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Abstract

Crosstalk between the neuroendocrine and immune systems is essential for
the maintenance of homeostasis in our bodies. Recent advances in neuro-
science and immunology have elucidated the cellular and molecular basis for
these bidirectional interactions. Neuronal and immune cells share a variety
of neurotransmitters and cytokines as well as receptors, which enable these
complex interactions. Individual hormones, neurotransmitters and neuropep-
tides have their own specific spatial and temporal niches, and these overlap
to facilitate crosstalk with each other. The neuroendocrine system has multi-
level modulatory properties that affect the functions of the immune system,
contributing to both activation and suppression. Neural regulation of
immune responses is accomplished systemically by hormones, regionally by
innervation and locally by neurotransmitters. In turn, immune cells regulate
neural function and integrity directly through cytokines or through the
vagus nerve. In the present review, these complex, multifaceted interactions
at the molecular level are explained based on current knowledge. (Clin. Exp.

Neuroimmunol. doi: 10.1111/j.1759-1961.2011.00023., January 2012)

Introduction

Interactions between the immune and neuroendo-
crine systems were discovered by Hans Selye et al.
in the 1930s. Since then, we have come to appreci-
ate that integration between these two systems is
essential in order to maintain homeostasis and over-
all health; the immune and neuroendocrine systems
work in harmony with all other physiological sys-
tems at the level of the whole organism. These two
systems reciprocally regulate each other, and share
common ligands and receptors. Neuroendocrine reg-
ulation of immune responses is important for sur-
vival during both physiological and mental stress,
and is accomplished systemically through hormonal
cascades, regionally through nerve pathways into
lymphoid organs and locally through neurotrans-
mitters. In turn, the immune system regulates the
central nervous system (CNS) through cytokines
(Fig. 1). Herein, an updated overview of these com-
plex interactions will be discussed.

© 2011 Japanese Society for Neurcimmunology

Neuroendocrine regulation of the immune system

Systemic regulation of the immune system through
hormones

Neuroendocrine systems systemically control immu-
nological functions at the level of the hypothalamic-
pituitary—adrenal (HPA) axis through glucocorticoids
(GC), the hypothalamic-pituitary—gonadal (HPG)
axis through sex hormones and the hypothalamic-
pituitary-thyroidal (HPT) axis through thyroid
hormones.’ In addition to these classical pathways,
the renin-angiotensin-aldosterone system (RAAS)
and feeding regulatory hormones are also involved
in the regulation of immune functions.

The hypothalamic-pituitary-adrenal axis

On various physical and psychological stimuli, corti-
cotrophin-releasing hormone (CRH) is secreted from
the paraventricular nucleus of the hypothalamus
into the hypophyseal portal blood supply and sti-
mulates the release of adrenocorticotropin hormone
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Figure 1 Crosstalk and regulation between
the neuroendocrine and immune systems. The
interactions between the immune system and
the neuroendocrine system are regulated on
the level of systemic routes by hormones and
cytokines, regional routes by innervation of the
sympathetic, parasympathetic and peripheral
nervous systems, and local routes by neuro-
transmitters and cytokines. The hypothalamic—~
pituitary axis (black lines) controls the release
of glucocorticoids, sex hormones and thyroid

(ACTH) from the anterior pituitary gland. ACTH
then stimulates the adrenal cortex to produce GC.
The secretion of CRH is upregulated by dopamine,
serotonin, noradrenalin and histamine, and down-
regulated by opiates and y-aminobutyric acid
(GABA) as well as hormones downstream of CRH,
such as GC and ACTH, through negative feedback.?
GC bind to cytoplasmic glucocorticoid receptors
(GCR), and modulate the transcription and pro-
tein synthesis of genes, such as activating protein-1
(AP-1) and nuclear factor ¥B (NFxB).>~> Although GC
play various roles in modulating immune responses,
their overall -effect is suppressive for both innate
and acquired immunity through the inhibition of
differentiation, maturation, proliferation and func-
tions of immune cells.” GC inhibit the production of
pro-inflammatory (interleukin [IL]-1, IL-6, tumor

hormones. The autonomic and peripheral
nervous systems participate in regional and
local control of the immune system (green
lines). In turn, immune cells produce cytokines
on activation and affect neural functions (pink
lines). Dashed lines indicate inhibitory signals.
Red boxes indicate cytokines, green boxes
indicate neurotransmitters, yellow boxes
indicate hormones from peripheral endocrine
organs, gray boxes indicate hormones from
pituitary gland, purple boxes indicate hor-
mones from the hypothalamus. Ach, acetyl-
choline; ACTH, adrenocorticotropin hormone;
CGRR, calcitonin gene-regulated peptide; CRH,
corticotrophin-releasing hormone; DP, dopa-
mine; FSH, follicle stimulating hormone; GC,
glucocorticoids; GnRH, gonadotropin releasing
hormone; HPG, hypothalamic-pituitary-gona-
dal; HPT, hypothalamic-pituitary-thyroidal; IL,
interleukin; LH, luteinizing hormone; NA, nor-
adrenaline; PNS, peripheral nerve system; PRL,
prolactin; RAAS, renin-angiotensin-aldosterone
system; SNS, sympathetic nervous system;

SP, substance P; TGF-B, transforming growth
factor-B; TNF-a, tumor necrosis factor-o; TRH,
thyrotropin-releasing hormone; TSH, thyroid
stimulating hormone.

necrosis factor [INF]-o) and Thl-related cytokines
(IL-2, 1IL-12, y-interferon [IFN-y], granulocyte
macrophage colony-stimulating factor [GM-CSF]), as
well as inflammatory mediators, such as prostaglan-
din and nitric oxide, and enhance the production of
anti-inflammatory cytokines (IL-4, IL-10). GC also
suppress the proliferation and function of cytotoxic T
cells. GC inhibit antigen presentation by suppres-
sing the maturation of dendritic cells and reducing
the expression of major histocompatibility complex
(MHC) class II molecules.! GC suppress cell traffick-
ing by inhibiting the production of chemoattractants
(IL-5, IL-8, regulated on activation, normal T cell
expressed and secreted [RANTES], eotaxin, mono-
cyte chemotactic protein-1 [MCP-1]) and the expres-
sion of cell adhesion molecules (intercellular
adhesion molecule-1 [ICAM-1], vascular cell adhesion

© 2011 Japanese Society for Neuroimmunology
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molecule-1 [VCAM-1], E-selectin). Furthermore, GC
induce the apoptosis of T cells and thymocytes
through increasing the expression of Bad, Bd-XS
and Bcl-XL genes.

CRH is released from nerve endings at sites of
inflammation, as well as from immune cells, and
CRH receptors are expressed on immune cells
including macrophages, T cells, B cells, mast cells
and eosinophiles.*® The local effect of CRH is
inflammatory rather than anti-inflammatory. CRH
receptor antagonists suppress the production of IL-6,
IL-1 and TNF-« from macrophages resulting in dis-
ease inhibition in a model of endotoxin shock.'®

Hypothalamic-pituitary-gonadal axis
Females show greater humoral and cellular immune
responses than males. The importance of sex hor-
mones on immune reactions has been inferred from
the higher frequency of many autoimmune diseases
in females. Gonadotropin releasing hormone (GnRH)
released from the hypothalamus stimulates gonado-
tropins including follicle stimulating hormone (FSH)
and luteinizing hormone (LH) in the anterior pitui-
tary gland, and subsequently stimulates the release
of estrogen and progesterone from ovary glands.
Immune cells express GnRH and GnRH recep-
tors.'’'? GnRH enhances T cell development, prolif-
eration, cytokine production (including IFN-y) as
well as IgG production,'? and is therefore immuno-
stimulatory. In agreement with this, administration
of GnRH antagonist in a murine lupus model ame-
liorates disease by reducing autoantibody produc-
tion, whereas administration of GnRH agonists
exacerbates disease severity.'>

Estrogen binds to two forms of cytoplasmic estro-
gen receptors (ER), ERa and ERB. ERa is expressed
on the endometrium, ovarian stromal cells, breast
and hypothalamus, whereas ERP is widely expressed
in tissues including brain, kidney, bone, heart, lungs,
intestine and endothelial cells'®. Estrogen has dual
roles in the modulation of immune responses
depending on the plasma levels. High levels of estro-
gen suppress macrophages to produce TNF-o and
IL-12, and promote them to produce IL-10.'° In
addition, estrogen promotes the HPA axis and
noradrenaline (NA) production, resulting in further
inhibition of inflammation, and favors a Th2 pattern
of cytokines.'® Estrogen has a potent modulatory
effect on B cell development and survival, interfer-
ing with B cell tolerance and enhancing autoanti-
body production.’”? Consistent with these findings,
hyperestrogenic states, such as an ingestion of oral
contraceptives and pregnancy, are associated with

© 2011 Japanese Society for Neuroimmunology

Neuroendocrine-immune crosstalk

disease flare-up of systemic lupus erythematosus
(SLE), in which a humoral immune response is an
important pathogenic factor.!! In contrast, pregnancy
has been reported with decreased disease activities in
rheumatoid arthritis or multiple sclerosis, which are
Th1/Thl7-mediated responses that dominate in the
pathogenesis.!' Several studies in experimental auto-
immune encephalomyelitis (EAE), an animal model
of multiple sclerosis (MS) that is mainly mediated by-
myelin reactive T cells, have shown the inhibitory
effects of estrogens on disease acitivities.?°> The
mechanisms that underlie the inhibition of EAE
include suppression of myelin-specific Thl and Thi7
immune suppression, increased Th2 responses, induc-
tion of CD4*CD25" regulatory T cells (T regs) and
downregulation of inflammation. The studies using
knockout mice and a specific ligand for ERa or ER}
suggest that the suppressive effects of estrogen in
EAE are mediated by ERo,?¢™® although ERP seems
to be involved in neuroprotection.?**>° More recently,
G-protein coupled estrogen receptor (GPR30), a
membrane estrogen receptor, has been shown to be
important in the inhibition of EAE by estrogen.>!~>3
Based on these findings and a promising pilot trial of
oral estriol, there are several clinical trials of estro-
gens in MS underway.>*® Progesterone shows
anti-inflammatory effects through the inhibition of
NFxB.'>?7 Testosterone inhibits both innate and
acquired immunity.!* Dihydrotestosterone decreases
immunoglobulin and cytokine production and
lymphocyte proliferation.>®

Prolactin (PRL) is released from the anterior pitui-
tary gland and stimulates mammary growth and
differentiation. PRL and PRL receptor, members of a
cytokine receptor superfamily, are expressed on
immune cells. PRL is stimulated by suckling and
stress, and inhibited by dopamine. The production of
PRL in T cells is inhibited by IL-2 and IL-4.>° The
effects of PRL on immune responses are immuno-
stimulatory and PRL enhances production of cyto-
kines, such as IFN-y, IL-12 and IL-10, as well as T
cell proliferation. PRL also alters the functions and
selection of B cells, resulting in the breaking of toler-
ance of autoreactive B cells.**™? Consistent with
this, bromocriptine administration abrogates the
estradiol-induced breakdown of B cell tolerance.*?

Hypothalamic-pituitary-thyroidal axis

Thyrotropin-releasing hormone (TRH) secreted from
the paraventricular nucleus of the hypothalamus
stimulates the release of thyroid stimulating hormone
(TSH) in the anterior pituitary gland and subse-
quently stimulates the release of thyroid hormones
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from the thyroid gland. The existence of receptors for
thyrotropic and thyroid hormones in immune cells,
and the production of TSH by immune cells estab-
lished the presence of interactions between pituitary-
thyroid hormones and the immune system. Studies
using mice deficient in thyroid hormone receptors
suggested that B cells, macrophages and granulocytes
were decreased in the spleens of these mice.** Exper-
imentally-induced hypothyroidism resulting from
propylthiouracil (PTU) treatment in rodents, as well
as hypothyroidism in humans, reduces thymic activ-
ity and humoral and cell-mediated immune
responses, and this suppression was relieved by the
administration of thyroid hormones.*>*” Consistent
with these results, lymphocytes from hyperthyroid
mice treated with thyroxin showed higher T and B
cell mitogen-induced proliferation. Recall responses
to sheep red blood cell immunization showed
increased or decreased IL-2 and IEN-y production in
hyper- or hypothyroid mice, respectively. In addition,
the production of IL-6 and IEN-y on stimulation with
lipopolysaccharide (LPS) was upregulated in hyper-
thyroid mice, suggesting enhancement of innate
immune responses.*” Furthermore, proliferative
responses and cytotoxic activity were reduced in
chronically stressed mice in which the levels of thy-
roid hormones, but not GC and NA, were reduced,
and thyroxin replacement reversed the reduction in
T cell responses.*® These findings suggest that stress
induces an alteration of the HPT axis leading to
modulation of immune responses.

Renin-angiotensin-aldosterone systems

In addition to the aforementioned pathways, other
systems, such as RAAS, are important modulators of
immune functions. RAAS regulates blood pressure
and body fluid homeostasis. Renin converts angio-
tensin (Ang) to Angl, and Ang-converting enzyme
(ACE) catalyzes the conversion of Angl to Angll
Although there are two subclasses of receptors for
Angll, Angll type 1 receptor (ATIR) and Angll
type 2 receptor, ATIR mediates the major effects of
Angll. RAAS is also expressed in immune cells like
the other hormones described earlier. Monocytes
and dendritic cells produce Angll and ATIR.%%-%!
Angll stimulation promotes the production of inflam-
matory mediators, including cytokines, chemokines
and adhesion molecules, through the activation of
NFkB.**** These mediators also promote the differ-
entiation of dendritic cells and accumulation of
neutrophils, which then drives diseases, such as
atherosclerosis and inflammation.’****> Inhibition
of ACE or ATIR suppresses the production of
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inflammatory cytokines, including TNF-o, IL-1, IL-6,
IL-12 and IL-18,°°7% leading to disease suppression
in arthritis models.>**® Inhibition of RAAS regu-
lates not only innate immunity, but also adaptive
immunity, as antigen-specific Thl responses are
suppressed in collagen-induced arthritis and experi-
mental autoimmune uveitis.**¢’ More recently,
suppression of both Thl and Thl7 responses, and
induction of Tregs and transforming growth factor-p
(TGF-B) by the blockade of ACE or ATIR were
shown in EAE.%>%

Leptin, ghrelin, neuropeptide Y

Recent studies have shed light on the immunomod-
ulatory potency of feeding regulatory hormones,
such as leptin, neuropeptide Y (NPY) and ghrelin.
Leptin is predominantly produced by adipocytes and
is actively transported through the blood-brain
barrier (BBB) and acts on the hypothalamic satiety
center to decrease food intake. The receptors for lep-
tin (OB-R) belong to the dassI cytokine receptor
family, which includes the IL-2 receptors, and have
at least six isoforms. The short leptin receptor iso-
form (OB-Ra) and the long leptin receptor isoform
(OB-Rb) are the main leptin signaling receptors, and
are expressed in the hypothalamus and other cells
including immune cells.®* Leptin induces the release
of inflammatory cytokines, such as TNF-o and
IL-6, as well as CC-chemokine ligand 2 (CCL2) and
vascular endothelial growth factor (VEGR).’ Leptin
also stimulates the production of chemokines by
eosinophils®® and neutrophils.”*® Serum leptin is
decreased after acute starvation in parallel with
immunosuppression or Th2 bias, whereas exogenous
leptin enhances proliferation of T cells and skews
cytokine balance towards Thl, leading to the sup-
pression of EAE.®>”% Serum levels of leptin correlate
with body fat mass. In contrast, serum levels of
adiponectin, another hormone secreted from adipo-
cytes, are markedly decreased in individuals with
visceral obesity and insulin resistance. Interestingly,
adiponectin inhibits the ability of macrophages to
produce inflammatory cytokines and chemokines,
and carry out phagocytosis.”*”7?

NPY is increased after starvation. NPY regulates a
variety of physiological activities, including energy
balance and feeding, anxiety, neuroendocrine secre-
tion, neuronal excitability and vasoconstriction. NPY
is synthesized and released with NA from sympa-
thetic nerves, the adrenal medulla and immune
cells.”” NPY receptors are G-protein-coupled recep-
tors and consist of five subsets (Y1-5), which are dif-
ferentially expressed in tissues. Y1 receptors are
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rather ubiquitous and are also expressed in immune
cells. Exposure of macrophages to NPY suppresses
the production of IL-6 in vitro.”* Exogenous NPY
shifts the Thl/Th2 balance towards Th2 through
NPY receptor 1 and ameliorates the severity of
EAE.”” In contrast, studies using NPYl receptor-
deficient mice have shown that NPY promotes APC
activation in addition to its role in downregulating
Th1l-responses.’® Leptin and NPY are linked to ghre-
lin, as ghrelin is increased after starvation, it
potently stimulates the release of NPY in the CNS”’
and antagonizes the effects of leptin.”®

Ghrelin is predominantly secreted from the muco-
sal endocrine cells of the stomach and the ghrelin
receptor, a G protein-coupled receptor called GH
secretagogue receptor (GHS-R), is widely distributed
throughout various organs. Ghrelin stimulates GH
release, increases food intake, regulates energy
homeostasis and decreases energy expenditure by
lowering the catabolism of fat.”*®® Ghrelin and the
GHS-R have been detected in immune cells and
lymphoid tissues. Ghrelin induced increases in peri-
pheral blood lymphocytes, as well as thymic cellu-
larity and differentiation; the resulting increases in
cytotoxic lymphocytes reduce tumor initiation and
subsequent metastases.®’ More recent studies have
highlighted the anti-inflammatory functions of ghre-
lin. Ghrelin inhibits the nuclear translocation of
NFxB and suppresses the production of inflamma-
tory cytokines from macrophages and T cells.®*®* As
a consequence, ghrelin inhibits bowel disease,*
arthritis,®*%¢ sepsis and endotoxemia.’%#%87 Further-
more, ghrelin inhibits the production of inflamma-
tory cytokines from microglia and subsequently
suppresses EAE.%%%7

Regional regulation of the immune system through the
autonomic nervous system

Regional control of immune responses is mediated
by innervation of primary and secondary lymphoid
organs. Nerve terminals lie adjacent to T cells, B cells
and dendritic cells, with the neuroimmune junction
measuring approximately 6-nm wide, in contrast to
a typical CNS synapse, which is 20-nm wide. Inner-
vation of lymphoid organs changes depending on
the pathological conditions. Inmnervation to the
lymph node increases under psychosocial stress in
primates,®®°! whereas it decreases under conditions of
viral infection or inflammation, such as arthritis.”>>
The predominant nerve fibers are sympathetic, but
in addition, acetylcholine (Ach), calcitonin gene-
regulated peptide (CGRP), vasoactive intestinal

© 2011 Japanese Society for Neuroimmunology

Neuroendocrine-immune crosstalk

polypeptide (VIP), dopamine, substance P and
somatostatin can be found at these sites. In this sec-
tion, sympathetic and parasympathetic effects are
discussed. Other neurotransmitters will be discussed
in the next section.

Sympathetic nervous system control of immune responses
The sympathetic nervous system (SNS) contains
regions of the brain, as well as sympathetic nerves,
that innervate primary and secondary immune
organs and release noradrenaline (NA) from their
nerve terminals on stimulation. In addition, adrena-
line is systemically released from chromaffin cells
in the adrenal medulla. Most studies show that
activation of the SNS inhibits the immune sys-
tem, although some studies show the opposite
effects including induction of chemokines, such as
CXCL8."7* Catecholamines bind to «- and B- adren-
ergic receptors, seven-transmembrane domain G
protein-coupled receptors composed of heterodimers
of two different subunits that form multiple sub-
types. Immune cells predominantly express B2-
adrenergic receptors (P2AR). The signals through
B2AR on dendritic cells and macrophages upregulate
cyclic AMP (cAMP), activate protein kinase A and
inhibit NFxB. These intracellular events attenuate
the production of inflammatory cytokines, such as
TNF-o, IL-1, IL-6 and IL-12, and upregulate IL-10
production,®® ¢ resulting in the suppression of Thl
responses. Interestingly, B2AR are expressed on
naive CD4" T cells and Thl cells, but not Th2 cells.
Suppression of the Thl response seems to be influ-
enced by the time-point, as IFN-y production
decreases if NA is added before activation, but
increases when NA is added after activation.’”*® In
addition to the suppression of Thl responses, chemi-
cal sympathectomy increased splenic and lymph
node CD4*FoxP3 Treg cells through a TGF-B-depen-
dent mechanism to further suppress excess immune
responses.”’

Although several pieces of conflicting data exist
concerning the effects of sympathectomy on cyto-
toxic T cells, it has been reported recently that
chemical sympathectomy by 6-hydroxydopamine or
treatment with B2-blockers (but not B1- or a-block-
ers) enhanced CD8" T cell responses to viral and
cellular antigens in mice, suggesting that the
sympathetic nervous system plays an inhibitory role
in CD8" T cell responses.’® In humoral responses,
B2-adrenergic stimulation or cAMP accumulation
enhances B cell proliferation, B7-2 expression, differ-
entiation to antibody-secreting cells and antibody
production.'®! Inhibition of Thl responses might also
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contribute to enhanced humoral responses. How-
ever, antibody production seems to depend on the
duration of cAMP accumulation. Short-term eleva-
tion enhances, whereas long-term elevation sup-
presses antibody production. Consistent with these
results, high level spinal cord injury (T3) caused sus-
tained increases in splenic NA and GC along with
impaired antibody production, and these immuno-
suppressive effects were reversed by B2AR block-
ers.'®® Catecholamines affect other innate immune
cells, and induce acute mobilization of NK cells and
chronic inhibition of NK-cell activity directly and
indirectly through the inhibition of IL-12 and IFN-y.
In addition, catecholamines suppress the migration,
phagocytosis and degranulation of neutrophils.!°%104

Parasympathetic control of immune responses

The parasympathetic nervous system uses Ach as a
primary neurotransmitter and modulates immune
responses through the efferent and afferent fibers of
the vagus nerve. Inflammatory cytokines, such as
IL-1, stimulate paraganglia cells resulting in signals
through afferent fibers, which activate the parasym-
pathetic brainstem regions to release Ach from effer-
ent vagus nerves to control inflammation through
negative feedback. Vagotomy shuts down the signals
to the brain and the subsequent negative feedback
resulting in enhanced inflammatory conditions, such
as toxic shock'®® and CIA,'°® whereas electrical
vagus nerve stimulation acts to ameliorate disease
using a model of sepsis.’®” ACh binds to two types of
receptors - nicotinic and muscarinic cholinergic
receptors. Both types of receptors consist of many dif-
ferent subunits, thus comprising a variety of receptors.
Among them, o7-nicotinic AChR (nAChR), expressed
on macrophages, lymphocytes and neutrophils, is
essential for the anti-inflammatory effects of vagal
nerve signaling.'®® Activation of nicotinic AChR
inhibits NF«B transcriptional activity and the produc-
tion of inflammatory cytokines and high mobility
group box 1 (HMGB1).'%%1% In agreement, stimula-
tion of «7-nAChR by nicotine or Ach leads to the
attenuation of inflammation in conditions such as
sepsis or CIA through the suppression of inflamma-
tory cytokines.'°*~'% In addition, nicotine administra-
tion inhibited aspects of acquired immunity, including
antigen-specific Thl and Th17 responses and the sub-
sequent development of EAE.''%!!! Furthermore, in
o7-nAChR-deficient mice, the production of TNE-a,
IFN-y and IL-6, as well as antigen-specific IgG1 anti-
bodies by spleen cells, was significantly facilitated.!!?
Besides the effect on cytokine secretion, nAChR acti-
vation also modulates endocytosis and phagocytosis
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by macrophages. This effect, however, is mediated
through 04B2-nAChR.'"? Interestingly, miR-132 has
recently been shown to target acetylcholineesterase
(AChE), a functional regulator of the cholinergic sys-
tem.''* Inflammatory stimuli induced overexpression
of miR-132 in lymphocytes, and miR-132 attenuates
inflammation by reducing AChE levels.

Local regulation of the immune system through
neurotransmitters

Neurotransmitters are synthesized in neurons and
reside in presynaptic terminals. They act on the post-
synaptic neurons and other organs. Amino acids,
such as glutamate and GABA, amines such as dopa-
mine, NA and serotonin, and peptides termed neuro-
peptides, such as somatostatin, substance P, NPY,
opioid, GnRH, CRH, CGRP and VIP, are all neuro-
transmitters. These molecules are released from the
peripheral nervous system, as well as from immune
cells including T cells, B cells, macrophages, dendritic
cells, granulocytes, ¢ 1112731157130 514 therefore,
contribute to the modulation of immune responses.
Due to space limitations, only some of these neuro-
transmitters will be discussed here.

Glutamate

Glutamate is a primary excitatory neurotransmitter
in the CNS and regulates motor, sensory and affec-
tive functions, as well as cognition, memory and
learning. Glutamate binds to two families of multiple
receptors, ionotropic glutamate receptors (iGluR)
and G protein-coupled metabotropic glutamate
receptors (mGluR). iGluR are subdivided into three
groups based on their amino acid sequence and
selective activation by the agonists N-methyl-D-aspa-
rate (NMDA) and kainate or o-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA). mGluR
include eight subtypes and are classified into three
subgroups according to their sequence homology
and G protein coupling. Group I consists of mGluR1
and mGluR5, which are coupled to the Gq protein.
Group II consists of mGIluR2 and mGluR3, which are
coupled with Gi and Go proteins, and L-2-amino-4-
phosphonobutyric acid is their most potent agonist.
Group III consists of mGluR4, mGluR6, mGIluR7 and
mGluR8, which are coupled with Gi and Go pro-
teins, and for which L-2-(carboxycyclopropyl)-gly-
cine is the most potent agonist. Even though iGhi3R
signals have been reported to impair IL-10 produc-
tion, but enhance the chemotactic migration and
integrin-mediated adhesion of resting T cells,'*!
administration of AMPA/kainate antagonist to mice
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suffering EAE increased oligodendrocyte survival
with no reduction of inflammmation, suggesting a
minor effect of iGluR on immune cells.’** In con-
trast, some mGluR have recently been reported to be
involved in immune responses. Regarding group I
GluR, the expression of mGlulR is induced after T
cell activation in contrast to mGlu5R, which is con-
stitutively expressed on T cells. Signals through
mGlu5R inhibit T-cell proliferation through suppres-
sion of IL-6 production,’*® whereas signals through
mGlulR enhance the secretion of IL-2, IL-6, IL-10,
TNF-« and IFN-y, and counteract the mGlu5R-medi-
ated inhibitory effect on T-cell proliferation.*>*!3*
Recent studies using mGluR4, a member of group III
GluR, showed that mGluR4-deficient mice were vul-
nerable to BAE and that this was associated with
enhanced Thl and Thl7 responses. These mice
showed increased production of inflammatory
cytokines, such as IL-6, IL-12 and IL-23, as well as
anti-inflammatory cytokines including IL-10 and
TGE-B."** In accordance with these findings, adminis-
tration of N-phenyl-7-(hydroxyimino) cyclopropa[b]
chromen-la-carboxamide (PHCCC), an mGluR4
selective enhancer, increased EAE resistance by
inducing Tregs, showing the immunosuppressive
effect of mGluR4-mediated signaling.’*’

Dopamine

Dopamine is an important neurotransmitter in the
CNS and plays a key role in the control of move-
ment, endocrine regulation and cardiovascular func-
tion. Dopamine also plays an important function
outside of the CNS in peripheral nerve systems, as
dopamine is released from peripheral nerve termi-
nals that innervate lymphoid organs, as well as
from immune cells. Dopamine has been shown to
inhibit proliferation of human lymphocytes, and
even to induce apoptosis in peripheral mononuclear
cells.’**'>7 Dopamine receptors are seven-transmerm-
brane G protein-coupled receptors with five subtypes
(D1R-D5R) classified into two subgroups — D1-like
receptors and D2-like receptors.'*® Murine and
human lymphocytes express all subtypes of these
receptors. D1-like receptors, including DIR and D5R,
are coupled to Gos, whose increases in cAMP are
often linked to inhibitory effects. In contrast, D2-like
receptors, including D2R, D3R and D4R, are coupled
to Gai, which decreases cAMP and is often linked to
immunostimulation. Signals through DI1-like recep-
tors inhibit the function of cytotoxic T cells and
Tregs.''®13%140 In contrast, signals through D2R trig-
ger integrin activation and IL-10 production.'*! Fur-
thermore, signals through D3R induce the secretion
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of TNF-o from T cells**? and induce the migration of
naive CD8" T cells.'*> However, recent in vivo studies
showed that administration of DI1-like receptor
antagonists ameliorated EAE in association with a
reduction of IL-17 and an increase in IFN-y, whereas
administration of D2-like receptor antagonists wors-
ened EAE.'™ Purthermore, in an arthritis model,
the D2-like receptor antagonist, haloperidol, signifi-
cantly induced accumulation of IL-6+ and IL-17+
T cells, and exacerbated cartilage destruction, where-
as DI1-like receptor antagomists suppressed these
responses,’*> suggesting that dopamine signals
through D1-like receptors enhance Thl7-mediated
diseases by promoting the IL-6/Thl7 axis in con-
junction with the suppression of Tregs.

Substance P

Substance P (SP) is produced by the primary afferent
neuronal terminals of the CNS and peripheral nerve
endings, as well as by immune cells including mono-
cytes, dendritic cells and lymphocytes. The diverse
functions of SP include a role as a neuronal Sensory
transmitter associated with pain, stress, anxiety,
secretion stimulation, smooth muscle contraction
and immune stimulation. SP binds to both the
neurokinin-1 (NK1R) and neurokinin-2 receptor, but
the effects of SP are mainly mediated by NKIR, a G
protein-coupled receptor. In the immune system, SP
enhances the production of inflammatory cytokines,
such as IL-1B, IL-6 and TNF-«, by activating NFxB
from monocytes. SP also increases NK cell activity
and induces the release of CXCL8 and CCL2 from
leukocytes and vasoactive mediators, such as seroto-
nin and histamine, from mast cells.’*® In terms of T
cells, SP potentiates acquired immune cell responses
by enhancing T cell proliferation. Furthermore SP
augments the generation of Thl and Thl/Thl7
cells from memory T cells by inducing IL-18, TNF-o
and IL-23 production by monocytes leading to the
control of infections.'*”**° Consistent with these
findings, NKIR antagonists are effective for the
treatment of sepsis.!*"1>2

Immune regulation of neuroendocrine systems

The neural regulation of immune responses has
been extensively studied as aforementioned. How-
ever, the interactions between the neuroendocrine
and immune systems are Dbidirectional and,
recently, increased attention has been given to the
immunological regulation of the neural system
through cytokines. Activation of innate immune
responses, not just by pathogens but also by
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damage-associated molecules, such as HMGB1, heat
shock protein and ATP, leads to the release of
inflammatory cytokines. IL-1, TNF-o and, to a les-
ser extent, IL-6 stimulate the HPA axis at the level
of vagus afferent nerves, the hypothalamus, the
pituitary and the adrenal glands to release GC as
well as the SNS to release NA, providing a negative
feedback loop to stop inflammation. Cytokines pro-
duced in the periphery activate primary afferent
nerves, such as the vagus nerves, enter the brain
through the areas with a poorly developed blood-
brain barrier, such as the circumventricular region
or are actively transported. In addition, neurons,
glial cells and endothelial cells produce these cyto-
kines in the CNS.'" In contrast to HPA axis,
inflammatory cytokines have negative effects on
the HPG axis, leading to the reduction of gonadal
functions.'>*

The effects of cytokines on the CNS are not limited
to the HPA axis and SNS, but are also involved in
behavior induced by sickness including changes
in behaviour that occur in ill patients, and even in
depression. Systemic or intrathecal administration of
IL-1B or TNF-o induces signs of behavior resulting
from sickness, such as decreased motor activity, social
withdrawal, altered cognition and fatigue. Although
administration of IL-6 does not induce these behav-
ioral changes, LPS-induced sickness behaviors are
reduced in IL-6™~ mice, suggesting its involvement in
these behavioral changes, although the degree is less
compared with IL-1B or TNF-o. In contrast, anti-
inflammatory cytokines, such as IL-10, attenuate LPS-
induced sickness behaviors.!*>>~1%8

Type Iinterferon, IFN-« and IFN-B, are used for the
treatment of hepatitis C and MS, respectively. These
cytokines show neuropsychiatric complications,
including sleep disorders and depression, which serves
as evidence of the cytokine-mediated modulation of
neural activities. The potential link between inflam-
matory cytokines and depression is tryptophan metab-
olism. Tryptophan is an essential amino acid and is a
source of serotonin, as it is metabolized to serotonin
and kynurenine. In the latter pathway, tryptophan is
metabolized by tryptophan 2,3 dioxygenase (TDO) and
indoleamine 2,3 dioxygenase (IDO) to kynurenine,
and then metabolized either to 3-hydroxykynurenine
or kynurenic acid, an antagonist of NMDA receptors.
3-Hydroxykynurenine is further metabolized to 3-hy-
droxyanthranilic acid and quinolinic acid, an agonist
of NMDA receptors. TDO is primarily located in the
liver and is activated by GC, whereas IDO is widely
expressed and is activated by inflammatory cytokines
and downregulated by IL-4."°**3° In patients treated
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with type IIFN, plasma levels of kyurenic acid as well
as serotonin are decreased, suggesting that the behav-
jor and depression caused by inflammatory cytokines
including IFN might be a result of an alteration in
glutamatergic neurotransmission.

Although much of the focus on T cells in a variety
of pathogenic conditions, has been on classical
immune-mediated inflammation, including infection
and autoimmune disorders, in diseases newly related
to inflammation, such as ischemia, neurogenerative
and psychiatric disorders, a neuroprotective role has
emerged as an important task for T cells. The pro-
duction of neurotrophic factors, such as brain-
derived neurotrophic factor (BDNF) from T cells,'5°
reduced learning capacity in T cell-deficient mice
and its restoration by passive T cell transfer'®
and enhanced hippocampal neurogenesis by T
cells,"®*1¢? suggest a fundamental function of T cells
in the maintenance of cognitive functions. Anti-
inflammatory cytokines, such as IL-4 and TGEF-B, are
detectable in the CNS, and IL-4 is downregulated in
a mouse model of Alzheimer’'s disease.'®* These
cytokines, in addition to BDNF, might contribute
to the maintenance of homeostasis of the CNS.
Although the precise mechanisms remain elusive, T
cells might serve as important players in the mainte-
nance of neuronal integrity.

Future directions

Acute stress responses in the autonomic and peri-
pheral nervous systems amplify local immune
responses to eliminate pathogens and other dangerous
occurrences. Subsequent to these initial responses,
the neuroendocrine and autonomic systems act to
inhibit immune responses and terminate inflamma-
tion. In contrast, chronically sustained stress induces
unusual conditions, such as inadequate secretion of
GC, as well as resistance to GC, increased sympathetic
tone propelling the RAAS, functional loss of sympa-
thetic nerve fibers at the inflammation site and a local
B to o adrenergic shift.®>*%® Further studies to clarify
the consequences of stress on chronic inflammatory
conditions will provide novel strategies for the control
of complex pathogenic conditions including autoim-
mune diseases, and neurogenerative and psychiatric
disorders.
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Mucosal-Associated Invariant T Cells Promote Inflammation
and Exacerbate Disease in Murine Models of Arthritis

Asako Chiba, Ryohsuke Tajima, Chiharu Tomi, Yusei Miyazaki,
Takashi Yamamura, and Sachiko Miyake

Objective. The function of mucosal-associated in-
variant T (MAIT) cells remains largely unknown. We
previously reported an immunoregulatory role of MAIT
cells in an animal model of multiple sclerosis. The aim
of this study was to use animal models to determine
whether MAIT cells are involved in the pathogenesis of
arthritis.

Methods. MR1™~ and MR1*'* DBA/1J mice were
immunized with bovine type II collagen (CII) in com-
plete Freund’s adjuvant to trigger collagen-induced
arthritis (CIA). To assess ClI-specific T cell recall
responses, lymph node cells from mice with CIA were
challenged with CII ex vivo, and cytokine production
and proliferation were evaluated. Serum levels of CII-
specific antibodies were measured by enzyme-linked
immunosorbent assay. Collagen antibody-induced ar-
thritis (CAIA) was induced in MR1™™ and MRI1™*
C57BL/6 mice by injection of anti-CII antibodies fol-
lowed by injection of lipopolysaccharide. To demon-
strate the involvement of MAIT cells in arthritis, we
induced CAIA in MR17~ C57BL/6 mice that had been
reconstituted with adoptively transferred MAIT cells.
MAIT cell activation in response to cytokine stimulation
was investigated.

Results. The severity of CIA was reduced in
MR1™~ DBA/1J mice. However, T and B cell responses
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to CII were comparable in MR1™ and MR1"™* DBA/1]
mice. MR1™™ C57BL/6 mice were less susceptible to
CAIA, and reconstitution with MAIT cells induced
severe arthritis in MR17~ C57BL/6 mice, demonstrating
an effector role of MAIT cells in arthritis. MAIT cells
became activated upon stimulation with interleukin-23
(IL-23) or IL-18 in the absence of T cell receptor
stimuli.

Conclusion. These results indicate that MAIT
cells exacerbate arthritis by enhancing the inflamma-
tion.

Rheumatoid arthritis (RA) is an autoimmune
disease characterized by chronic inflammation in the
joints. It has been suggested that environmental factors
influence autoimmunity, and in particular, increasing
evidence highlights the important role of gut flora in the
development of autoimmune diseases (1), including
arthritis. For example, differences in the intestinal mi-
crobiota of patients with early RA have been described,
and tetracycline treatment was shown to reduce disease
activity in RA (2,3). In addition, oral vancomycin treat-
ment significantly decreased the severity of adjuvant-
induced arthritis (4). More recently, it was demonstrated
that germ-free conditions strongly inhibit arthritis in the
K/BxN arthritis model and that the introduction of
segmented filamentous bacteria induced severe arthritis
in germ-free K/BxN mice (5). Thus, mucosal immunity
plays an important role in the development and progres-
sion of arthritis.

Natural killer (NK) cells, invariant NK T (iNKT)
cells, y/8 T cells, mucosal-associated invariant T (MAIT)
cells, B-1 B cells, and marginal-zone B cells are catego-
rized as innate-like lymphocytes. Such lymphocytes re-
side in unique locations, including the marginal zone of
the spleen and epithelial and mucosal tissues and rapidly
exert effector functions in the absence of clonal expan-
sion (6-15). Therefore, these innate-like lymphocytes
are thought to play important roles in “first-line” im-



