecular
networks involving diseases and drugs. Nucleic Acids
Res. 2010; 38: D355-60.

Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Tho-
mas PD. PANTHER version 7: improved phylogenetic
trees, orthologs and collaboration with the Gene Ontol-
ogy Consortium. Nucleic Acids Res. 2010; 38: D204-10.
Jensen UJ, Kuhn M, Stark M, Chaffron S, Creevey C
Muller J, et al. STRING 8 - a global view on proteins and
their functional interactions in 630 organisms. Nucleic
Acids Res. 2009; 37: D412-6.

Pospisil P, Iyer LK, Adelstein SJ, Kassis Al. A combined
approach to data mining of textual and structured data
to identify cancer-related targets. BMC Bioinformatics.
2006; 7: 354.

Sato H, Ishida S, Toda K, Matsuda R, Hayashi Y, Shige-
taka M, et al. New approaches to mechanism analysis
for drug discovery using DNA microarray data combined
with KeyMolnet. Curr Drug Discov Technol. 2005; 2: 89~
98.

Corvol JC, Pelletier D, Henry RG, Caillier SJ, Wang J,
Pappas D, et al. Abrogation of T cell quiescence charac-
terizes patients at high risk for multiple sclerosis after
the initial neurological event. Proc Nat! Acad Sci USA.
2008; 105: 11839-44.

© 2010 Japanese Society for Neuroimmunology

22.

23.

24.

25,

26.

27.

28.

29.

30.

31.

32.

33.

34.

Bioinformatics for MS biomarkers

Achiron A, Feldman A, Mandel M, Gurevich M. Impaired
expression of peripheral blood apoptotic-related gene
transcripts in acute multiple sclerosis relapse. Ann N Y
Acad Sci. 2007; 1107: 155-67.

Gurevich M, Tuller T, Rubinstein U, Or-Bach R, Achiron A.
Prediction of acute multiple sclerosis relapses by tran-
scription levels of peripheral blood cells. BMC Med
Genomics. 2009; 2: 46.

Achiron A, Grotto |, Balicer R, Magalashvili D, Feldman
A, Gurevich M. Microarray analysis identifies altered
regulation of nuclear receptor family members in the
pre-disease state of multiple sclerosis. Neurobiol Dis.
2010; 38: 201-9.

Arthur AT, Armati PJ, Bye C Southern MS Genetics
Consortium, Heard RN, Stewart GJ, et al. Genes impli-
cated in multiple sclerosis pathogenesis from consil-
ience of genotyping and expression profiles in relapse
and remission. BMC Med Genet. 2008; 9: 17.

Brynedal B, Khademi M, Wallstrom E, Hillert J, Olsson T,
Duvefelt K. Gene expression profiling in multiple sclero-
sis: a disease of the central nervous system, but with
relapses triggered in the periphery? Neurobiol Dis. 2010;
37: 613-21.

Satoh J, Misawa T, Tabunoki H, Yamamura T. Molecular
network analysis of T-cell transcriptome suggests aber-
rant regulation of gene expression by NF-«xB as a bio-
marker for relapse of multiple sclerosis. Dis Markers.
2008; 25: 27-35.

Barnes PJ, Karin M. Nuclear factor-kB. A pivotal tran-
scription factor in chronic inflammatory diseases. N Engl
J Med. 1997; 336: 1066-71.

Yan J, Greer JM. NF-xB, a potential therapeutic target
for the treatment of multiple sclerosis. CNS Neurol
Disord Drug Targets. 2008; 7: 536-57.

Satoh J, Wles Z, Peterfalvi A, Tabunoki H, Rozsa C,
Yamamura T. Aberrant transcriptional regulatory network
in T cells of multiple sclerosis. Neurosci Lett. 2007; 422:
30-3.

Du C Liu C Kang J, Zhao G, Ye Z, Huang S, et al.
MicroRNA miR-326 regulates Ty-17 differentiation and is
associated with the pathogenesis of multiple sclerosis.
Nat Immunol. 2009; 10: 1252-9.

Byun E, Caillier 5J, Montalban X, Villoslada P, Fernandez
O, Brassat D, etal. Genome-wide pharmacogenomic
analysis of the response to interferon beta therapy in
multiple sclerosis. Arch Neurol. 2008; 65: 337-44.
Comabella M, Linemann JD, Rio J, Sdnchez A, Lopez C,
Julia E, et al. A type | interferon signature in monocytes
is associated with poor response to interferon-f in
multiple sclerosis. Brain. 2009; 132: 3353-65.

Sellebjerg F, Krakauer M, Hesse D, Ryder LP, Alsing |,
Jensen PE, et al. Identification of new sensitive biomar-
kers for the in vivo response to interferon-§ treatment
in multiple sclerosis using DNA-array evaluation. Eur J
Neurol. 2009; 16: 1291-8.

139

— 208 —



Bioinformatics for MS biomarkers

35.

36.

37.

38.

39.

140

Weinstock-Guttman B, Badgett D, Patrick K, Hartrich L,
Santos R, Hall D, etal. Genomic effects of IFN-B in
multiple sclerosis patients. J Immunol. 2003; 171: 2694
702.

Hesse D, Krakauer M, Lund H, Sendergaard HB, Lang-
kilde A, Ryder LP, et al. Breakthrough disease during
interferon-f therapy in MS: no signs of impaired bio-
logic response. Neurology. 2010; 74: 1455-62.
Goertsches RH, Hecker M, Koczan D, Serrano-Fernandez
P, Moeller S, Thiesen HJ, et al. Long-term genome-wide
blood RNA expression profiles vyield novel molecular
response candidates for IFN-B-1b treatment in relapsing
remitting MS. Pharmacogenomics. 2010; 11: 147-61.
Fernald GH, Knott S, Pachner A, Caillier SJ, Narayan K, Ok-
senberg JR, et al. Genome-wide network analysis reveals
the global properties of IFN-B immediate transcriptional
effects in humans. J Immunol. 2007; 178: 5076-85.
Baranzini SE, Mousavi P, Rio J, Caillier 5J, Stillman A,
Villoslada P, etal. Transcription-based prediction of
response to IFNB wusing supervised computational
methods. PLoS Biol. 2005; 3: e2.

. Koike F, Satoh J, Miyake S, Yamamoto T, Kawai M, Kikuchi

S, et al. Microarray analysis identifies interferon beta-
regulated genes in multiple sclerosis. J Neuroimmunol.
2003; 139: 109-18.

41.

42.

43.

45,

46,

- 209 —

J. Satoh

Satoh J, Nanri Y, Tabunoki H, Yamamura T. Microarray
analysis identifies a set of CXCR3 and CCR2 ligand
chemokines as early [IFNbeta-responsive genes in
peripheral blood lymphocytes in vitro: an implication for
IFNbeta-related adverse effects in multiple sclerosis. BMC
Neurol. 2006; 6: 18.

Satoh J, Nakanishi M, Koike F, Miyake S, Yamamoto T,
Kawai M, et al. Microarray analysis identifies an aberrant
expression of apoptosis and DNA damage-regulatory
genes in multiple sclerosis. Neurobiol Dis. 2005; 18: 537~
50.

Satoh J, Nakanishi M, Koike F, Onoue H, Aranami T,
Yamamoto T, et al. T cell gene expression profiling iden-
tifies distinct subgroups of Japanese muitiple sclerosis
patients. J Neuroimmunol. 2006; 174: 108-18.

. Axtell RC, de Jong BA, Boniface K, van der Voort LF,

Bhat R, De Sarno P, et al. T helper type 1 and 17 cells
determine efficacy of interferon-B in multiple sclerosis
and experimental encephalomyelitis. Nat Med. 2010; 16:
406-12.

Satoh JI, Tabunoki H, Yamamura T. Molecular network
of the comprehensive muitiple sclerosis brain-lesion pro-
teome. Mult Scler. 2009; 15: 531-41,

Ascherio A, Munger KL, Simon KC. Vitamin D and multiple
sclerosis. Lancet Neurol. 2010; 9: 599-612.

© 2010 Japanese Society for Neuroimmunology



182 Jpn. J. Clin. immunol., 33 (4) 182~188 (2010) & 2010 The Japan Society for Clinical Immunology

® =R
54 | b P RERBWROFERE—From clinic to bench

SREBLEREATOF v b7 — I8
th B ¥ —

Molecular Network Analysis of Multiple Sclerosis Brain Lesion Proteome
Jun-ichi SATOH
Department of Bioinformatics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
(Received April 4, 2010)

SUMMary

A recent proteomics study of multiple sclerosis (MS) brain lesion—specific proteome profiling clearly revealed a
pivotal role of coagulation cascade proteins in chronic active demyelination (Han MH et al. Nature 451 : 1076-1081,
2008) . However, among thousands of proteins identified, nearly all of remaining proteins were left behind to be charac-
terized in terms of their implications in MS brain lesion development. By the systems biology approach using four differ-
ent pathway analysis tools of bioinformatics, we studied molecular networks and pathways of the proteome dataset of
acute plaque (AP), chronic active plaque (CAP), and chronic plaque (CP). The database search on KEGG and
PANTHER indicated the relevance of extracellular matrix (ECM)-mediated focal adhesion and integrin signaling io
CAP and CP proteome. IPA identified the network constructed with a wide range of ECM components as one of the
networks highly relevant to CAP proteome. KeyMolnet disclosed a central role of the complex interaction among
diverse cytokine signaling pathways in brain lesion development at all disease stages, as well as a role of integrin signal-
ing in CAP and CP. Although four distinct platforms produced diverse results, they commonly suggested a role of ECM
and integrin signaling in development of chronic lesions of MS. These observations indicate that the selective blockade
of the interaction between ECM and integrins would be a rational approach for designing inhibitors of chronic inflam-
matory demyelination in MS brain lesions.

Key words——KeyMolnet; molecular network; multiple sclerosis; proteome; systems biology
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EEZONTWAY. EHEMIICIIHENEELTED 5
B, SESEBRIT S LEMREELE L TRTHN
BEREISBRFETS. MS T, SHBENK
intravenous methylprednisolone pulse IVMP) %7
W, RFIC IFNS ORI S 2T > HES, &
bR EREL LTEREhTWS. L L
IFNB IZ %9 % nonresponder R EIfEB Db 4
HEZVCEFSHFETS. MS ZERRE» DER
FARE (relapsing-remitting MS ; RRMS), 2 ki
T8 (secondary-progressive MS ; SPMS), 1 &
178 (primary—progressive MS ; PPMS) 482
N, REERNICIET @REE, fdns Fud
FU/RRYAL FTREF—VAORRICED 4 Bich
FahT8Y, COKSEAE—E (heterogeneity)
DHFELDEREMO—HLE>TWBY, BEE
T, BiHPHMRBROBTELRET HREKIRL, &
HOBRSF I8 AEHSZAEIFE T I T
5. i
03 FICEL 7 LAOBEBETL, B2D
MRICET32RETFLIVNAZEORBER Y
V—=F VICBRTEZRA N ) LARRBBEL,

BIZERIRORLITY ) LB LS E L LAV T b
L. CORIRZTIv 7 APEICLD, BOHR

BROBEINA F=— h— R BRENG THK 4« B
bR EN. SHIERY ) IZAOFFIIEH
BB, EWEEEEAZLDLBETFREL
%Y, ¥—5 A4 FEHE (personalized medicine)
OBRLICEBHb N, RV AFLAEYHE (sys-
tems biology) OB R»bit, b FRARELZSTF
Ry PT—7 CHEBICREShBERTHD, &
OBRBY AT LOFOO/NR P RADHREICE
BT32EZ6hTWEY. - CTHRBORBERD
DeDITiE, FIv I ABIKCEEZ LAY /LT 4
FOGFRy P —2 BT RLADOWEFELEZY
2B BHY.

BOE, MS BREOMEN T O 73— ABH7F—
ZBRW|EINLD. COWETE, GL4DORF—Y
DMS BEEI L BUBHEOZ VN IBYREL
7. WHREREODD SRHEFEERERMMIC BT 50
RBEROTELXAH L. ZORRIKESE, K
BERLAWT, MSBWEFNTHSEACKREY
BiF#i4 (experimental autoimmune encephalomye-

litis ; EAE) D®BICRIIL, AR /o543
ATF—2 p LHHANEBENES Y REHESL. L
Lo, REBELHDHBERUAOS VB
IKBIL TiZ, MSBZ FREBIK B 2EHRIIHOH
TV, bhbhidEsDF—2 vy +2F
BLT, ¥Ry +7—7@§Y—ILKEGG, Pan-
ther, KeyMolnet, IPA ZH\WTHESHIT L, MS B5H
R70FT—LADXEBERFRy FT—7 %8R, ¥
AT LEWFOBR R D CHERENOER L RANLS.

II. MSBREOEEN 70T 4 — L8N

2008 4, Han Hid 6 B MS &ML AWV T,
FAHRENCATF—VRHEL-RFEED S laser
microdissection TEHL L 7-¥ v/ 7 V% SDS-PAGE
ToERIC, V7B L, FUTY UM
NTF PR 2 BESHTBI LAY, A57—Y
i3, REMMRREESELIHE T 5585
(active plaque ; AP), BB IRWICHELBR
LT B8 EBEBRESE (chronic active plague ;
CAP), REMRBKZ L 7TA L0/ Y 7OMEY
BMEERLTHBEHBEHEBIGR (chronic
plaque; CP) KHH L. ARFK 2 AIORERIC
RLTLEBGH TR L. FOKE, AP 25
1082, CAP # & 1728, CP & b 1514, &3t 4324 1
O 7B%RAE LK. &5IC INTERSECT
0rS5LEBWT, BERTERREIhFLOR
FoVRREORZIVNIBERZRTH L, AP 158,
CAP 416, CP 236 DO VNV BF— ¥ &AM
L7c. #5613 PROTEOME-3D #\WT7 /57—
VaVERNLEER, CAP CBWTHMREER S
V7327 B protein C inhibitor, tissue factor, throm-
bospondin 1, fibronectin 1, vitronectin ORI %A
. COMRICESNT, HBEEETH S throm-
bin inhibitor hirudin ¥ & U* activated protein C %
BT, MSEhE 7L ThH% PLP139-151 RS+
FHEHEMESIL/I T ABAE #RELLE. Fbo0
PREEDS, By v/ SH#lBROMAE L IL-
17, INFa ER =W L. LEDOERXYD, MiE
BRERS A7 BEHREENT T LB 2R
PSHILZ-7. LOLEBSEDESBEHT,
BRE7/OFFIZAF—2hb LRSS EBHO XV
NIBEBEEL, KRR > 7cOPICHL TRER
BV, FERSBELDIBERUADZ /87
HicBL Tk, MSBSFRBIC R 2 8% 5
»EHR TV,
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III. MSEAETATHA—LT—5OFF%»
7 -8

EETR, FVUNTBERIEETVATLAEREL
TWBDT, KEOERPICIIBLDZ /N7 BEOE
EERFORELT, FVNIBPBETATTRY

FT7—=7RNRAT 2 A ODRIELEETHS. /N
JBRHEEER (protein—protein interaction ; PPI)
ik, BMrEENGEARMGROARGT, B,

mel, S BRRD, GAGERRLSELHEE
ERRRADFET . BHSBEDOT Iy IAT—F
KBELTWAS TRy P77 2B T51DHK
i3, BEIN/SRERICEMT bh-SRO/REN
V—VEESLERDS. TdL, BRLIERE
BHOK4 LS TFHRBELFALHEL, EREOR
WA AER L CavF YV LE L TRBLAT—Z
~R—Z (knowledgebase) #FIH LT, BEmDED
Ry P T—=TRNATz A CRLIBVELEZEL
TWABDIEOWTHARSHETHS. Web ETY
Y — i Fi F Hi sk 5 M 7 knowledgebase & L T
{¥, Kyoto Encyclopedia of Genes and Genomes
(KEGG) (www.kegg.jp)”, the Protein Analysis
Through Evolutionary Relationships (PANTHER)
classification system (www.pantherdb.org)®, Search
Tool for the Retrieval of Interacting Genes/Proteins
(STRING) (string.embl.de)? 7z ¥ 83H 5. HiC
KEGG & PANTHER {3, curator L iTh 5 H
FARIC & > THAEIhARBRETORBAYE LOF
BEHEASLTEDH, 20104 4 ABE, KEGG
PATHWAY {C {3 352 reference pathways 2» & fi§ it
ENBH 104,520 AT 2 A BEFINTED,

~ search objects in pathways H v 7 AIC BT FO

KEGGID #AITAILiCkD, HMTHNRY
x4 2B FEH¥E 5. PANTHER Tid reference set
Lo LD, BT AR ETEY
S ERETHMIEES. STRING Tt KEGG,
HPRD, BIND, IntAct O b & L TREL T
9, PubMed 77 A+ 57 F P HIIBASHELRE
(natural language processing) IC LB FFA LA
v Z7%H LT, STHEEEFRICET5HRYIN
HLTWA. Hify—n & LTI, Ingenuity Path-
ways Analysis (IPA) (Ingenuity Systems, Redwood
City, CA) (www.ingenuity.com) < KeyMolnet (In-
stitute of Medicinal Molecular Design, Tokyo)
(www.immd.co.jp) L E¥BHB. ¥HHHEMK

PEBIhAXBMEBHRL T B8ORS TH
HEFBICETsERENEL TR, EHNICT
v 7F—F&hTwW3%. KeyMolnet | B &FEATN
b LTED, &6  RAHH - ez
TIN5 ALK (neighboring search),
BHICBE T 2EFETFRE AN 5B LHRE
{common upstream search), BE LR AHOX v
P — 7 B RRBEBEEABRFE (N-points to N-
points search), EHDBREHBEL LT, BHE
DR ZSUR/POFFRy Y T7—7 2HWNHHE
BE{R# % (interrelation search) %, #FEEL LT
BIRHE S0,

%% 5, Han 5O MS 4% B AP 158, CAP
416, CP 236 70 F A —ALF—FVCHEET D
UniProt ID %, Entrez Gene ID ¥ & U® KEGG ID
IZ%{ L T, KEGG, PANTHER, IPA, KeyMolnet
KABL, ThEFhOAF—VBRHTOFE—L4
F— A ERLB{RBRLTWAFFRy FT7T—27%
BSE L7=9. ID E#iCid UniProt (www.uniprot.
org) & KEGG Identifiers % fl \» 7= 43, DAVID
Bioinformatics Resources (david.abce.ncifcrf.gov) 1V
@ Gene ID conversion Y — )V EFB L Td, En-
trez Gene ID ND—EEBRITIBHBITZ 5. &6
DAVID X 705 I AF—2DT7 /F—Va/
BHOBICOIERICHRALZY—VTH B2

KEGG iZ X M #1 Ci%, CAP Juszdt—L4l
focal adhesion (hsa04510), cell communication
(hsa01430), ECM-rteceptor interaction (hsa04512),
CP 7o 53— A & focal adhesion (hsa04510) &
OBEMESTEENL. CAP 75t —AD focal
adhesion (hsa04510) %, COLIAL, COL1A2,
COL5A2, COL6A2, COL6A3, FNIi, LAMAI,
MYLK, SHC3, PPPICA, PARVA, PRKCBI,
MYL7, RAC3, SPP1, SRC, THBS1, VIN »»6#
B&Eh, CP /0O FF — A O focal adhesion
(hsa04510) (X, COL4A2, COL6AL, CRK, FYN,
ITGA6, LAMB2, LAMCI, PIK3CA, ZYX % bR
EhTv/=. PANTHER T X A1 Cik, CAP 7/
2 54— A & inflammation mediated by chemokine
and cytokine signaling pathway (p=2.63E-03),
integrin signaling pathway (p=3.55E-03) (& 1),
CP 7 53— A & integrin signaling pathway (p=
433E-02) LoOE#ESBEHEI L. TabD
KEGG & PANTHER Of@Hid 6, MS @RI
$s51F 5 ECM-integrin ¥ 7 WV EEROF LAY E
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1 PANTHER T X5 MS MBI CAP /05— LADRFRy T~ R
MS RS CAP 7074 — A PANTHER - & 847 Tk, integrin signaling pathway & ORI 5RE X 7 (p=3.55E~
03). Reference pathway LOZFE L v F LA V7 BEE Y+ FUTRY. Focal adhesion kinase (FAK) #%, X v k77—

Z2ONT (RA) LBl ihbhb. XWR6) kA

R Ehic. KEGG & PANTHER Of## Cit,
AP 7054 — AL BHICHEET S/ Y = 4 3
HEhieh- 7.

—7J5 IPA core analysis I & Af@H7 ClZ, AP 7D
T4 —Atd cellular assembly and organization,
cancer, and cellular movement (p=1.00E-49), CAP
705 F— At dermatological diseases and condi-
tions, connective tissue disorders, and inflammatory
disease (p=1.00E~47), lipid metabolism, molecular
transport, and small molecule biochemistry (p=
1.00E~47), CP /53— At cell cycle, cell mor-
phology, and celi-to—cell signaling and interaction (p
=1.00E-50) & DBt % FBd7=. CAP /o 54—
A D dermatological diseases and conditions, connec-
tive tissue disorders, and inflammatory disease X v
F7—271%, BGN, CHI3L1, CNN2, COLIAI,
COL1A2, COL6A2, COL6A3, CXCLI11, ENTPDI,
ERK, FBLN2, FERMT2, FN1, GBP1, HSPG2, Ifn
gamma, INPPSD, Integrin, LAMAL, LUM, Milc,
MYL7, MYL6B, NES, P4HAIL, Pak, PARVA,
POSTN, PRELP, SERPINAS, SERPINHI, Tgf
beta, TGFBR3, THBS1, VIN 2 bR EhTE D,
ECM-integrin HEfEH OB E# MR L TW
5. HRIZ KeyMolnet ICIRBEh T\ 5 MS Bi&
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BOaTFEHER, AF—VBRNTOFE—LDE
FTFERRE LT, REER CRAKSRELERT
L lh, ERICHESRTFRy P 7 —7 Bl
shic®. AP 705 % — Al IL-4 signaling path-
way (p=1.79E-13), CAP 70 5 # — Al PI3K
signaling pathway (p=7.25E-18), CP a5 % —
AL IL-4 signaling pathway (p=1.04E-16) & & d
WHEICBM LTV, %7 CAP & CP i integrin
signaling pathway & OBI#ME: L (p=2.13E-12
B LU p=2.57E-12), MliiCbB«Y A [V
VIFNVEER L OB#ERLRON.

IV. MSIRBETOTA—LRXy F7—9 08I
BNaF

@D LSz, MSRREBEN/OF4—A
T2ty POELT, 4MEORZBAFFRY
F 7 — 7 & ¥ Y — ) KEGG, PANTHER, IPA,
KeyMolnet {3, R4 XHEDHFRy v+ I —7 %
il LA, 368 L T CAP, CP i i % ECM-
integrin ¥ 7 F VERROFLOBMHBRE S H
9. EBIC CAP /2574 —AF— 2% STRING
TEBBILALIA, HiEsh/HETTFRy F
T—7HIC, ECMD7 SAZ—%RIET B LH
Wk (X2).
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22 STRING Iz k% MS it CAP 7054 —AD% T4 v I —27 {i#
MS B CAP 705 54— A0 STRING I & BFHITLE, BT Ry F7—21 ECM D7 5 A% — RGN S1FE

THOBDPS.

Integrin (3FHD o, ¥ 712 v PR B ES N
5 UMFADONFOIAT—2 w7 ETHD, M
T EH ECM OY H v FThB. PR BL inte-
grin 7 7 3 Y —{ collagen, fibronectin, laminin &
k& L, avintegrin 7 7 I Y —{3 vitronectin & &
&Y 5. AIERIENNL A+ HAa0Rs, i
e, 5k, WACiE, BCM-integrin BRI IEMH
# 4+ % outside—in, inside~out ¥ 7 F WP HLH T
H B3, MS IHFE U IR 8 ® 7c fibronectin £
vitronectin (%, F& L CTHifiE L7 BBB i L T
MFEICEE Ll icdisle4 5. ECM, inte-
erin 233 L T B840 dHS s TR Rl O
FHESZ Lyl & LT, 7Y 7THECE A TY
3 ECM % w87 EA ISP & LT < Wl
e, w707 r—YRI AT THRELE

TEHMA2DF R BRSPS ECM KRG LT
Bl s h, SifimgEs Sl LTy S alhEl:
AET SN T AW, F /- ECM-integrin [HD 4
TAEML, U v ROR— I v 7 RiMmE s, 7
AFRZYT - 370707 OEA, FVIFY
Rz ) 7o sl z 4 LT, B
(R 555 & g A 1617,

MS I 4 5 K % T, o4p1 integrin
(VLA4) k&4 5k MMEE/ 7 B3 VbHifF nata-
lizumab 2AHFRIIICE SRR L. LA LEBL,
natalizumab {3 774 2 Bk 5 EIMSE  (progressive
multifocal leukoencephalopathy ; PML} % # i 4
50T, kKYERLBIFEOBEPHAS AT
BB TRy 7 —7 p HEEEEN S FRERT
BEANE, N7 (hub) EWFETNHhS, ZL<O5 T
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DY V=g PR L TWABRY FT—~7 Dth
LA TFERETHCLHEETHS. NTOMIHE
ERESARR, Ry FU—7 24T RbbYR
TLADMRICE K ZFEEDILLTY. VAFA
£ HFOE LD BIE, ECM-integrin ¥ 7+ V&
BRI, MSICki) 5 RENBRMERECMFE O
DORIEBEONAY o L LIz HAREHRND 5.
PANTHER i & 5 CAP /B 54— ADEN TH
% & T 7c integrin signaling pathway 12 3\ T3,
focal adhesion kinase (FAK) SBNT7 LB &5
WorTHs (B1KH). E5FLAY TAE226
X, ECMIC &5 FAKDHDY VEs L 2 BIRWIC
MHEL, invivo EFIVATEOBRSEICEDEEA
ROBIE & MEFEAZIH T 20, #-THFRy
FU7—7h6R% L, TAE226 X FAK %% FEM
&3 % MS B ¥ SAEEIRETIMBIR B & e A THE
HEHBD, EAE KB AREIRABROER B/
ns.

V. EH Y IS

VA7) ABROW KA I v 7 AF—FICH
THFFRy P T—7BAOLDICE, FBEshi
MR (knowledgebase) ICHTS BHY—I %
EOLELRDB. BTy —IUIRAERBARL - B
BHETHY, BREATR, LOV—ILERATS54R
NYT v/ REIIRE A, MR- GBS RORR,
MBAREL, BINHEEICBIL TRHoREhsk
TwWiv., L LS4 r v AF L LTRA
LRI, FFRy V7= #BHTBI LIk
D, PO THRENZ R ICBMT DI/ fI KB 5
T BFRy P 7 HHEOICAETH T LI
k5.

B B AWTBA LB, B0 -
BRERPIE v — AP 7E BT 5 S 28 38 LR e 38
&, BREBAKENLTA VT 2=F 1+ 7 AR
LFBh# & OIFEW|E T Ih, CHBFEEIK
FERBBHOPERBUB T BHEWRER AN, 57
ZUY—F L —Procdik (S0801043) &[54
S ERl R R B R PT EEE (H21- i — -
201) ORBHEZT .
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