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Introduction

MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs conserved
through the evolution. They mediate posttranscriptional regulation of protein-coding
genes by binding to the 3’ untranslated region (3'UTR) of target mRNAs, leading to
translational inhibition, mRNA destabilization or degradation, depending on the degree
of sequence complementarity [1]. During the biogenesis of miRNAs, the primary miR-
NAs (pri-miRNAs) are transcribed from the intra- and inter-genetic regions of the gen-
ome by RNA polymerase II, followed by processing by the RNase III enzyme Drosha
into pre-miRNAs. After nuclear export, they are cleaved by the RNase III enzyme
Dicer into mature miRNAs consisting of approximately 22 nucleotides. Finally, a sin-
gle-stranded miRNA is loaded onto the RNA-~induced silencing complex (RISC), where
the seed sequence located at positions 2 to 8 from the 5’ end of the miRNA plays a
pivotal role in recognition of the target mRNA [2]. At present, more than one thou-
sand of human miRNAs are registered in miRBase Release 16 http://www.mirbase.org.
The 3'UTR of a single mRNA is often targeted by several different miRNAs, while a
single miRNA concurrently reduces the production of hundreds of target proteins [3].
Consequently, the whole miRNA system (microRNAome) regulate greater than 60% of
all protein-coding genes in a human cell [4]. By targeting multiple transcripts and
affecting expression of numerous proteins, miRNAs play a key role in fine-tuning of
diverse cellular functions, such as development, differentiation, proliferation, apoptosis
and metabolism. Therefore, aberrant regulation of miRNA expression is deeply
involved in pathological events that mediate cancers [5] and neurodegenerative disor-
ders [6].

Recent advances in systems biology have made major breakthroughs by illustrating
the cell-wide map of complex molecular interactions with the aid of the literature-
based knowledgebase of molecular pathways [7]. The logically arranged molecular net-
works construct the whole system characterized by robustness, which maintains the
proper function of the system in the face of genetic and environmental perturbations
[8]. In the scale-free molecular network, targeted disruption of limited numbers of cri-
tical components designated hubs, on which the biologically important molecular
interactions concentrate, efficiently disturbs the whole cellular function by destabilizing
the network [9]. Therefore, the identification of the hub in the molecular network con-
structed by target genes of a particular miRNA helps us to understand biological and
pathological roles of individual miRNAs. Recently, Hsu et al. studied the human micro-
RNA-regulated protein-protein interaction (PPI) network by utilizing the Human Pro-
tein Reference Database (HPRD) and the miRNA target prediction program
TargetScan [10]. They found that an individual miRNA often targets the hub gene of
the PPI network, although they did not attempt to characterize relevant pathways, dis-
eases, and pathological events regulated by miRNA target genes.

At present, the question remains to be fully elucidated whether a set of miRNA tar-
get genes regulated by an individual miRNA in the whole human microRNAome gen-
erally constitute the biological network of functionally-associated molecules or simply
reflect a random set of functionally-independent genes. To address this question, we
attempted to characterize molecular networks of target genes of all human miRNAs by

using KeyMolnet, a bioinformatics tool for analyzing molecular interactions on the
comprehensive knowledgebase.
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Materials and methods

MicroRNA Target Prediction

The complete list of 1,223 human miRNAs was downloaded from miRBase Release 16
http://www.mirbase.org. We searched the target genes of individual miRNA on the
Diana-microT 3.0 target prediction program (diana.cslab.ece.ntua.gr/microT), which
was selected because of the highest ratio of correctly. predicted targets over other pre-
diction tools [11]. Diana-microT 3.0 calculates the miRNA-targeted gene (miTG) score
that reflects the weighted sum of the scores of all conserved and non-conserved
miRNA recognition elements (MRE) on the 3'UTR of the target mRNA. The miTG
score correlates well with fold changes in suppression of protein expression [11]. To
optimize the parameter of miRNA-target interaction, we considered the target genes
with a cutoff of the miTG score equal to or larger than 20 as the highly reliable tar-
gets, because we found that the targets with the miTG score < 20 exhibited the signifi-
cantly lower precision score, an indicator of correctness in predicted interactions [11],
compared with those having the score 2 20 (p = 2.78E-08 by Mann-Whitney's U-test).

Molecular Network Analysis

Ensembl Gene IDs of target genes retrieved by Diana-microT 3.0 were converted into
the corresponding Entrez Gene IDs by using the DAVID Bioinformatics Resources 6.7
program http://david.abcc.ncifcrf.gov[12], where non-annotated IDs were deleted.
Then, Entrez Gene IDs of miRNA target genes were uploaded onto KeyMolnet.

KeyMolnet is a tool for analyzing molecular interactions on the literature-based knowl-
edgebase that contains the contents on 123,000 molecular relationships among human
genes and proteins, small molecules, diseases, pathways and drugs, established by the
Institute of Medicinal Molecular Design (IMMD) (Tokyo, Japan) [13-15]. The core con-
tents are collected from selected review articles and textbooks with the highest reliability,
regularly updated and carefully curated by a team of expert biologists. KeyMolnet contains
a panel of human canonical networks constructed by core contents in the KeyMolnet
library. They represent the gold standard of the networks, composed of 430 pathways, 885
diseases, and 208 pathological events. Detailed information on all the contents is available
from IMMD http://www.immd.co.jp/en/keymolnet/index.html upon request.

We utilized the neighboring network-search algorithm that selects the set of miRNA
target genes as starting points to generate the network around starting points within one
path, composed of all kinds of molecular interactions, including direct activation/inactiva-
tion, transcriptional activation/repression, and the complex formation. By uploading the .
list of Entrez Gene IDs onto KeyMolnet, it automatically provides corresponding mole-
cules and a minimum set of intervening molecules as a node on networks. The generated
network was compared side by side with human canonical networks described above. The
algorithm that counts the number of overlapping molecules and/or molecular relations
between the extracted network and the canonical network identifies the canonical network
showing the most statistically significant contribution to the extracted network. This algo-
rithm is essentially based on that of the GO::TermFinder [16]. The significance in the
similarity between the extracted network and the canonical network is scored following
the formula, where O = the number of overlapping molecules and molecular relations for
the pathway or overlapping molecules alone for the disease and the pathological event
between the extracted network and the canonical network, V = the number of molecules
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and/or molecular relations located in the extracted network, C = the number of molecules
and/or molecular relations located in the canonical network, T = the number of total
molecules and/or molecular relations of KeyMolnet, currently composed of approximately
15,700 molecules and 123,000 molecular relations, and the x = the sigma variable that
defines coincidence.

Min(C,V)

Score = —log, (Score (@) ~ Score(®) = » . f(x) @) =cCx-1-cCv—x/1Cv (1)
x=0

Results

Molecular Network of MicroRNA Target Genes

Among 1,223 human miRNAs examined, Diana-microT 3.0 predicted the targets from
532 miRNAs (43.5%). Among the 532 miRNAs, 273 miRNAs contained a set of highly
reliable targets showing the miTG score 2 20. Among 273 miRNAs having reliable tar-
gets, KeyMolnet successfully extracted molecular networks from 232 miRNAs. They
are comprised of 19% of total human miRNAs (microRNAome). Then, the generated
network was compared side by side with human canonical networks of the KeyMolnet
library, composed of 430 pathways, 885 diseases, and 208 pathological events. We
found that not all 232 miRNAs contained entire categories of canonical networks
because several miRNAs comprised relatively small numbers of targets. See Additional
file 1 for all the information on 232 miRNAs and their target networks. When top
three pathways, diseases, and pathological events were individually totalized, the most
relevant pathway is ‘transcriptional regulation by RB/E2F (n = 39; 6.8% of total), fol-
lowed by “TGF-beta family signaling pathway’ (n = 32; 5.6%) and ‘transcriptional regu-
lation by POU domain factor’ (n = 24; 4.2%), the most relevant disease is ‘adult T cell
lymphoma/leukemia’ (n = 68; 12.1%), followed by ‘chronic myelogenous leukemia’ (n =
65; 11.5%) and ‘hepatocellular carcinoma’ (n = 51; 9.1%), and the most relevant patho-
logical event is ‘cancer’ (n = 97; 24.7%), followed by ‘adipogenesis’ (n = 46; 11.7%) and
‘metastasis’ (n = 36; 9.2%) (Figure 1 and Additional file 1). ‘
Next, we identified the large-scale miRNA target networks by uploading targets greater
than 100 per individual miRNA onto KeyMolnet (Table 1). Fifty-two miRNAs that
construct such a large-scale miRNA target network include let-7, miR-9, 17, 19, 20, 26,
27, 29, 30, 32, 92, 93, 96, 98, 101, 106b, 124, 137, 147, 153, 218, 372, 429, 495, 506,
519, 520, 603, and their closely-related family members. The targets of these miRNAs
established highly complex molecular networks, in which the pathways of ‘transcrip-
tional regulation by RB/E2F, ‘transcriptional regulation by Ets-domain family’, and
‘transcriptional regulation by p53’, the diseases of ‘chronic myelogenous leukemia’ and
‘viral myocarditis’, and the pathological event of ‘cancer’ were notably accumulated
(Table 1). Importantly, distinct members belonging to the same miRNA. family, for
example, five miR-30 family members ranging from miR-30a to miR-30e constructed a
virtually identical molecular network (Table 1).

Biological Implications of MicroRNA Target Networks
As described above, the present observations indicated that a set of miRNA target
genes regulated by an individual miRNA generally constitute the biological network of
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Figure 1 The pathways, diseases, and pathological events relevant to 232 miRNA target networks.
Among 1,223 human miRNAs examined, Diana-microT 3.0 identified the set of reliable targets from 273
miRNAs. Among them, KeyMolnet extracted molecular networks from 232 miRNAs. The generated network
was compared side by side with human canonical networks of the KeyMolnet library, composed of 430
pathways, 885 diseases, and 208 pathological events to identify the canonical network showing the most
statistically significant contribution to the extracted network (see Table S1 for all the information). After top
three pathways, diseases, and pathological events were individually totalized, the cumulated numbers of
top 10 of (a) pathway, (b) disease, and (c} pathological event categories are expressed as a bar graph.

functionally-associated molecules in human cells. Therefore, it is highly important to
obtain deeper insights into biological implications of miRNA target networks.

The protooncogene c-myb is a key transcription factor for normal development of
hematopoietic cells. A recent study showed that miR-15a targets c-myb, while c-myb
binds to the promoter of miR-15a, providing an autoregulatory feedback loop in
human hematopoietic cells [17]. Consistent with this study, we found ‘transcriptional
regulation by myb’ as the most relevant pathway to the miR-15a target network (the
score = 602; the score p-value = 7.39E-182) (Figure 2 and Additional file 1). These
observations propose a scenario that miR-15a synchronously downregulates both c-
myb itself and downstream genes transcriptionally regulated by c-myb, resulting in
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Table 1 The large-scale human microRNA target networks

MicroRNA Number Molecules Top Pathway  Score p-Value Top Disease Score p-Value Top Score p-Value
of in Pathological
Targets KeyMolnet ) Event
Networks
hsa-let-7a 244 1022 Transcriptional 593 269E-179 Viral 113 1.21E-34 Cancer 206 131E-62
regulation by myocarditis
p53
hsa-let-7b 242 1016 Transcriptional = 594 1.83E-179 Viral 113 932E-35 Cancer 206 7.66E-63
regulation by myocarditis
psS3
hsa-let-7c 243 1020 Transcriptional 593 248E-179 Viral 113 111E-34 Cancer 206 1.10E-62
regulation by myocarditis
. ps3
hsa-let-7d 145 885 Transcriptional 836 2.18E-252 Chronic 72 195E-22 Cancer 130 968E-40
regulation by myelogenous
RB/E2F leukemia
hsa-let-7e 236 11 Transcriptional 575 890E-174 Viral 116 1.20E-35 Cancer 175 186E-53
regulation by myocarditis
P53
hsa-let-7f 244 1022 Transcriptional 593 269E-179 Viral 113 121E-34 Cancer 206 1.31E-62
. regulation by myocarditis
p53
hsa-let-7g 245 1022 Transcriptional 593 2.69E-179 Viral 113 1.21E-34 Cancer 206 131E-62
regulation by myocarditis
P53
hsa-let-7i 245 1022 Transcriptional 593 269E-179 Viral 113 121E-34 Cancer 206 131E-62
regulation by myocarditis
p53
hsa-miR-9 352 1115 Transcriptional 340 5.28E-103 Hepatocellular 72 169E-22 Cancer 171 3.50E-52
regulation by carcinoma
PPARa :
hsa-miR- 195 961 Transcriptional 971 3.27E-293 Chronic 92 2.83E-28 Cancer 181 3.58E-55
17 regulation by myelogenous
RB/E2F leukemia
hsa-miR- 226 1094 Transcriptional 760 2.10E-229 Chronic 113 1.26E-34 Cancer 253 7.04E-77
19a regulation by myelogenous
RB/E2F leukemia
hsa-miR- 225 1094 Transcriptional 760 2.10E-229 Chronic 113 1.26E-34 Cancer 253 7.04E-77
19b regulation by myelogenous
RB/E2F leukemia ]
hsa-miR- 165 1038 Transcriptional 856 1.64E-258 Chronic 87 6.09E-27 Cancer 85 333E-26
20a regulation by myelogenous
RB/E2F leukemia
hsa-miR- 198 981 Transcriptional 962 2.35E-290 Chronic 98 339E-30 Cancer 183  6.98E-56
20b regulation by myelogenous
RB/E2F leukemia
hsa-miR- 148 672 Transcriptional 919 1.76E-277 Chronic 107 6.15E-33 Cancer 181 3.20E-55
26a regulation by myelogenous
RB/E2F leukemia
hsa-miR- 148 672 Transcriptional 919 1.76E-277 Chronic 107 6.15E-33 Cancer 181 3.20E-55
26b regulation by myelogenous
RB/E2F leukemia
hsa-miR- 229 1192 Transcriptional 1022 223E-308 Chronic 95 1.96E-29 Cancer 194 3.05E-59
27a regulation by myelogenous
CREB leukemia
hsa-miR- 261 1337 Transcriptional 1022 2.23E-308 Chronic 94 451E-29 Cancer 211 401E64
27b regulation by myelogenous
CREB leukemia
hsa-miR- 119 543 Transcriptional 430 4.36E-130 Glioma 85 346E-26 Cancer 139 141E42
2% regulation by
Ets-domain
family
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Table 1 The large-scale human microRNA target networks (Continued)

hsa-miR- 118 578 Transcriptional 422 1.156-127 Glioma 82 1558-25 Cancer 146 144E44
2%b regulation by

Ets-domain

family :
hsa-miR- 118 543 Transcriptional 430  4.36E-130 Glioma 85 3.46E-26 Cancer 139 141E-42
29¢c regulation by

Ets-domain

family
hsa-miR- 455 1494 Transcriptional 777 943E-235 Chronic 86 1.11E-26 Cancer 195 239E-59
30a regulation by myelogenous

RB/E2F leukemia
hsa-miR- 455 1480 Transcriptional - 781 1.08E-235 Chronic 87 7.01E-27 Cancer 188 1.92E-57
30b regulation by myelogenous

RB/E2F leukemia
hsa-miR- 454 1495 Transcriptional 778 6.13E-235 Chronic 86 1.15E-26 Cancer 191 363E-58
30c regulation by myelogenous

RB/E2F leukemia
hsa-miR- 452 1491 Transcriptional 778 7.28E-235 Chronic 86 101E-26 Cancer 195  196E-59
30d regulation by myelogenous

RB/E2F leukemia
hsa-miR- 455 1481 Transcriptional 780  1.29E-235 Chronic 87 7.25E-27 Cancer 188 2.05E-57
30e regulation by myelogenous

RB/E2F leukemia
hsa-miR- 261 905 Transcriptional 842 2.74E-254 Gastric cancer 80 8.85E-25 Cancer 157 4.19E-48
32 regulation by

RB/E2F
hsa-miR- 219 642 Transcriptional 335 151E-101 Viral 59 1.62E-18 Epithelial- 83 7.76E-26
92a regulation by myocarditis mesenchymal

’ MEF2 transition

hsa-miR- 258 701 Transcriptional 328 1.59E-99  Viral 60 1.23E-18 Cancer %4 397E-29
92b regulation by myocarditis

MEF2
hsa-miR- 195 958 - Transcriptional 972 2.37E-293 Chronic 92 247E-28 Cancer 181 277E-55
93 regulation by myelogenous

RB/E2F leukemia
hsa-miR- 142 688 Transcriptional 407 342E-123 Viral 36 1.06E-11 Cancer 106 1.37E-32
96 regulation by myocarditis

Ets-domain

family
hsa-miR- 162 671 Transcriptional 549 4.73E-166 Viral 85 266E-26 Cancer 126 142E-38
98 regulation by myocarditis

Myb
hsa-miR- 188 806 Transcriptional 492 1.10E-148 Hepatocellular 70 6.40E-22 Cancer 127 4.26E-39
10 regulation by carcinoma

AP-1
hsa-miR- 164 1028 Transcriptional 854 7.21E-258 Chronic 87 548E-27 Cancer 85 = 293E-26
106b regulation by myelogenous

RB/E2F leukemia
hsa-miR- 285 1346 Transcriptional 756 3.57E-228 Chronic 83 9.34E-26 Cancer 185  1.90E-56
124 regulation by myelogenous

: RB/E2F leukemia

hsa-miR- 288 %41 Transcriptional 339 1.19E-102 Adult T cell 66 1.30E-20 Cancer 179 1.00E-54
137 regulation by lymphoma/

MITF family leukemia
hsa-miR- 199 867 Transcriptional 805  4.06E-243 Chronic 113 660E-35 Cancer 132 257840
147 regulation by myelogenous .

RB/E2F leukemia
hsa-miR- 154 1019 Transcriptional 507 2.35E-153 Muliiple 60 6.44E-19 Cancer 174 431E-53
153 regulation by myeloma

Myb
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Table 1 The large-scale human microRNA target networks (Continued)

hsa-miR- 155 830 Transcriptional 344 228E-104 Hepatocellular 69 1.63E-21 Cancer 136 1.52E41
218 regulation by carcinoma

AP-1
hsa-miR- 101 562 Transcriptional 1022 2.23E-308 Chronic 85 190E-26 Cancer 144 275E-44
372 regulation by myelogenous

RB/E2F leukernia
hsa-miR- 123 634 Transcriptional 918 2.45E-277 Chronic 76 171E-23 Cancer 130 5.28E-40
429 regulation by myelogenous

RB/E2F leukernia
hsa-miR- 156 601 Transcriptional 431 214E-130 Rheumatoid 77 590E-24 Adipogenesis 79 132E-24
495 regulation by arthritis

Ets-domain

family
hsa-miR- 394 1536 Transcriptional 317 469696  Viral 99 1.73E-30 Cancer 172 143E-52
506 regulation by myocarditis

Ets-domain

family
hsa-miR- 281 1256 Transcriptional 811 532E-245 Chronic 106 134E-32 Cancer 220 B8.03E-67
51%a regulation by myelogenous

RB/E2F leukernia
hsa-miR- 281 1256 Transcriptional 811 532E-245 Chronic 106 1.34E-32 Cancer 220 803E-67
519b-3p regulation by myelogenous

. RB/E2F leukemia

hsa-miR- 281 1256 Transcriptional 811 532E-245 Chronic 106 1.34E-32 Cancer 220 803t-67
519¢-3p regulation by myelogenous

RB/E2F leukemia
hsa-miR- 184 690 Transcriptional 1022 2.23E-308 Chronic 94 6.95E-29 Cancer 146 112E44
520a-3p regulation by myelogenous

RB/E2F leukernia
hsa-miR- 182 690 Transcriptional 1022 223E-308 Chronic %4 6.95E-29 Cancer 146 1.12E-44
520b regulation by myelogenous

RB/E2F leukernia
hsa-miR- 182 690 Transcriptional 1022 223E-308 Chronic 93 0.28E-29 Cancer 145 1.77E-44
520c-3p regulation by myelogenous

RB/E2F leukemia
hsa-miR- 183 690 Transcriptional 1022 2.23E-308 Chronic 94 6.95E-29 Cancer 146 1.12E-44
520d-3p regulation by myelogenous

RB/E2F leukemia
hsa-miR- 184 690 Transcriptional 1022 2.23E-308 Chronic 94 6.95E-29 Cancer 146 1,12E-44
520e regulation by myelogenous

RB/E2F leukemia
hsa-miR- 252 1150 Transcriptional 344 326E-104 Multiple 84 436E-26 Cancer 161 4.24E-49
603 regulation by myeloma

Ets-domain

family

Among 1,223 human miRNAs examined, Diana-microT 3.0 predicted reliable targets from 273 miRNAs. Among them, KeyMolnet extracted molecular
networks from 232 miRNAs. The generated network was compared side by side with human canonical networks of the KeyMolnet library, composed of
430 pathways, 885 diseases, and 208 pathological events. The canonical pathways, diseases, and pathological events with the most statistically significant
contribution to the extracted network are shown. The table contains only the large-scale miRNA target networks generated by importing targets greater
than 100 per individual miRNA into KeyMolnet. See Additional file 1 for all the information on 232 miRNAs and their target networks.

efficient inactivation of the whole molecular network governed by the hub gene c-myb.
These results suggest a collaborative regulation of gene expression at both transcrip-
tional and posttranscriptional levels that involve coordinated regulation by miRNAs
and transcription factors.

The retinoblastoma protein Rb/E2F pathway acts as a gatekeeper for G1/$ transition
in the cell cycle. The Rb/E2F-regulated G1 checkpoint control is often disrupted in
cancer cells. A recent study showed that miR-106b is directly involved in posttranscrip-
tional regulation of E2F1 [18]. E2F1 activates transcription of miR-106b, while miR-
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Figure 2 Molecular network of miR-15a targets. By the ‘neighboring” network-search algorithm,
KeyMolnet iltustrated a highly complex network of miR-15a targets that has the most statistically significant
relationship with the pathway of ‘ranscriptional regulation by myb'. Red nodes represent miR-15a direct
target molecules predicted by Diana-microT 3.0, whereas white nodes exhibit additional nodes extracted
automatically from the core contents of KeyMolnet to establish molecular connections. The molecular
relation is indicated by solid line with arrow (direct binding or activation), solid line with arrow and stop
(direct inactivation), solid line without arrow (complex formation), dash line with arrow (transcriptional
activation), and dash line with arrow and stop (transcriptional repression). The transcription factor myb is
highlighted by a blue circle.

106b targets E2F1, serving as a miRNA-directed negative feedback loop in gastric can-
cer cells [18]. Supporting these findings, we identified ‘transcriptional regulation by
Rb/E2F as the most relevant pathway to the miR-106b target network (the score =
854; the score p-value = 7.21E-258) (Figure 3, Table 1 and Additional file 1), The rela-
tionship between miR-106b and Rb/E2F would provide another example of coordinated
regulation of gene expression by miRNAs and transcription factors,

We found ‘transcriptional regulation by p53’ as the most relevant pathway to the tar-
get network of all let-7 family members except for let-7d (Table 1). It is worthy to
note that the tumor suppressor p53 regulates the expression of components of the
miRNA-processing machinery, such as Drosha, DGCRS, Dicer, and TARBP2, all of
which have p53-reponsive elements in their promoters [19]. Furthermore, Dicer and
TARBP2, along with p53, serve as a target of the let-7 family miRNAs, suggesting a
close link between p53 and let-7 in miRNA biogenesis [19]. The expression of let-7
family members was greatly reduced in certain cancer cells [20].

The micropthalmia associated transcfiption factor (MITF), a basic helix-loop-helix
zipper (bHLH-Zip) transcription factor, acts as not only a master regulator of melano-
cyte differentiation but also an oncogene promoting survival of melanoma. Recent stu-
dies indicate that MITF is a direct target of both miR-137 and miR-148b [21,22].
Again, we identified ‘transcriptional regulation by MITF family’ as the most relevant
pathway to both miR-137 (the score = 339; the score p-value = 1.19E-102) and miR-
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Figure 3 Molecular network of miR-106b targets. By the “neighboring” network-search algorithm,
KeyMolnet illustrated a highly complex network of miR-106b targets that has the most statistically
significant relationship with the pathway of ‘transcriptional regulation by Rb/E2F". Red nodes represent miR-
106b direct target molecules predicted by Diana-microT 3.0, whereas white nodes exhibit additional nodes
extracted automatically from the core contents of KeyMolnet to establish molecular connections. The
molecular relation is indicated by solid line with arrow (direct binding or activation), solid line with arrow
and stop (direct inactivation), solid line without arrow (complex formation), dash line with arrow
{ranscriptional activation), and dash line with arrow and stop (transcriptional repression). The transcription
factor E2F is highlighted by a blue circle.

148D (the score = 40; the score p-value = 3.91E-142) target networks (Table 1 and
Additional file 1).

Cellular responsiveness to glucocorticoids (GCs) is regulated by the delicate balance
of the glucocorticoid receptor (GR) protein, GR coactivators and corepressors, GR
splice variants and isoforms, and regulators of GR retrograde transport to the nucleus.
A recent study showed that miR-18a targets the GR protein, and thereby inhibits GR-
mediated biological events in neuronal cells [23]. Consistent with this, we found ‘tran-
scriptional regulation by GR’ as the most relevant pathway to the miR-18a target net-
work (the score = 1022; the score p-value = 2.23E-308) (Additional file 1).

Zinc finger transcription factors ZEB1 and ZEB2 act as a transcriptional repressor of
E-cadherin. A recent study showed that the expression of miR-200b, which targets
both ZEB1 and ZEB2, was downregulated in the cells that undergo TGF-beta-induced
epithelial to mesenchymal transition (EMT), and was lost in invasive breast cancer
cells [24]."We identified ‘transcriptional regulation by ZEB’ as the third-rank significant
pathway (the score = 155; the score p-value = 1.88E-47) and ‘EMT’ as the third-rank
significant pathological event relevant to the miR-200b target network (the score = 61;
the score p-value = 4.15E-19) (Additional file 1).

Discussion

In general, a single miRNA concurrently downregulates hundreds of target mRNAs by
binding to the corresponding 3'UTR of mRNA via either perfect or imperfect sequence
complementarity [3]. Such fuzzy mRNA-miRNA interactions result in the redundancy
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of miRNA-recognized targets. By targeting multiple transcripts and affecting expression
of numerous proteins at one time, miRNAs regulate a wide range of cellular functions,
such as development, differentiation, proliferation, apoptosis and metabolism. There-
fore, we have the question whether a set of miRNA target genes regulated by an indivi-
‘dual miRNA generally constitute the biological network of functionally-associated
molecules or simply reflect a random set of functionally-independent genes. If the for-
mer is the case, what kind of biological networks does the human microRNAome most
actively regulates?

To address these questions, first we identified the set of credible target genes for all
individual human miRNAs by using the Diana-microT 3.0 program. Then, we investi-
gated miRNA target networks by applying them to KeyMolnet, a bioinformatics tool
for analyzing molecular interactions on the comprehensive knowledgebase. Diana-
microT 3.0 identified highly reliable targets from 273 miRNAs out of 1,223 all human
miRNAs. Previous studies showed that the list of predicted targets for each miRNA
varies among different miRNA target prediction programs armed with distinct algo-
rithms, such as TargetScan 5.1 http://www.targetscan.org, PicTar (pictar.mdc-berlin.
de), miRanda http://www.microrna.org and Diana-microT 3.0 [25]. Therefore, miRNA
target networks are to some extent flexible, depending on the target prediction pro-
gram employed. Among the programs described above, we have chosen Diana-microT
3.0 because of the highest ratio of correctly predicted targets over other prediction
tools and the simplicity of setting a cut-off point for detection of reliable miRNA-tar-
get interactions based on the miTG score [11]. k

Here we found that highly reliable targets of substantial numbers of human miRNAs
actually constructed biologically meaningful molecular networks. These observations
strongly supported the theoretical view that miRNA target genes regulated by an indi-
vidual miRNA in the whole human microRNAome generally constitute the biological
network of functionally-associated molecules. A recent study showed that interacting
proteins in the human PPI network tend to share restricted miRNA target-site types
than random pairs, being consistent with our observations [26].

We also found that there exists a coordinated regulation of gene expression at the
transcriptional level by transcription factors and at the posttranscriptional level by
miRNAs in miRNA target networks. Recently, Cui et al. investigated the relationship
between miRNA and transcription factors in gene regulation [27]. Importantly, they
found that the genes with more transcription factor-binding sites have a higher prob-
ability of being targeted by miRNAs and have more miRNA-binding sites.

A recent study by miRNA expression profiling of thousands of human tissue samples -
revealed that diverse miRNAs constitute a complex network composed of coordinately
regulated miRNA subnetworks in both normal and cancer tissues, and they are often
disorganized in solid tumors and leukemias [28]. During carcinogenesis, various miR-
NAs play a central role, acting as either oncogenes named oncomir or tumor suppres-
sors termed anti-oncomir, by targeting key molecules involved in apoptosis, cell.cycle,
cell adhesion and migration, chromosome stability, and DNA repair [5]. Many miRNA
gene loci are clustered in cancer-associated genomic regions [29]. Furthermore,
miRNA expression signatures well discriminate different types of cancers with distinct
clinical prognoses [30]. In the present study, KeyMolnet analysis of miRNA target net-
works showed that the most relevant pathological event is ‘cancer’, when top three
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pathological events were overall cumulated. Furthermore, the highly relevant diseases
include ‘adult T cell lymphoma/leukemia’, ‘chronic myelogenous leukemia’, and ‘hepa-
tocellular carcinoma’. These observations suggest that the human microRNAome plays
a more specialized role in regulation of oncogenesis. Therefore, the miRNA-based ther-
apy directed to targeting multiple cancer-associated pathways simultaneously might
serve as the most effective approach to suppressing the oncogenic potential of a wide
range of cancers.

Conclusion

The reliable targets predicted by Diana microT 3.0 derived from approximately 20% of
all human miRNAs constructed biologically meaningful molecular networks by Key-
Molnet. These observations support the view that miRNA target genes regulated by an
individual miRNA in the whole human microRNAome generally constitute the biologi-
cal network of functionally-associated molecules. In the human miRNA target net-
works, the most relevant pathway is transcriptional regulation by transcription factors
RB/E2F, the disease is adult T cell lymphoma/leukemia, and the pathological event is
cancer. In miRNA target networks, there exists a coordinated regulation of gene

expression at the transcriptional level by transcription factors and at the posttranscrip-
tional level by miRNAs,

Additional material

Additional file 1: KeyMolnet identifies microRNA target networks in 232 human miRNAs. The prediction of
target genes of individual miRNA was performed by Diana-microT 3.0. Entrez Gene IDs of miRNA target genes
were uploaded onto KeyMolnet. The generated network was compared side by side with human canonical
networks composed of 430 pathways, 885 diseases, and 208 pathological events of the KeyMolnet fibrary. Top-
three pathways, diseases, and pathological events with the statistically significant contribution to the extracted
network are shown,
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AN ARRDE R L. HE, AIEFEO L RN
RO EHE LT I v 7 ARCEBZEL 7 28015
NENRGFTAL ALY T7 MUz, FRCEERY/ 37 2058
BERETET, BURBEOBAZLHIBEFHTEL 2
Y, 7—7— A4 FER (personalized medicine) OFIZIZHE
BNz, Y AT AL F 1 U (systems biology) DELE
ok, B MERBEELZGTAY V-7 CREBICHEESR
LEHERTHY, ZLOERV VAT LAEEOHBEETH
BHUINA MR A (robustness) DHFEWCEET A L EZL BN T
WaY, Licdto THEER ORBBRE DI, +3y
JAFRCER LY ) 274 FOGF ARy b T— 2 B
EELRIATRERY I 5. B, 50 3HBERENOT Iy
FATF—ZICELT, GF4Ay bU— 7 I T A C
LWLy, AIRERNSTFERELRY. UTKESSORE
THLIGFARY P77 B OBHRICOWTERT 5.
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HENg S EDBEFERRUNVAERLZDEEEL LOBITCHEGBH S RNAZBR L, BXES
LT, PLaENATUTAE—-2ayBETS. AFvIRIC, YIFIVBEEERLELL, V7
JVBOBERFERTIO T « —/VERSSNCHEBRTL, FRCEREREETY SBETE (DEG)
ZEHHL, EENPCRTHIIT . EVENEEAIT O, GO (Gene Ontology) D7 /F—
3 3 7 (annotation) Z{/R, BES S A¥—BHiE{TL, KEGG, PANTHER, STRING, IPA,

KeyMolnet ZF|H LT FRy bO—OZBITTS.

u7 A ZRWT, B4 0MBICBT 2 BTRETFORZIE
B2AENCENT A LTIk o7. BETHE, B&F
KRy —27 2 F—2 BT, RHEEORVWREFLIED
T, ~EKEBEFORFBN TR RoTWS, & b
BT, YA -Gy b TAFFV A X - 7¥ L% -
BTG4 vva--vYayYayncs - B BR - KBEE
Td, *A4 70T VAP TETHS. DNATS 70T
LAk cDNAZEBEICARY ¥ —CHETIASY ¥
Zx—FhRE, BEEEBETTYV IR VAT FEEH -
BETH7+ bU VTS5 7HRD GeneChip® (Affymetrix
HYWKRBIEhE, 512, AT T4 AT ¥ ORERH
BT EERZLY V VT A, BEFSET vy V7 PRE
KA —BEBHTELY2/) 54 ¥V T T LA, ChIP
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“GFxRy MU — TR

(chromatin immunoprecipitation) on
ChipTiCHWE Y /) AFA YV IT TV
AFHRENTWE. —F, Tusf <
47uar7bAi, EREZ)IYEFV b
FUYNBERREECEELTHY, ¥
v 2% 7 B A8 B 8 A (protein-protein
interaction ; PPI) % ¥B&EAY I\ AT T B2
Fv I Thb COBRBWNFER BE
two-hybrid #E I LB L TH B HERHME
, RS2 R T v 28 LD
BECHLTY, SHBICRBTE 25 A48
H5.

<A77V TR, LENRELS
BETFRAVAVIR222BEU LD
MR (B A, EEME LR,
BEWEOME L L) 25 total RNA F
723 mRNA % il L, cDNA R cRNA
CEBRLTHBBRTERR, 777X
YIMEUBLTNS TV T L -V v
24795 (K1), 1BETR1IY Y 7l
TVAEERL, TVAROREH LNV
BN T A, —#RIC, B CERSEE
DF VY TVERHLT, TVAL &22~3K
(V7Y r—MERTE. Turf v
477 VATR, 724 MLAET
O—7y RGBT VA LD =7y
FEUNRTBEERSEE, HUERLL
Wy sy cikiTas. TVARERD
A% xF—TAF ¥ VRIT, Y7V
B % F34L (normalization) LC, ¥ Y 7 VEOBETFEER
TR 74—V ERETFMICLEBRITT 5. <4 uT VAR
Wi, —BELHEECS OBETFORRUVANVZENT S
70, BEFISLCRERETHET S &, BBEEETF
2EBHRoTLED. BERSEREZ TV Bonferroni ®
BERMIT B2, 7212 BBYEE (false discovery rate ;
FDR) #5-fid 5. &N, Y/ VHTEELERER
% B ¥ 5 EETE (differentially expressed genes ; DEG) %
MWL, BHL Vi EEMPCRTREEY 5.

KW, DEGRBLTEYENERMITZT). WD
B4 OBBEFOT ) F— ¥ a ¥ (annotation) & FX 5.
NCBI (National Center for Biotechnology Information)
D5 — % X — A Entrez Genez FIH L T, 12 §F2GO
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Cellular Component% fiX5 & & W77 %%, DAVID
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Z0ET 57:01T, GeneSpring® (Agilent#t) % Cluster 3.0
(bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster) 7%
EDY—vE VT, DEG2EEICEE Y 5 R ¥ — B
(hierarchical clustering analysis) %475 &, B\ 7 07 14 —
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EMEMERE L) BEHRICINBT 22 LA TE 5 (1), &
FEATE, BEFTI—FENRS U2 B3EEL2 Y b
V= BOBRAYAT AEBEELTWASY . PPLICI, B
REBRROLR ST, HiElL, FiEtkt, BERS, 8 &
EWRRE EERHEMERBRISEET 5. BESBEO4
SV IZAT=FKHELTWALSTFAY V-2 2RAETS
72D, WA S NI SOREHRICEN T & - R O Y —
WEREDENRS D, Tabb, WREXHER» bR 2
STHALERCHEL, GEESSVMREPEELT, av
7YY E LTI L 72T — & X— 2 (knowledgebase) %
BAeT BHoEDRy v 7 —2 %82 % = £ (canonical
network/pathway) ICR D BWEMUEZEL TV Ao
T, MEMFNFECRITT 25 ETH 5. BECHETES
REW R T — N~ 2121, KEGG (Kyoto Encyclopedia of
Genes and Genomes) (www.keggjp) “, PANTHER (the
Protein Analysis Through Evolutionary Relationships)
classification system (www.pantherdb.org) ¥, STRING
(Search Tool for the Retrieval of Interactin g Genes/
Proteins) (string.emblde) © %% %. KEGG & PANTHER
HE, Fa b= - IR AEMRIC L VRS RET
PREVCHET2HEHREZMEL T B, 2011464 B,
KEGG PATHWAY I 392 reference pathways % S5,
ENB 134,607 BED/NNAT 4 R ENTWS., BiE
THBEEFRY VI EDE Y %, DAVID Functional
Annotation Y —WVIZATI§ 5 &, HEFEMBRERZITY, B
PEHRICHELCWAKEGGNRAY 2 f 2 FETE 5.
PANTHER CTHREICY 77 L Ay hEDHEICLY,
BEUROREFNABELSERETIHET 5 2 LTS 5.
STRINGZKEGG, HPRD (Human Protein Reference
Database), BIND (Biomolecular Interaction Network

4

Database), IntAct Molecular Interaction Database i2 243 %
NTWBERDFE L TIERL T3,

T/, HEY — & L TR, IPA (Ingenuity Pathways
Analysis) ® (Ingenuity Systems, Redwood City, CA) %
KeyMolnet® (Institute of Medicinal Molecular Design,
Tokyo) 225, ThOLREEESN-IBEZTMEN
BHELT STHBEERCHETAEEEOBWES 2
RLUTRELTEY, EHBKT vy FF— PSR TW2,
KeyMolnet Z HAZANICOHBLTHY, 4 DEED
ATFTAL—= Mo TeBERELTIERLTYS, T/, BRAE
FEECHFOEEROBENSTIEREA TS, RS
ELT, #E - BRNE - BEGERBENICHETL
3R (neighboring search), #HHMICHES T 55 HTFH
T 5 B MR (common upstream search), 745
ERABOAR Y M7 — 27 BB M AR ERE (N-points
to N-points search), HEOMEZBREL LT, BEHED

AREZEUCRADZTTF Ry M7 — 7 2 ARLGHEEEEHRS
(interrelation search) ##IRTE 52,

BT —VCHELZSTF Ry bT—2 05, RIEENS
FeRETHHEL, ZHOSFH60Y) L—3 3 vk
LTwaB AT (hub) LFENAFLGFERET ST L2
EETH2. NTOMGIET 3BT, v vy —2
DUNZ PAAERICERLEE BEDEL ST - 8lE
B) 2Rz,

I DFRY NO—TBERANSRIZADD
BIEEN ST

20044 (T Blalock 51, iz —H &€ 7231 B D ERE
DHBREECAIBAZH» 5ME L72RNA% B w T,
GeneChip®HG-U133A THEEF R % MBREI BT L7z
P ERTICHEAT L 72 41 86 % % MMSE (mini-mental state
examination) DX I 7o T, EFIF, EHADTH, &
FIEADSY, BEEADTRIC I V-T2 HELE. Hbid
SABEHEOESADMERET (BHLFA1,977, REET
1,436) L 609D EMAD MERETF (BB LR431, &
BETI17) 2HAEL, AHLL. BHADHERGETFICE
BHFRETRF Y IFY Fuy 4 PRERFEERLTY
e, CNODFFIBRT A5y VI — 7 3BT E N

ol EFLRELOF—5 Ly bEHWT, KeyMolnet

DEBLREBRBETADRI BT 2HERRICHES LTy
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BRFRy PI—s RBWLEY. ZO#R £ADB LY
RAD OBERETEIERT 28F 2y bU—21, @
& L BEEHETF CREB (CAMP-response element-binding
protein) I & 2 BHME L FHECEEL TWAZ LA%bho
7. CREBR, BEEFYANVEVORBMCI33 0L ¥
PRE (Serl33) 7 u i 4 & F—¥APRA)ITEH Y ¥
BALShTHEELLL, BHRETF 70— % —OCRE
(cAMP response element) &L, EMNEETF OE
ExEHLT 5. £5513, ADEEREZOFHpCREB
P L D REEBEM D> SpCREBIEER 2REE
(granulovaculoar degeneration ; GVD) iC£RHE L TWwA T &
TRWEL) GVDEA - 77TV -2t LTHWTWY
LU RENS Y, EFLOMAN, ADKBITA2+—1+7 7
V-l & By U BEREHEROREERB LTV A.

¥ 7z, KeyMolnet 21, FB & M7= XHr SEMRICLY
PWERENTZ2BEOADEBRA 74 = — + 5F 20 ULE
NTwb, KeyMolnet® ETHINSAFABREET, &
NOAFTTFIERTIEAY VI -2 2RI LEED 5,
FUCREBI X2 HHMA & OMEMAH D R ORBES
n7z (p=2.225E-308) (KI2). PLlo#RiE, CREBZ
ADFRBA Y P I -2 DONTELTHL I LERLTW
%. KeyMolnet7 £ 75 Y —OCREBIC & A2 HHAH
canonical pathway &, 1624F (CREB 8 X ' AH 27 8-F
EHHI345F) THESh TS (83). 203 5655F
(R3a@®) i3, BETRECHBEIFEL TV AEDERY
BFTH5B. cAMP/PKA/CREB ¥ 7 F VR EHAL % 1R
THERATFVIRAF5—¥4(PDEY) FFIETHLTY S
7 & (Rolipram) % ADEI¥EFVAPP/PSI b5 v AV =
Sy IRYACRET B L, AR ETE LY.

.......................................................................................
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20084FCHan 1%, 6BIOMS EERZ BT, HESEY
AT— VR LIERBREIS VL —F—<f70¥ {2
Ya Y CRILY v 7 VvE, SDS-PAGE THEERIC, ¥
YRZBEHEL, M) TV VR TF VIR 2 BB
THRREICARNT L7210 RN 7 — VIl LT, 08
PERIIRRE BT TR T 5 S HHBEE (active plaque ;
AP), JHEDBBERIBEICRE LT v A B IEE SR
(chronic active plaque ; CAP), KREFRICZ L 7Y 758
R ERE T H1BHIEEEER S (chronic plaque ; CP)

é

KHEL. BRIC2AOBRERO IO T+ — A @B L.
BERTRBBENT, 2OoBAF—VBEENRY V3
HZEHL., AP 158, CAP 416, CP236EEH D 7 u &
F—AF—F 2 ARHLZY. H5ECAPIKBW TSR
DMBERBERSY V2 BORREBED. CORBICE
DT, IBEETH S Pu vy Y YEEH Hirudin B k
CEEETeF 4 Y CERAWT, MSBIMEFLVLCH B
<7 X H TR IE MR % B & (experimental autoimmune
encephalomyelitis ; EAE) #&#E L7z, £ 5 OHSEE
b, FURMFRIY > STROWAE & IL-17, TNF- o B4 %5
L7z, DEo#RIY, MBERERS v/ B HEMSE)
ERMITFLRBIEIRTBENS. LA LENEOREHE
HOBEERIAD S 87 BITEL T, MSHSFHikE
KBITLBREIPES P ENE ol

EE513, HinbD 7 a5 % —AF— ¥ %#KEGG, PAN
THER, IPA, KeyMolnetiC AL, A5 — VRS a5
T—AEBRDLIEBLTBABSFAY VI — 2 2RELR
WABEORRDLY —VEBA BHREOSTFRY P U=
ZHIB L7225, #58 L TCAP, CP7uy— A BT 2418
SNEE (extracellular matrix ; ECM) -4 Y5 7Y ¥ 7 F
VERZRORLGHBRFEZRB LAY, 4 V5770 Vi8R
Da, fHF72=y P oBRENL24BEO~NTF T I A
T—HFT ECMYF Y FELTHL. L4 V5T
T7rIN—Ras—Sy, 74T7URIFY, I VEE
L, oy A YT 7Yy 773 —RBYEMRRIF RS
5. ECM-4 v5 7 YRiZMaES, #E 54, 85
WREZY 7T VEERET D, MSEEREICBVWTIE, B
HRAROBEIELLZLY., FOEHELLT, Y TH
REEINTVWAECMPBEABERTE LTEH WK
L, EELYI 07y —URIZuT Y THEET LY VR
7HESBERFECMICEA L TERCRERSL, 208
xR, BEHBESBELLTWATEREYRD 2D, BERKE
KBWTMSHEREAH LD, adfl4vFry v
(VLAY &5 MU' 7 a—F VHikd 5y U X< 7
(Natalizumab) 2SR THW O T WA, LA LS,
T8 U X T REIOH 2 TS B R ERE (progressive
multifocal leukoencephalo pathy ; PML) % &4 5 sk
ERDY, REVEOHENLETHA. ECM-4 ¥F 7
V¥V T MRER T, FAK (focal adhesion kinase) #¢
NTELTEL. BFFILEWTAE261, ECMIZ L %
FAKDOETY) YEBALZ BIRHFIL, in vivoEFVRT
RS & Y BB OB & AR W3 5.
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L7z o TMSICB VT, TAE226 i EFAK 2 ERGTF & T
HBEREERBORNEOERE RATREYDH 5.

%72, KeyMolnet 121, BBE NP S5EFRICLY
WEESNZIIBEOMSERA T4 T— MaFasEsh
Tw5, KeyMolnet® EFHINZAEIRERET, Ihb
NG FHFERTIAY bT—2 2@ Lz 22, BER
FTHAHYH I v DERKk (vitamin D receptor ; VDR)
KIARAAH L OMERIRIBIRRE A (p=
5.793E-237) (H4). UEofKRE, VDRIEMSHER v
FI—ZONTELTEHLZLERLTWAS. HEER®E
WEBEBSTIRMS OREEENE VLV BEEHTR X
D, ¥ I yDIEMSBEAHEFELTHCLELONT
WwaYW, VDRIEEBREEYSI YDU25-Ye Fas ¥
FIVD)EEETHE, VF 4 FXZESE (retinoid X
receptor ; RXR) e ~Fu¥ 4 v—%BRL T, BHEETF
71 %— % —® VDRE (vitamin D response element) {2
&L, BNEGETFOBEELHRELL, AERASEARLIEY
REBEEERETS. LALESLEREE T, MSIKBNT,
Y% IV D OFHMESER S NBERBERIRLEZ 500,
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