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29 Double immunostaining of NCI from a patient with FALS (cervical spinal cord). SOD1 and PDI are
30 co-localized in NCI (arrow). Green: anti-PDI antibody immunostaining (A). Red: anti-SOD1 antibody
31 immunostaining (B). Yellow: merged immunostaning (C). Differential interference contrast (DIC):
32 (D). Scale bar: 20 ym.
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Abstract We investigated a family manifesting amyo-
trophic lateral sclerosis (ALS) with a heterozygous E478G
mutation in the optineurin (OPTN) gene. Clinically, slow
deterioration of motor function, mood and personality
changes, temporal lobe atrophy on neuroimaging, and
bizarre finger deformity were noted. Neuropathologically,
TAR DNA-binding protein 43 (TDP-43)-positive neuronal
intracytoplasmic inclusions were observed in the spinal and
medullary motor neurons. In these cells, the immunoreac-
tivity of nuclear TDP-43 was reduced. Consecutive
sections revealed that the inclusions were also reactive with
anti-ubiquitin and anti-p62 antibodies, but noticeably
negative for OPTN. In addition, TDP-43/p62-positive glial
cytoplasmic inclusions (GCIs) were scattered throughout
the spinal cord and the medullary motor nuclei. Further-
more, Golgi fragmentation was identified in 70% of the
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anterior horn cells (AHCs). The presence of AHCs with
preserved nuclear TDP-43 and a fragmented Golgi appa-
ratus, which are unrecognizable in sporadic ALS, indicates
that patients with the E4787G OPTN mutation would
manifest Golgi fragmentation before loss of nuclear TDP-
43. In the neocortex, GCIs were sparsely scattered among
the primary motor and temporal cortices, but no neuronal
TDP-43-positive inclusions were detected. In the amygdala
and the ambient gyrus, argyrophilic grains and ballooned
neurons were seen. The thorough neuropathologic investi-
gations performed in this work demonstrated that OPTN-
positive inclusion bodies, if any, were not prominent. We
postulate that optineurinopathy is closely linked with TDP-
proteinopathy and speculate that this heterozygous E478G
mutation would cause ALS by acting through a dominant-
negative mechanism.
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Introduction

We recently reported that mutations in the gene encoding
optineurin (OPTN) cause amyotrophic lateral sclerosis
(ALS) [15]. OPTN had previously been identified as a
causative gene of primary open-angle glaucoma (POAG)
[18]. However, the sites of mutation in the OPTN gene
found in ALS patients were distinct from those in cases
with POAG. In addition, we demonstrated that OPTN is co-
localized with TAR DNA-binding protein of 43 kDa (TDP-
43) or Cu/Zn superoxide dismutase (SOD1) in the patho-
gnomonic inclusion bodies of sporadic ALS (SALS) or
familial ALS associated with SODI mutation (SODI1-
FALS), respectively [15]. The presence of OPTN immu-
noreactivity in TDP-43-positive inclusions of SALS
patients was subsequently confirmed by other investigators
[9, 17]. In addition, we recently demonstrated that OPTN is
also co-localized with fused in sarcoma (FUS) within
basophilic inclusions of ALS with the FUS mutation and in
basophilic inclusion body disease [10]. Our findings thus
indicate that OPTN associates with each of three major
ALS-related proteins, i.e., TDP-43, SOD1, and FUS, sug-
gesting that the underlying pathomechanism in ALS might
be attributable to dysfunctional OPTN.

We identified eight ALS cases associated with three
distinct types of OPTN mutation (OPTN-ALS) [15]: two
siblings with a homozygous deletion of exon 5, two cases
with a homozygous Q398X nonsense mutation, and four
patients with a heterozygous E478G missense mutation
within its ubiquitin-binding domain. Detailed clinicopath-
ological features of patients with each mutation remain
unknown. Moreover, whereas the pathomechanism causing
the disease by the homozygous mutations is speculated to
be a loss of function resulting from nonsense-mediated
mRNA decay of the transcript, that of the heterozygous
E478G mutation remains uncertain.

Here, we provide further clinicopathologic information
about Family 4 [15] with the E478G mutation. Although
their clinical features and our neuropathologic findings
have previously been reported in brief [15], we obtained
some new and novel information by examining the living
patient and interviewing her daughters, and by investigat-
ing the autopsied material thoroughly.

Subjects and methods

Clinical features

Three siblings were affected in this family (Fig. 1a). Their
mother died at age 32 from heart disease. Their father then

married the mother’s younger sister and had four more
children (denoted by the diamond symbol). The father was
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over 80 years old at death, and all of his other four children
are now over 60 years of age with no signs of ALS.

The demographic and clinical features of the three
OPTN-ALS patients are summarized in Table 1.

Patient III-1 had noted right-hand weakness at age 58.
Muscle weakness of all four limbs, dysarthria, and dys-
phagia followed. Her nieces noticed that she had become
irritable and touchy. She was diagnosed as having ALS and
died of pneumonia after artificial ventilation for several
months at age 63.

Patient 1II-2 suffered from right-hand weakness at age
56. Flexion deformity of her fingers gradually developed
four years later. Examinations at age 61 disclosed dysar-
thria, atrophy, fasciculation in the tongue, and exaggerated
deep tendon reflexes and bilateral extensor plantar
responses in all four extremities. She was depressed but not
demented. A cranial MRI demonstrated mild atrophy of the
medial temporal region (Fig. 1b). She died of CO, narcosis
without respiratory support at age 66.

Patient III-3 suffered from right-hand weakness at age
64. Leg weakness, dysarthria, and dysphagia followed
slowly afterward. She could communicate well with others
until age 75, when she became taciturn and depressive. A
cranial CT scan at age 76 showed pronounced temporal
lobe atrophy (Fig. Ic). Examinations at age 78 revealed
generalized atrophy and fasciculation of skeletal muscles,
reduced deep tendon reflexes, and bilateral extensor plantar
responses. Atrophy of the tongue was mild. Conspicuously,
her fingers were bizarrely deformed, resulting in difficulty
in passive movement of any finger joints (Fig. 1d). We
observed 4-Hz rhythmic tremor of the fingers of her left
hand. She was awake, and eye contact was preserved, but
appeared expressionless and mute. She is alive after
14 years from the onset without respiratory support.

No patients developed decubitus, ophthalmoplegia,
glaucoma, or cardiac or muscular abnormalities. Blood
tests, including those on alkaline phosphatase and creatine
phosphokinase, were normal. Chest and spine X-rays did
not show any evidence of Paget’s disease.

We had previously identified a heterozygous missense
mutation (c.1743A>G, E478G, exonl14) in the OPTN gene
of Patients III-2 and HI-3 [15]. Genetic analysis and cog-
nitive testing were not performed on the other family
members because of the lack of informed consent.

Neuropathological examinations

Formalin-fixed, paraffin-embedded 6-pm-thick sections
were deparaffinized and stained with hematoxylin and eosin
(H&E) or subjected to Gallyas—Braak silver impregnation.
For immunohistochemistry, after antigen retrieval by heat/
autoclaving (10 min at 121°C in 10 mM sodium citrate
buffer, pH 6.0), the sections were incubated with a given
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Fig. 1 Clinical and neuropathologic findings of the familial amyo-
trophic lateral sclerosis (FALS) patients with an optineurin (OPTN)
mutation. The three patients in the family pedigree are indicated by
the solid circles (a). A heterozygous E478G mutation in the OPTN
gene was detected in Patients III-2 and III-3. ND not determined. Age
at death or current age and age at disease onset are indicated n (m).
Deceased individuals are indicated by the obligue line. A cranial MRI

of Patient I1I-2 at age 65 (b) reveals mild atrophy of the ambient gyri
(arrows). A cranial CT scan of Patient III-3 at age 76 (c) reveals
conspicuous atrophy of the medial temporal lobes (arrows) and mild
atrophy of the frontal lobe. Gradually progressive bizarre deformity of
the hands of Patient III-3 is striking (d). Photographs of the brain from
Patient III-2 (e) reveal slight atrophy of the motor cortex (arrow) and
of the ambient gyrus (arrowhead)

Table 1 Demographic and clinical features of patients with a heterozygous E478G OPTN mutation

Patient 1I-1 112 -3

Age at onset (years) 58 56 64

Gender Female Female Female

Symptom at onset Right-hand weakness Right-hand weakness Right-hand weakness
Upper motor neuron signs Unknown + +

Lower motor neuron signs + + +

Cognitive symptoms Personality change Depression Depression

Other clinical features
Neuroimaging

Disease duration (years)
Artificial ventilation
Cause of death

Genetic analysis

Unknown

5

For several months
Pneumonia
Unavailable

Finger deformity

Mild temporal lobe atrophy
10

CO, narcosis

E478G in OPTN gene

Finger deformity, Parkinsonian tremor
Marked temporal lobe atrophy

>14

Alive

E478G in OPTN gene

primary antibody (listed in Online Resource 1) overnight at
4°C. Bound antibodies were detected with the appropriate
Vectastain Elite ABC kit (Vector Laboratories, Burlingame,
CA, USA), with 3,3'-diaminobenzidine tetrahydrochloride
used as the chromogen. All sections were counterstained

with hematoxylin after immunohistochemistry. Some sec-
tions were stained with H&E, photographed, decolorized
with 70% ethanol, and then immunostained for OPTN. The
tissues from three age-matched neurologically normal
subjects served as controls.
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We assessed staining specificity by replacing the primary
antibodies with an appropriate amount of non-immune rabbit
serum or phosphate-buffered saline solution containing 3%
bovine serum albumin. No deposits of reaction products
were seen in the sections thus treated (data not shown).

@_ Springer

Procedures involving use of human material were
performed in accordance with ethical guidelines set
by Shiga University of Medical Science and the
Helsinki Declaration of 1983. No frozen tissue was
available.
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<« Fig. 2 Representative photomicrographs of the lumbar anterior horn

(a—n), the facial nucleus (o, p), and the cerebral cortices (g—w) from
Patient III-2. Immunostaining with anti-trans-Golgi-network 46
(TGN-46) antibody demonstrates evident fragmentation of the Golgi
apparatus (GA) in some of the anterior horn cells (AHCs, arrows), in
comparison with the preserved GA (arrowhead) in others (a).
Consecutive sections stained with anti-TGN-46 (b) and anti-TDP-43
(¢) antibodies indicate a neuron with normal nuclear TDP-43
immunoreactivity and obviously fragmented GA (arrow). The other
neuron in these sections has a normal GA with preserved TDP-43
nuclear staining (arrowhead). A noticeable skein-like cytoplasmic
inclusion immunoreactive for TDP-43 (d) and ubiquitin (e) is
identifiable in consecutive sections. The physiological nuclear TDP-
43 immunoreactivity is absent (d). Five consecutive sections stained
with H&E (f) and immunostained for p62 (g), TDP-43 (h), optineurin
(i), and GA (j) in this order reveal that a TDP-43-positive skein-like
inclusion (h, arrow) is also reactive with anti-p62 antibody (g,
arrow), which inclusion is indiscernible on the H&E-stained section
(f, arrow). Note that the inclusion is devoid of optineurin (OPTN-I)-
labeling (i, arrow). The GA is fragmented in this neuron (j, arrow)
compared with the spared AHC with preserved TDP-43 nuclear
staining (f-j, arrowheads). Glial cytoplasmic inclusions (GCls)
immunoreactive with anti-TDP-43 (k) and anti-p62 (1) antibodies
are scattered throughout the spinal cord. The eosinophilic cytoplasmic
hyaline region of this AHC (m) was decolorized and re-stained with
the OPTN-C antibody (m), resulting in positive staining; however,
prominent OPTN-positive inclusion bodies were not evident. GA
fragmentation is apparent in this motor neuron of the facial nucleus
immunostained with TGN-46 antibody (o, arrow), whereas another
neuron has a preserved GA (arrowhead). By staining with anti-TDP-
43 antibody, a skein-like inclusion (p, arrow) and a GCI (arrowhead)
are clearly identifiable in the facial nucleus. A Betz cell within the
primary motor cortex (q) shows reduced immunoreactivity with
TGN-46 antibody (arrow). Only sparsely scattered TDP-43-positive
GCls are detectable in the frontal (r) and the temporal (s) cortices.
Ballooned neurons in the ambient gyrus (t-w, arrows) are immuno-
positive in their entire cytoplasm for OPTN (u), stained at their
periphery by Gallyas—Braak (G-B) silver staining (v, arrow), and are
reactive with anti-4-repeat tau (RD-4) antibody (w, arrow). Argyr-
ophilic grains (v, arrowheads), immuno-positive for 4-repeat tau (w,
arrowheads), are also observed. Scale bars 50 um (a, b, f, 0), 20 pm
(d, m, p, g, t-w), and 10 pm (k, L, r, s)

Results

The brain of Patient III-2 weighed 1,250 g. Macroscopi-
cally, the primary motor and medial temporal cortices
appeared slightly atrophic (Fig. 1e).

Throughout the spinal cord, the anterior horns and the
corticospinal tracts had degenerated. Additional immuno-
histochemical investigation revealed characteristic
fragmentation of the Golgi apparatus (GA) in the anterior
horn cells (AHCs; Fig. 2a). Quantitative analysis using a
method described elsewhere [8] revealed that 72.8% (75/
103) of the AHCs from eight distinct spinal cord segments
had fragmented GAs. Analysis of consecutive sections
immunostained for GA and TDP-43 revealed GA frag-
mentation not only in all the AHCs with reduced nuclear
TDP-43 immunoreactivity but also in a substantial number
of those with preserved nuclear TDP-43 (Fig. 2b, c¢). In

contrast, a normal staining pattern for GAs was observed
for non-motor neurons.

More importantly, we identified TDP-43/ubiquitin-posi-
tive skein-like inclusions in AHCs (Fig. 2d, e). The nucleus
of these inclusion-bearing neurons was invariably immuno-
negative for TDP-43. Consecutive sections revealed that the
TDP-43-positive inclusions were also reactive with anti-p62
antibody; they were difficult to recognize on H&E-stained
sections and noticeably negative for OPTN on use of either
the OPTN-C or OTPN-I antibodies (Fig. 2f—i). This finding
was confirmed by double immunofluorescence investigation
(Online Resource 2). The GA in AHCs with such inclusions
was fragmented (Fig. 2j). We identified inclusions in 12.5%
(19/152) of AHCs on 20 cervical and lumbar cord sections
immunostained for TDP-43. In addition, TDP-43/p62-posi-
tive glial cytoplasmic inclusions (GCIs) were scattered
throughout the spinal cord (Fig. 2k, I).

Careful examination of 265 AHCs on 30 H&E-stained
sections revealed no Bunina bodies or round hyaline
inclusions in these cells. Cystatin C immunohistochemistry
failed to detect Bunina bodies in 182 AHCs examined.
Eosinophilic intracytoplasmic regions were noted in several
AHCs, which showed immunoreactivity when decolorized
and then re-stained with each of the anti-OPTN antibodies
(Fig. 2m, n). Occasionally, these eosinophilic retentions
appeared to have formed inclusion-like structures; however,
OPTN-positive prominent inclusion bodies delineated by a
distinct margin were completely unrecognizable.

In the hypoglossal and facial nuclei, motoneurons were
depleted in number, the GA was fragmented, and TDP-43-
positive inclusions were identified (Fig. 2o, p). Betz cells
were mildly depleted in number, and the remaining cells
had reduced immunoreactivity for GA (Fig. 2q). TDP-43-
immunoreactive GCIs were sparsely scattered among the
medullary motor nuclei (Fig. 2p), primary motor and
temporal cortices (Fig. 2r, s), putamen, and thalamus, but
no neuronal intracytoplasmic inclusions were found other
than in the spinal and medullary motor neurons. No
intranuclear inclusions were identifiable throughout the
central nervous system.

In the amygdala and the ambient gyrus, numerous ar-
gyrophilic, 4-repeat tau-positive grains, and several
ballooned neurons were seen (Fig. 2t-w). The cytoplasm of
these neurons was eosinophilic, and diffusely immuno-
positive for OPTN and phosphorylated neurofilaments; the
cells were stained at their periphery by Gallyas—Braak silver
impregnation and with anti-4-repeat tau antibody. There was
faint, if any, immunoreactivity indicating ubiquitin, and the
cells were negative for p62, a-synuclein, 3-repeat tau, TDP-
43, FUS, SOD1, and ApoE. This I1I-2 case corresponded to
argyrophilic grain disease (AGD), stage II [5, 20].

By amyloid B and AT8-immunohistochemistry this case
was graded as amyloid stage A and NF stage II,
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respectively [3]. Immunostaining for o-synuclein, FUS,
and SOD1 revealed no pathologies. Additional genetic
analysis of Patients I1I-2 and III-3 revealed no mutations in
their TARDBP, GRN or VCP genes.

Discussion

Motor symptoms of our patients were indistinguishable from
those of SALS. However, the rate of deterioration was
noticeably slow in both of the genetically proven patients,
suggesting that slow progression might be a feature of patients
with a heterozygous E478G OPTN mutation. Progression was
faster for their elder sister, whose DNA was unavailable,
showed, implying intrafamilial variability. All the patients
developed personality and mood changes, and neuroimaging
showed medial temporal lobe atrophy. These features are
consistent with those of AGD [5], which was confirmed
neuropathologically for Patient I1I-2. In SALS, concomitant
AGD isreported in 7.7-22% of cases [14, 20]. Whether FALS
with mutated OPTN would be prone to coincide with AGD
awaits clarification. Furthermore, finger deformity was
observed in our patients. This feature might be a consequence
either of dystonia or of chronic arthritis induced by disinhib-
ited NF-xB because of the OPTN mutation [15]. The
parkinsonian tremor observed in Patient II-3 could be a
manifestation of the E478G mutation or simply coincidental.

Neuropathologically, neuronal intracytoplasmic inclu-
sions immuno-positive for TDP-43, ubiquitin, and p62 were
unequivocally identified in the spinal and medullary moto-
neurons. They were morphologically indistinguishable from
those observed in SALS. However, OPTN was noticeably
not co-localized within the inclusions, in contrast with those
of SALS [15]. Although negative immunohistochemical
results inherently warrant further investigation, this finding
suggests that not only the mutated but also the wild-type
OPTN would be impaired in its association with TDP-43.
The molecular link between OPTN and TDP-43 is unknown.
OPTN might function in TDP-43 transportation for degra-
dation, and hence, dysfunctional OPTN could cause TDP-43
mislocalization, resulting in neurodegeneration.

TDP-43 pathology associated with FALS (ALS-TDP)
and/or frontotemporal lobar degeneration (FTLD-TDP) has
been reported [13] in patients with mutations in genes
encoding TDP-43 (TARDBP), progranulin (GRN), and val-
osin-containing protein (VCP), and in one case with a
mutation in ANG encoding angiogenin, who manifested
atypical clinicopathological features [21]. TDP-43 pathology
indistinguishable from that of SALS and/or FTLD was
observed for mutations in TARDBP [13], through both gains
and losses of function [22]. Patients with GRN mutations
manifest FTLD, and TDP-pathology develops principally in
the neocortex [12], through a haploinsufficiency mechanism
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[2, 4]. VCP mutations were originally identified in patients
with inclusion body myopathy associated with Paget’s dis-
ease of bone and frontotemporal dementia IBMPFD) [23].
Identification of TDP-43, but not VCP, within ubiquitinated
inclusions in these cases implies that VCP mutations lead to a
dominant-negative loss of VCP function, with degradation of
TDP-43 [16]. More recently, VCP mutations were also shown
to cause autosomal dominantly inherited FALS [11]. One
autopsy case revealed motor neuron degeneration with
intracytoplasmic TDP-43-positive inclusions and Bunina
bodies in the remaining cells. Our patients showed no
mutation of their TARDBP, GRN, or VCP gene. However, the
association of OPTN with Paget’s disease, found by a recent
genome-wide association study [1], and the similar biological
function of OPTN and VCP warrant further investigation.

The presence of TDP-43 pathology has been reported in
60% of AGD cases [6]. In those cases, TDP-43-positive
structures were mainly observed in the limbic regions and
lateral occipitotemporal cortex [6]. The difference between
the distribution of TDP-43 pathology of our patient and
that of AGD cases implies that the pathomechanism of
TDP-43 pathology in optineurinopathy would be distinct
from that in AGD.

GA fragmentation in our Patient III-2 is plausible,
because OPTN plays an important role in maintaining the
GA [19]. The number of AHCs with GA fragmentation for
our case (72.8%) was notably higher than that reported for
SALS (8.3-52.6%, mean 29.6%) [8]. However, because
this percentage varies markedly in SALS patients, it
remains to be elucidated whether the ratio of GA frag-
mentation in AHCs of OPTN-FALS patients would be
generally higher than that of SALS patients. Moreover, the
presence of AHCs with preserved nuclear TDP-43 and
showing fragmented GA, unrecognizable in SALS [7],
indicates that patients with the E478G OPTN mutation
would manifest GA fragmentation before loss of nuclear
TDP-43. The relevance of GA fragmentation and TDP-43
nuclear staining to ALS awaits further clarification. In
contrast, consistently preserved GA of non-motor cells
implies that unrecognized GA-maintaining systems other
than the OPTN system are operating in those neurons,
affording them less vulnerability to dysfunctional OPTN.

The mutations of the OPTN gene causing FALS are
unique in that recessive and dominant traits have similar
symptoms. The mechanisms of neurodegeneration in the
homozygous deletion of exon 5 and the homozygous Q398X
nonsense mutation are conceivably speculated to be a loss
function resulting from nonsense-mediated mRNA decay of
the transcript. In contrast, the pathomechanisms operating in
the case of the heterozygous E478G mutation remain
unknown. The mechanism of dominant mutations causing a
disease is assumed to be toxic gain-of-function, loss of
function because of haploinsufficiency, or a dominant-
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negative loss of OPTN function. Among these, a gain-of-
function mechanism would be implausible because diseases
caused by such a mechanism are usually associated with the
presence of distinct inclusion bodies consisting of mutant
proteins. However, the thorough neuropathologic investi-
gations performed in this work demonstrated that OPTN-
positive inclusion bodies, if any, were not prominent in our
patient. A haploinsufficiency mechanism would be also
unlikely, because individuals with the heterozygous exon 5
deletion or Q398X mutation, in whom half of the amount of
OPTN is abolished by nonsense-mediated mRNA decay,
manifest no motor neuron signs although the number of such
subjects examined thus far is small. In contrast, a dominant-
negative loss-of-function mechanism would be a possibility;
being similar to that for patients with VCP mutations who
manifest FTLD [16]; ubiquitinated inclusions identified in
the AHCs of our patient demonstrated immunoreactivity for
TDP-43, but not for OPTN. OPTN is reported to form ho-
mohexamers [24] and, thus, mutant OPTN could
conceivably impair the formation of properly functioning
hexamers, thus having a dominant-negative effect. This
notion is consistent with the fact that the four patients with
proved heterozygous E478G OPTN mutation [15] had later
onset and longer disease duration (55.0 &= 6.7 years, longer
than 7.6 &= 5.5 years (1 patient is still alive), respectively)
than those with homozygous OPTN null mutations
(41.3 £ 8.5 years and 4.0 == 3.6 years, respectively).

For determination of the clinicopathologic features and
pathomechanism of FALS with mutated OPTN, further
studies with additional cases are needed.
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We recently reported that mutations in the gene encoding
optineurin (OPTN) cause amyotrophic lateral sclerosis
(ALS) [2]. In that report, we demonstrated the co-locali-
zation of OPTN with TAR DNA-binding protein of 43 kDa
(TDP-43) or Cu/Zn superoxide dismutase (SOD1) in the
pathognomonic inclusions of sporadic (SALS) or familial
ALS (FALS) with mutated SODI1, respectively [2]. '
Fused in sarcoma (FUS) is another causative gene of
ALS [1, 7]. FUS-immunoreactivity is identifiable in baso-
philic inclusions (BIs) from patients with sporadic
basophilic inclusion body disease (BIBD) [4] and in those
from ‘FALS with FUS mutation’ patients. The fact that
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both FUS and OPTN cause ALS when mutated prompted
us to investigate the correlation between these proteins.

We analyzed postmortem material from three patients
with sporadic BIBD and from three with FALS with FUS
mutation. All the patients manifested upper and lower
motor neuron signs, but no cognitive impairment was
noted. Their demographic and clinical features are given in
Online Resource 1. The ‘FALS with FUS mutation’
patients had missense mutations R514S, R521C, and
P525L in their respective FUS gene. Genetic analysis of the
sporadic BIBD patients for FUS and OPTN was unsuc-
cessful, probably because of deterioration of the genomic
DNA in the formalin-fixed material. No frozen tissue was
available.
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Paraffin-embedded lumbar cord, frontal cortex, and
brainstem were uniformly investigated immunohisto-
chemically (Online Resource 2). The primary antibodies
used are listed in Online Resource 3. To confirm the co-
localization of OPTN and FUS, we employed a staining
procedure on consecutive sections and double immuno-
fluorescence staining (Online Resource 2).

In the sections from controls, the OPTN and myosin VI
immunoreactivities were faintly recognizable in the neu-
ronal cytoplasm; and the anti-FUS antibodies showed
essentially no immunoreactivity when they were titrated in
a way that did not recognize physiologic FUS (data not
shown).

In the BIBD and ‘FALS with FUS mutation’ cases, H&E
staining invariably demonstrated neuronal intracytoplasmic
BIs in all the regions examined. Immunohistochemically,
virtually all the BIs were positive for OPTN, FUS, and
myosin VI (Fig. la—c, respectively). In contrast, the anti-
bodies against TDP-43 and SOD1 did not react with the Bls
(Fig. 1d, e, respectively). Noticeably, staining of the con-
secutive sections by H&E and immunohistochemistry for
FUS and OPTN, as well as the double immunofluorescence
staining for FUS and OPTN, evidently demonstrated that
the distribution of OPTN immunoreactivity faithfully mat-
ched that of FUS within the BIs (Fig. 1f-1). OPTN
immunoreactivity in FUS-positive glial inclusions was

indiscernible. Further studies are warranted to clarify
whether or not OPTN would co-localize with FUS within
structures other than the Bls.

We recently showed that OPTN is co-localized with
TDP-43 or SOD1 [2]. However, as shown here, the Bls in
the above patients showed no immunoreactivity for TDP-
43 or SOD1, but were positive for FUS as well as OPTN.
Therefore, our present and earlier results provide evidence
that OPTN associates with each of 3 major ALS-related
proteins, i.e., TDP-43, SODI1, and FUS.

The pathomechanism of involvement of OPTN in the BIs
and that of neurodegeneration in BIBD and ‘FALS with FUS
mutation’ patients remain to be elucidated. Since OPTN and
FUS share roles in intracellular trafficking in collaboration
with myosin VI, it is likely, at least under pathologic con-
ditions, that these proteins would encounter each other when
delivering cargos, and could conceivably form a complex
through myosin VI within the BIs. Thereby, OPTN and FUS
would be sequestered from the cytoplasm.

FUS is known to act as a co-activator of NF-xB [6]. On
the contrary, OPTN negatively regulates NF-kB activation
[2]. Therefore, it is plausible that sequestration of both
OPTN and FUS would induce dysregulation of NF-kB
activation, leading to neurodegeneration.

Another promising hypothesis concerns a dysfunctional
Golgi apparatus. OPTN and myosin VI play a role in the

Fig. 1 Representative photomicrographs of basophilic inclusions
(BIs). a—e BIs (arrows) within cortical neurons from BIBD patients
are evidently immunopositive for OPTN (a), FUS (b), and myosin VI
(c¢) throughout their entire structure. In contrast, no immunoreactivity
indicating pTDP-43 (d) or SODI (e) is recognizable within the BIs
(arrows). f~h Three consecutive sections from BIBD patient No. 1,
stained with H&E (f) or subjected to immunohistochemistry for FUS

@ Springer

(g) and OPTN (h), demonstrate that the 2 cortical Bls (arrows) seen
are noticeably immunopositive for both FUS and OPTN. i-1 Double
immunofluorescence staining of neurons in the lateral cuneate nucleus
in the medulla oblongata of ‘FALS with FUS mutation’ patient No. 1
evidently demonstrates that FUS (i; green) and OPTN (j; red) are
faithfully co-localized (k; merge) in the BI (1; H&E). Scale bars
10 pm
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maintenance of Golgi organization [5]. When OPTN is
depleted from cells via RNA interference, the Golgi
becomes fragmented [6]. This observation is noteworthy
because Golgi fragmentation has been observed in the
anterior horn cells in ALS [3]. Further investigations are
warranted to determine whether dysfunctional OPTN could
be essential for the underlying pathomechanism at play in
ALS.
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Abstract

Induced pluripotent stem (iPS) cell technology has paved new ways for disease
modeling and drug discovery. Disease modeling with the differentiated neuronal cells
from patient-specific iPS cells partially recapitulated the phenotypes of spinal muscular
atrophy (SMA), familial dysautonomia (FD) and Rett syndrome. Furthermore, proof of
the efficacy of candidate drugs by iPS cell-based assay on SMA and FD has been
reported.

There are several obstacles for disease modeling using iPS cell-derived neuronal
cells. First, differentiated neuronal cells from patient-specific iPS cells might not be
provoked sufficiently toward senescence to manifest the phenotype of late-onset diseases
such as Parkinson disease (PD) and amyotrophic lateral sclerosis (ALS). Second, there
are heterogeneous populations in cultured cells differentiated from iPS cells that might
affect the disease phenotype. The propensity of various differentiations among iPS cells
leads to the heterogeneity (Figure 1).

In this review, we will describe recent literature concerning the application of iPS
cell technology for the study of neurological diseases and also discuss some experimental
requirements.

* Correspondence (HI): haruhisa@cira.kyoto-u.ac.jp
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Figure 1. Heterogeneity, including maturation stage and cell population, is a result of the variety of
differentiation propensities of iPS cells caused by reprogramming state, genetic background and
epigenetic state. Purification of targeted cells and optimization of culture conditions will reduce the
heterogeneity and lead to progresses in iPS cell technology.

Introduction

iPS cells are generated by transduction of transcription factors, which are expressed in
embryonic stem (ES) cells, in somatic cells (Takahashi et al., 2006; Takahashi et al., 2007;
Yu et al., 2007). iPS cells are morphologically identical to ES cells and have the ability to
self-renew and differentiate into cells of all germ layers. iPS cell technology makes it possible
to analyze in vitro affected cell populations that are differentiated from disease-specific iPS
cells. This then should enable us to determine the underlying mechanisms of disease, screen
new drugs, and develop cell therapy.

Disease phenotypes were partially recapitulated in the differentiated cells from patient-
specific iPS cells in some diseases such as spinal muscular atrophy (SMA) (Ebert et al., 2009),
familial dysautonomia (FD) (Lee et al., 2009) and Rett syndrome (Marchetto et al., 2010).
Furthermore firm evidence of the efficacy of some candidate drugs for SMA (Hastings et al.,
2009) and FD (Lee et al., 2009) has also been presented. Other disease phenotypes such as
Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS) have not yet been described
in such terms, although midbrain dopaminergic neurons (Soldner ef al., 2009) and spinal
motor neurons were successfully generated from patient-specific iPS cells (Dimos et al.,
2008).
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Genetically corrected somatic cells from Fanconi anaemia patients can be reprogrammed
to iPS cells (Raya et al., 2009). Further, corrected patient-specific iPS cells can give rise to
haematopoietic progenitors of myeloid and erythroid lineages whose phenotypes are normal.
This demonstrates the potential value for cell therapy application.

In this review, we will describe recent literature featuring iPS cell technology for the
study of neurological diseases, and we will discuss experimental requirements for overcoming
several obstacles in disease modeling.

Main Document
iPS Cells Derived from Patients with Neurological Diseases

Since the start of the development of iPS cell technology, disease-specific iPS cell lines
were generated from individuals with neurological diseases, as summarized in Table 1.
Neurological diseases can be roughly divided into two categories. One includes early-onset,
neurodevelopmental diseases such as Rett syndrome (Marchetto er al., 2010), Prader-
Willi/Angelman syndrome (Chamberlain ef al., 2010), Fragile X syndrome (Urbach et al.,
2010), SMA, FD, Friedreich’s ataxia (Ku ef al., 2010) and Down syndrome (Park et al.,
2008). The other includes late-onset, neurodegenerative diseases like ALS, PD and
Huntington’s disease (Park ef al., 2008).

A few of the neurodevelopmental diseases caused by single gene abnormalities resulting
in highly penetrant phenotypes were successfully recapitulated with iPS cell technology.

SMA is an autosomal recessive genetic disorder caused by mutations in the survival
motor neuron 1 gene (SMNI1). Mutations in SMNI significantly reduce SMN protein
expression and result in the selective degeneration of lower motor neurons. Ebert ez al. (2009)
showed that SMA patient-derived spinal motor neurons were reduced in number and cell
body size at 6 weeks of differentiation compared to the patient’s unaffected mother-derived
motor neurons. SMN protein is localized in gems, one of the nuclear compartments, and the
number of gems present is inversely correlated to disease severity. The authors detected an
increased number of SMN gems in nuclei of both fibroblasts and iPS cells derived from the
SMA patient. The homozygous loss of SMNI1 is partially compensated for by the presence of
another gene, SMN2, which also codes for SMN protein. However, the expression of full-
length protein generated from SMN2 is substantially lower than that from SMNI1. A single
nucleotide replacement of SMN2 compared to SMN1 changes' splicing, and that transcript
encodes truncated protein. Hastings et al. (2009) reported that tetracyclines are able to
increase the expression of full-length SMN protein from SMN2 by splicing modulation.

Table 1. Disease-specific iPS cell lines.

Neurological disease Primarily Control in vitro Mutated gene in
affected phenotype  (disease-specific
neuronal iPS cell
population

Familial dysautonomia (FD) sensory and unaffected impaired IKBKAP

- autonomic migration

Q jneurons

8 [Fragile X syndrome global FMR1 CGG repeat

é» truncation

s |Friedreich’s ataxia sensory neurons [SMA-1PS FXN GAA - TTC
cells, non- repeat expansion
disease
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unaffected
Angelman syndrome iglobal unaffected 15q11-q13 paternal
deletion
Prader-Willi syndrome 15q11-q13
maternal deletion
UBE3A
Down syndrome global [Trisomy 21
Rett syndrome global unaffected reduced MeCP2
number of
synapses
Spinal muscular atrophy spinal motor  [unaffected motor neuron|[SMN1
SMA) neurons imother loss
Amyotrophic lateral motor neurons SOD1
sclerosis (ALS)
© Huntington disease (HD)  [striatal Huntingtin
g GABAergic CAG repeat
& neurons expansion
S |Parkinson disease (PD) midbrain
dopaminergic
neurons

FD is an autosomal recessive genetic disorder caused by mutations in IKBKAP gene
involved in transcriptional elongation and characterized by the degeneration of sensory and
autonomic neurons. Lee et al. (2009) showed marked defects in neurogenic differentiation
and impaired migration of neural crest precursor cells derived from FD patients compared to
those from non-affected control. Kinetin, one of the plant hormones, increased normal
IKBKAP and ameliorated neural differentiation and migration.

Rett syndrome is a progressive neurological disorder caused by mutations in X-linked
gene encoding MeCP2 protein. Marchetto er al. (2010) reported a reduced number of
glutamatergic synapses and alteration of morphology in forebrain neurons derived from Rett
syndrome patients compared to those from unaffected controls. At 6 weeks of differentiation,
neurons from Rett syndrome patients have a significant decrease in frequency and amplitude
of spontaneous postsynaptic currents when compared to those from unaffected individuals.

Obstacles of Modeling Late-Onset Neurodegenerative Diseases

A modeling by iPS technology of polygenic, late-onset neurodegenerative diseases has
not been reported. Midbrain dopaminergic neurons and spinal cord motor neurons can be
differentiated from PD and ALS patient-specific iPS cells, respectively. Perhaps the disease
phenotype may never manifest itself under standard culture conditions because differentiated
neurons might be too immature or an environment surrounding neurons might differ between
in vitro (culture) and in vivo (brain or spinal cord). It might be revealed by challenging the
neural cells with stressors such as oxygen reactive species, proinflammatory factors or co-
culture with another type of cell (Marchetto e al., 2008).

Recent investigations have shown that glial cells are affected by physiological brain
aging regardless of the absence of any neurodegenerative pathology (Terry et al., 1987). In
astrocytes, advanced age initiates conditions similar to mild reactive gliosis. Astroglial cells
from advanced-age brain have higher expressions of glial fibrillary acidic protein (GFAP) and
glial calcium-bound protein S100 (Le Prince es al, 1993). Additionally, the number of
microglial cells is significantly increased (von Bernhardi et al., 2010).

Moreover, the involvement of these non-neuronal cells in neurodegenerative diseases is
increasingly being recognized. AD is characterized by profound neuronal loss and prominent
reactive astrogliosis and activation of microglia. As Alois Alzheimer suggested, AD plaques
are formed by AP deposits, degenerating neurites, astroglial processes and activated
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microglial cells (Vehmas et al., 2002). Activated astrocytes and microglia can release
proinflammatory factors such as interleukin-1f and prostaglandin E, (Mhatre et al., 2004).

Oxidative stress may play an important role in sporadic PD (Zhang et al., 2000), as it is
suggested that patient-derived midbrain dopaminergic neurons might be more vulnerable to
oxidative stress.

Identification of new and more effective and relevant stressors or environments that
mimic senescence or elicit neuronal phenotypes earlier in models of late-onset
neurodegenerative diseases will therefore be a critical goal for future research.

Heterogeneous Population of Differentiated Cells

Although differentiation protocols have been reported for human ES cells and iPS cells in
which neural stem cells and specific neuronal or glial cell types are enriched, it has in fact
been revealed that heterogeneous cell populations exist under these conditions (Chambers et
al., 2009; Hu et al., 2009; Lee et al., 2010). Additionally, cells are not able to synchronize the
developmental stage of cell populations to the extent seen in normal development in vivo, and
consequently cells at different stages of maturation are present in such cultures. Naturally,
this cellular heterogeneity impedes experimental and clinical utility.

The purification of specialized cells of interest is essential for recapitulating diseases and
transplanting cells. Such procedures will rely on our technique of manipulating iPS cells
genetically to express selectable markers under the control of cell type-specific promoters that
would utilize fluorescent or magnetic cell sorting (Hockemeyer et al., 2009; Placantonakis et
al., 2009).

Genomic insertion of reporter gene has been shown to alter gene function (Kustikova er
al., 2005). Therefore, identification of unique combinations of cell surface epitopes can
facilitate cell therapy because cells of interest are purified without gene manipulation.
Pruszak et al. (2007 & 2009) identified the combination of cluster of differentiation (CD)
surface antigen code for neural lineage and Elkabetz et al. (2008) reported Forse 1 as being a
marker for neural rosette cells. However, no markers for region-specific postmitotic neurons
have so far been identified.

Inhibition of Notch activity by y-secretase inhibitor resulted in a marked acceleration of
differentiation, thereby shortening the time required for the generation of functionally active
human ES cell-derived neurons (Borghese et al., 2010). This kind of inhibitor can eliminate
proliferating cells from differentiated neurons to reduce the risk of tumor formation after
transplantation.

Resolution of this problem may assist in obtaining more robust phenotypes in vitro,
finding more effective drugs, and supplying safe cells for cell therapy.

A Variety of Differentiation Propensities of iPS Cells

The generation of iPS cells can be accomplished by employing retroviral vectors to
overexpress reprogramming factors. After infected somatic cells are fully reprogrammed into
iPS cells, the vectors are silenced. Therefore, the reprogramming state may be evaluated by
retroviral vector silencing. However, this viral system has been criticized for its permanent
integration of exogenous genes into the genome and their possible involvement in
differentiation propensity.

Alternatively, transfection of episomal plasmids or modified RNA was also successful in
reprogramming somatic cells (Okita et al., 2010; Yu et al., 2009; Yue ef al., 2010; Warren et
al., 2010). Moreover, the direct delivery of recombinant protein was also reported to
reprogram somatic cells (Zhou et al., 2009). Although these methods eliminate the integrated
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vector, the gene expression of iPS cells is reflected by that of donor cells (Ghosh et al., 2010).
Hence, it is considered that the epigenetic state, including DNA methylation, histone
acetylation or histone methylation, may contribute to the differentiation propensities of the
respective clones.

Direct conversion from differentiated cells to neurons has been reported (Vierbuchen et
al., 2010; Heinrich et al., 2011). This conversion was used to generate mouse subtype-
specific neurons from differentiated cells without the need for complete reprogramming to
iPS cells. Although this direct conversion is independent from the differentiation propensity
of iPS cells, the number of neurons available to study the disease and to be used in high-
throughput analysis is limited, and the epigenetic states of these neurons would need to be
further analyzed.

Human ES cells are widely variable with regard to epigenetic markers, expression profile
and differentiation propensity (Osafune et al., 2008; Rugg-Gunn et al., 2007). And also there
is significant intrinsic variance among the iPS cell lines generated to date, as pointed out by
Hu et al. (2010) & Boulting et al. (2011). Pick et al. (2009) detected abnormal expression of
imprinted genes in a significant number of iPS cell lines. Bock e al. (2011) reported that a
small set of genes was hypermethylated in iPS cell lines compared to ES cell lines. iPS cells
are morphologically similar to ES cells, but the epigenetic state is significantly different
between them.

Since there are a variety of methods to generate iPS cells, it is critical for the study of
neurodegenerative disease to choose a combination of reprogramming factors, a method of
factor delivery, and a cell type to be reprogrammed. For instance, differentiation propensity is
partially dependent on the cell type to be reprogrammed (Aoi ef al., 2008). For accurate
comparison between independent experiments, all conditions should be the same. But there is
as yet no standardized parameter for selecting safe and fully reprogrammed iPS cells.

The difficulty of disease modeling is partially attributed to the lack of uniform iPS lines.
More robust phenotypes in vitro may be obtained in comparison with proper control iPS cell
lines.

Conclusion

The development of iPS cell technology has provided both experimental and clinical
applications. Once disease-specific phenotypes are identified, this can be translated into cell-
based assays for drug screening. However, to accomplish these goals, further improvements
are needed. Differentiation methods with higher efficiency will provide larger amounts of
cells. The identification of cell surface markers on neuronal or non-neuronal cells will provide
homogeneous populations. Highly purified, large amounts of cells of interest will facilitate
high-throughput platforms for drug screening. Also crucial is the generation of uniform iPS
cells and selection of appropriate iPS cells. This will result in patients having autologous
transplantations after their own cells are genetically corrected and/or medicated.
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