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indicates that aripiprazole prevents apoptosis in. the brain of
methamphetamine-treatment rodents. (Abekawa et al., 2011), which
supports the significance of our results.

Recent neuroimaging studies have shown significant volume
reductions in white matter with abnormal brain connectivity in

schizophrenia (Schlosser et al, 2007). The reduced density and -

compromised morphology of the oligodendrocytes as well as signs of
deviant myelination have been evident in schizophrenia (Uranova et
al,, 2007). Microglial activation in the CNS has been implicated in the
pathogenesis of white matter disorders, and microglial cytotoxicity of
oligodendrocyte has been reported to mediate through the free
radical-related molecules such as NO, O3 and their compound,
peroxynitrite (ONOO™) generated by activated microglia (Li et al.,
2005; Merrill et al,, 1993). On the other hand, one recent imaging
report suggests that risperidone, which have anti-inflammatory
effects on microglial activation in vitro (Kato et al, 2007), may be
specifically impacting later-myelinating intracortical circuitry in
patients with schizophrenia (Bartzokis et al., 2009).

Summing up the aforementioned evidence and our results,
aripiprazole may thus have therapeutic effects on patients with
schizophrenia by reducing the microglial inflammatory/oxidative
reactions, which puts forward a novel therapeutic hypothesis beyond
dopamine/neuron doctrine in the field of schizophrenia research.
Besides schizophrenia, aripiprazole has proved to have therapeutic
effects in depression, anxiety and other psychiatric disorders
(Mohamed et al.,, 2009; Weber et al., 2008). In a recent animal
study, aripiprazole has proved to have protective effects on the
depression-induced oxidative stress in rat brain (Eren et al., 2007).
This evidence has accorded with our present result that except for
aripiprazole no other antipsychotics have an antioxidative effect via
inhibiting superoxide generation from activated microglia. Thus, such
wider range of aripiprazole pharmacological effects on various
psychiatric diseases may be explained by the present result that
aripiprazole inhibits the microglia-induced oxidative stress.

The brain is considered particularly vulnerable to oxidative
damage. This intrinsic oxidative vulnerability of the brain suggests
that oxidative damage may be a plausible pathogenic candidate of
schizophrenia, depression and other psychiatric disorders {Ng et al.,

2008). Therefore, our results may imply that aripiprazole acts, at least

partially, by a different mechanism of action than other antipsy-
chotics, which may be reflected in its deviating clinical profile.
Regarding further studies, the molecular mechanism of the inhibitory
effect of aripiprazole on the generation of *Oz radicals from PMA-
stimulated microglia should be clarified in more detail, and in vivo
studies should also be performed in order to confirm the present
results.
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Abstract - Affective symptoms, such as depression and
apathy, and cognitive dysfunction, such as psychomotor
slowness, are known to have negative impacts on the
quality of life (QOL) of patients with mental and physical
diseases. However, the relationships among depressive
symptoms, apathy, psychomotor slowness, and QOL in a
non-clinical population are unclear. The aim of the present
study was to assess these relationships and examine the
underlying cortical mechanisms in a non-clinical popula-
tion. Fifty-two healthy male volunteers were assessed for
depressive symptoms using the Zung Self-rating Depres-
sion Scale (SDS), for apathy measured using the Apathy
Scale, and QOL using the Short-Form 36 item question-
naire (SF36). The volunteers also performed the Trail
Making Test Part A (TMT-A) while undergoing assess-
ment of hemoglobin concentration changes in the frontal
cortical surface using 24-channel near-infrared spectros-
copy (NIRS). The scores of the SDS and Apathy Scale
showed significant negative correlations with the scores of
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most of subscales of the SF36. In addition, the SDS score
had a significant positive correlation with the time to
complete the TMT-A. Further, activation of several frontal
cortical areas had a significant positive correlation with the
scores of the SDS and Apathy Scale. These results suggest
that the degree of depressive symptoms and apathy are
associated with a lower QOL in a non-clinical population
and that cortical hyperactivation during a psychomotor
task measured by NIRS may identify objectively individ-
uals with a high degree of depressive symptoms and
apathy.

Keywords Depressive symptoms - Apathy - Psychomotor
slowness - Cortical activation - Quality of life

Introduction

Depressive symptoms and apathy have major impacts on
the mental and physical health of individuals. Major
depressive disorder (MDD), for example, is characterized
by depressive symptoms and loss of interest, which is a
component of apathy, and is a leading cause of worldwide
disability. Worsening of depressive symptoms is associated
with a reduced quality of life (QOL) [7, 17, 31]. The
presence of subsyndromal depressive symptoms has also
been shown to have a negative impact on psychosocial
functioning [9]. In addition, there is increasing evidence
that depressive symptoms are influential in the onset or
progression of various kinds of diseases including Alz-
heimer’s disease [25], coronary disease [11], and diabetes
[1]. Furthermore, there is substantial evidence suggesting
the negative impacts of depressive symptoms and apathy
on QOL in many diseases including HIV [33], Parkinson’s
disease [21, 29], and brain tumors [14].
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- In addition to depressive symptoms and apathy, cogni-
tive decline such as psychomotor slowness has a negative
impact on social functioning of individuals. For example,
Naismith et al. [20] reported that objectively measured
psychomotor slowness is a significant predictor of physical
disability in MDD, and Muslimovic et al. [19] reported that
psychomotor slowness has a negative effect on QOL in
Parkinson’s disease. The Trail Making Test (TMT) is a
popular neuropsychological instrument and is presumed to
be a test of psychomotor skills [12, 27]. Functional neu-
roimaging studies have reported the involvement of the
frontal cortical network in TMT [10, 18, 30, 40].

Meanwhile, neurocircuit abnormalities, an underlying
condition in depressive symptoms and apathy in MDD,
have been studied using neuroimaging approaches. For
example, previous studies reported that anhedonic symp-
toms and depression severity were associated with reduced
caudate volume [26] and decreased activation in the sub-
genual anterior cingulate cortex [16]. In addition, there is
substantial evidence suggesting that psychomotor slowness
in MDD is related to the fronto-striatal circuitry. Several
studies using positron emission tomography (PET) reported
that MDD patients with affective flattening and psycho-
motor slowness had decreased presynaptic dopamine
function in the left caudate [2, 15].

In contrast to overt psychopathology such as MDD,
there have been few studies that have examined the rela-
tionship among depressive symptoms, apathy and psycho-
motor slowness in a non-clinical population, and the
cortical mechanisms of such symptomatology are unclear.
Recently, the development of near-infrared spectroscopy
(NIRS) has enabled non-invasive measurement of cortical
activation under natural conditions, which enables exami-
nation while the subject performs a task related to psy-
chomotor slowness such as the TMT-A. We hypothesized
that the degree of depressive symptoms and apathy are
associated with psychomotor slowness, as measured by
TMT-A, and abnormal cortical activation, as measured by
NIRS, as well as low QOL in a non-clinical population. We
performed the following study to test this hypothesis
directly. :

Methods
Subjects

Fifty-two healthy male volunteers participated in this study
(mean ‘age, 37.4 £ 11.1 years). All subjects were deter-
mined to be right-handed using the Edinburgh Handedness
Inventory scale [24]. Two experienced psychiatrists toge-
ther excluded a participant with psychiatric symptoms
above the threshold level. No subject had a history of major
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psychiatric disorder including major depressive disorder
and anxiety disorder, neurological disorder, substance
abuse, head injury, or major physical illness or was using
any psychotropic medications at the time of the study. This
study was approved by the Institutional Review Board of
Mihara Hospital and the Prefectural University of Hiro-
shima. Written informed consent was obtained from each
subject prior to the study. ‘

Assessment of depressive symptoms, apathy, and QOL

Each subject was assessed for subjective depressive
symptoms, extent of apathy, and QOL.

Subjective depressive symptoms were measured using
the Zung Self-rating Depression Scale (SDS), a self-rating
scale that consists of 20 questionnaires. The score of the
SDS ranges from 20 (best) to 80 (worst), and the average is
35.1 & 8.0 (mean = SD) in the Japanese normal control
population [5]. A higher score of the SDS is an indicative
of a relatively greater degree of depressive symptoms. .

Extent of apathy was measured using the Apathy Scale,
a self-rating scale for assessing a tendency of apathy that
consists of 16 questionnaires. The score of the Apathy
Scale ranges from O (best) to 42 (worst), and the average is
8.7 £ 6.6 (mean * SD) in the Japanese normal control
population [23]. A higher score of the scale is an indicative
of a relatively greater degree of apathy. ,

QOL was measured using the Medical Outcomes Study
Short-Form 36-item questionnaire (SF36) [39]. SF36 is
used widely to assess physical and mental well-being in
social and individual contexts. Eight subscales are
derived, referring to 8 health concepts: physical func-
tioning (SF36-PF), role functioning-physical (SF36-RP),
bodily pain (SF36-BP), general health (SF36-GH), vitality
(SF36-VT), social functioning (SF36-SF), role function-
ing-emotional (SF36-RE), and mental health (SF36-MH).
Each subscale ranges from 0 (worst health) to 100 (best
health), and a score of 50 represents the mean score for
the population.

Activation task

The activation task consisted of a 30-s pre-task baseline, a
TMT-A, and a 70-s post-task baseline. Each subject sat on
a comfortable chair in a quiet room, and the subject was
ordered to keep their head immobile as much as possible
and to not speak. During the test, the subjects were required
to draw a line as rapidly as possible joining consecutive
numbers (1-25), which were pseudorandomly arranged on
each page. We used series of 4 TMT-A sheets, which had
different circle position patterns. The time required for
completing the test (TMT time) was determined as a
measure of task performance. During the pre-task and
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post-task periods, the subjects were instructed to draw lines
repeatedly between two spots on a paper.

NIRS measurement

In this study, changes in [oxy-Hb] and [deoxy-Hb] were
measured using a 24-channel NIRS machine (Hitachi ETG-
100) at two wavelengths of near-infrared light (i.e., 780 and
830 nm). Absorption was measured, and [oxy-Hb] and
[deoxy-Hb] were calculated. The distance between the pair
of emission and detector probes was 3.0 ¢cm, and it was
considered that the machine could measure points at a depth
of 2-3 cm from the scalp, that is, the surface of the cerebral
cortex [8, 35]. As shown in Fig. 1, the probes of the NIRS
machine were placed on the subject’s bilateral frontal
region. The frontal probes measured hemoglobin concen-
tration changes at 24 measurement points in a 6 & 15 cm
area, with the lowest probes positioned along the Fp1-Fp2
line according to the international 10/20 system used in
electroencephalography. The absorption of near-infrared
light was measured with a time resolution of 0.1 s. The
obtained data were analyzed using the ‘‘integral mode™ .
The pre-task baseline was determined as the mean across
the last 10 s of the 30-s pre-task period, and the post-task
baseline was determined as the mean across the last 5 s of
the 70-s post-task period. Linear fitting was applied to the
data between these two baselines. The moving average
method was used to exclude short-term motion artifacts in
the analyzed data (moving average window: 5 s).

Data analyses
The analysis focused on [oxy-Hb] changes. Changes in

[oxy-Hb] were assumed to more directly reflect cognitive
activation than [deoxy-Hb] changes, as shown by a

stronger correlation with blood-oxygenation level-depen-
dent (BOLD) signals measured by fMRI [32].

NIRS data that clearly contained motion artifacts
determined by a close observation of the subjects were
excluded from analyses.

To examine the relationship among affective symptoms
(SDS, Apathy Scale) and QOL (SF36), task performances
(TMT time) and [oxyHb] changes during TMT, Pearson
correlation analyses were conducted.

Statistical analysis was performed using PASW 18.0
software (Tokyo, Japan).

Results
Correlation between affective symptoms and QOL

Averaged scores of the SDS, Apathy Scale, and SF-36 are
shown in Table 1. As shown in Table 2, the SDS nega-
tively correlated with the SF36-RP (r = —0.285, p =
0.041), SF36-BP (r = —0.279, p = 0.045), SF36-GH (r =
—0.574, p < 0.001), SF36-VT (r = —0.635, p < 0.001),
SF36-RE (r = —0.434, p = 0.002), and SF36-MH (r =
~0.640, p < 0.001). The Apathy Scale negatively corre-
lated with the SF36-PF (r = —0.367, p = 0.007), SF36-
GH (r= -0.316, p =0.023), SF36-VT (r = —0.459,
p = 0.001), SF36-RE (r = —0.413, p = 0.002), and SF36-
MH (r = —0.433, p = 0.001). These results suggest that
depressive symptoms and apathy are closely related to a
lower QOL.

Correlation between affective symptoms and task
performance

The average TMT time was 75.4 & 18.3 (mean 4 SD)
seconds. The score of the SDS was positively correlated

Fig. 1 Probe setting and channels showing significant correlations
with the SDS and Apathy Scale. Yellow area indicates a channel
showing significant correlations with the SDS. Blue areas indicate

channels showing significant correlations with the Apathy Scale.
Green areas indicate channels showing significant correlations with
both the SDS and Apathy Scale

@__ Springer
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Table 1 Affective symptoms and QOL

Mean SD
SDS ‘ . 368 7.7
Apathy Scale 9.8 6.0
SF36-PF 54.9 4.4
SF36-RP 50.5 10
SF36-BP 50.6 9.9
SF36-GH 50.9 10.9
SF36-VT 49.0 10.0
SF36-SF 50.7 8.5
SF36-RE 50.3 8.0
SF36-MH 49.4 9.2

SD standard deviation, SDS Zung Self-rating Depression Scale, SF36
Medical Outcomes Study Short-Form 36-item questionnaire, PF
physical functioning, RP role functioning, BP bodily pain, GH gen-
eral health, VT vitality, SF social functioning, RE role emotional, MH
mental health

Table 2 Correlation coefficients between affective symptoms and
QOL

SDS Apathy Scale

SF36-PF —0.261 —0.367%+%
SF36-RP —0.285%* —0273
SF36-BP —0.279* —0.207
SF36-GH —0.574%+* ~0.316*
SF36-VT —0.635%* —0.459%+*
SF36-SF ~0.189 —0.218
SF36-RE —0.434%% —0.413%%
SF36-MH —0.640%* —0.433%*

SDS Zung Self-rating Depression Scale, SF36 Medical Outcomes
Study Short-Form 36-item questionnaire, PF physical functioning, RP
role functioning, BP bodily pain, GH general health, VT vitality, SF
social functioning, RE role emotional, MH mental health

* p < 0.05; ** p < 0.01

with TMT time (r = 0.357, p = 0.009), suggesting that
participants with-depression took a longer time to complete
the task. In contrast, there was no significant correlation
between the score of the Apathy Scale and TMT time
(r = 0.261, p = 0.062).

Correlation between affective symptoms and [oxy-Hb]
changes during task

As shown in Table 3 and Fig. 1, [oxy-Hb] changes during
the TMT-A was positively correlated with SDS in CH2
(r = 0442, p =0.021), CH13 (r = 0.400, p = 0.013),
and CH15 (r = 0.528, p = 0.006) and with Apathy Scale
in CHS (r = 0451, p = 0.046), CH13 (r =0.372, p =
0.021), CH15 (r = 0.0.711, p < 0.001), CH22(r = 0.339,
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Table 3 Correlation coefficients between affective symptoms and
[oxy-Hb] changes during TMT

Channels SDS Apathy Scale
1 0.38 0.28

2 0.442% 0.36

3 0.28 ' —0.05

4 0.09 0.09

5 0.18 0.451%*
6 —0.09 0.29

7 —0.06 . —0.02

8 0.21 0.19

9 —0.01 0.06

10 —0.30 0.17

11 0.1 0.22

12 —0.06 0.21

13 0.400%* 0.372*
14 —0.04 —0.12

15 0.528%* 0711
16 —0.02 0.23

17 0.12 0.22

18 —0.09 —0.01

19 0.06 0.15

20 —0.10 0.08

21 —0.14 0.07

22 0.14 0.339*
23 —0.07 0.16

24 0.06 0.361%*

SDS Zung Self-rating Depression Scale
* p < 0.05; # p < 0.01

p = 0.017), and CH24(r = 0.361, p = 0.009). No channel

showed [oxy-Hb] changes during the TMT-A that were
negatively correlated with the SDS or the Apathy Scale.
These results suggest that participants with depression and
apathy required greater levels of functional activation in
several brain areas to complete the task.

Discussion

In this study, we demonstrated that depressive symptoms
and apathy negatively affect brain function and QOL in a
non-clinical population. An unexpected, but interesting
result was that depressive symptoms had a greater negative
impact on task performance than apathy. In this study, we
showed that the score of the SDS was positively correlated
with the TMT time, but the degree of apathy was not
correlated with the TMT time. We also showed that par-
ticipants with a high degree of depressive symptoms and
apathy had a greater [oxy-Hb] increase in many frontal
cortical regions.
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The degree of depressive symptoms and apathy were
associated with most of indices of the SF-36. Our results
are consistent with those reported by McCall et al. [17],
who showed that an increasing severity of depression was
associated consistently with worse QOL in MDD. Our
results are also consistent with those of Oguru et al. [21],
who reported that both the Apathy Scale and Beck
Depression Inventory scores were negatively correlated
with QOL in Parkinson’s disease. Together, our results
suggest that the presence of depressive symptoms and
apathy has a negative impact on individual QOL.

The degree of depressive symptoms was associated
significantly with psychomotor slowness, but the degree
of apathy was not related to psychomotor slowness. The
\relationship between psychomotor slowness and age has
been shown in previous studies [3, 34]. In our study, age
was positively correlated with the TMT time, but there
was no correlation between age and affective symptoms
(data not shown). Psychomotor slowness in MDD has
been shown .in previous studies. For example, slower
response times in MDD were observed on the TMT, Rule
Shift Cards, and Stroop test [6]. Our results are consistent
with those reported by Rosenberg et al. [28], who showed
that the Geriatric Depression Scale was associated with
incident impairment on all cognitive tests including the
TMT-A in healthy older women. However, our results are
inconsistent with those reported by Feli et al. [4], who
showed that apathy correlated with a measure of infor-
mation processing speed (Stroop test B) in older MDD
patients. The reason for this inconsistency is u'nclear, but
one possible reason is a difference between the tasks for
psychomotor slowness. The TMT-A may not be suffi-
ciently sensitive to detect the effects of apathy on brain
function.

We also showed that participants with high degree of
depressive symptoms and apathy had a greater [oxy-Hb]
increase in many frontal cortical regions. Previous neu-
roimaging studies on cognitive impairment in MDD have
demonstrated brain activation patterns with hypo-(e.g.,
Okada et al. [22]) and hyper-(e.g., Walter et al. [38])
activation of frontal cortical regions [13, 37]. In such
studies, performance must be taken into account before
attempting interpretation, and hyperactivation in context
of equal or poorer performance is usually interpreted as
‘inefficiency’. In this study, we found hyperactivation in
the context of equal or poorer performance with a high
degree of depressive symptoms and apathy, that is, inef-
ficiency. Our results are consistent with those of Wagner
et al. [36], who reported prefrontal hyperactivation with
equal performance of the Stroop test in MDD using fMRI,
and with results of Walter et al. [38], who reported that
prefrontal hyperactivation with poor performance of
Working Memory task in MDD using fMRI. Our results

suggest that participants with a high degree of depressive
symptoms and apathy require greater cortical resources to
perform the same task. Furthermore, lower QOL and
psychomotor slowness caused by depressive symptoms
and apathy may be related to such inefficient frontal
activation.

Our results are inconsistent with our hypothesis. We
found that apathy was associated with low QOL and frontal
cortical inefficiency, but was not correlated with psycho-
motor slowness. One potential explanation is that the
effects of apathy may be more sensitively measured by
cortical [oxy-Hb] changes detected by NIRS than by
behavioral output. Thus, our present methods combining
behavioral and NIRS measurement enabled us to detect the
effects of apathy on brain function that would be difficult to
detect by behavioral output alone.

There are several limitations in this study that should be
taken into consideration. First, the participants were all
male because women can have potentially influential factor
such as mood fluctuations across the menstrual cycle, and
our findings may not be generalizable to a female popu-
lation. Second, assessments of depressive symptoms and
apathy are based on self-rating scales without a structured
diagnostic interview (e.g., SCID). Third, age and IQ were
not controlled. They are potential factors capable of
affecting not only psychomotor slowness, but also brain
function and QOL. Fourth, depressive symptom was
measured using the SDS. Although the SDS was developed
specifically for patients with a diagnosis of major depres-
sion, the SDS is commonly used even in healthy subject
study, since the scale is simple and less burdensome for
subjects. Fifth, power analysis and multiple comparisons
were not conducted in our study as in most previous NIRS
studies. Further studies should take these factors into
account. With these limitations in mind, this study provides
evidence to support the hypothesis that depressive symp-
toms and apathy were associated with psychomotor slow-
ness and abnormal cortical activation, as well as low QOL
in a non-clinical population.

In conclusion, the degree of depressive symptoms and
apathy were associated with lower QOL, and participants
with high degree of depressive symptoms and apathy have
inefficient cortical activations. On the basis of the findings,
we assume that cortical hyperactivation during a psycho-
motor task measured by NIRS may be used to identify
objectively individuals with a high degree of depressive
symptoms and apathy. Further functional neuroimaging
studies focusing on depressive symptoms and apathy at a
non-clinical level may elucidate the brain mechanisms
underlying depressive symptoms and apathy. These studies
may be beneficial for promoting the QOL of healthy sub-
jects and patients suffering from depressive symptoms and
apathy.

.
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Introduction

The ability to learn and remember new associations between
previously unrelated information is an important aspect of
declarative memory. Declarative memory is associative, linking
together component parts, such as words and objects, either
directly or via spatial, temporal or other relationships. Previous
neuroimaging studies have provided crucial information concern-
ing the neural correlates that underlie this process. A variety of
associative encoding tasks results in robust hippocampal activa-
tion, including the encoding of word pairs [1,2,3,4] and triplets
[5,6], object pairs [7], and name—face pairs [8,9,10].

On the other hand, the relationship between memory and
emotion is of paramount importance, given that people experience
various affective states over the course of daily life. Although a
recent review on memory and emotion has demonstrated that
emotion may enhance memory processes that occur at all stages,
including encoding, storage, and retrieval [11], we previously
reported that negative emotionality does not necessarily promote
good memory performance and associated hippocampal activation
[12]. This discrepancy may be due to procedural differences. The
most likely explanation is that the encoding of an association
between items may have played a key role. The possible effects of
emotionality associated with memory for paired items is unclear,
even though the medial temporal lobe (including the hippocampus)
showed greater activation for emotional items than for neutral items
during both encoding [13] and retrieval [14] in studies of memory
for single items. Furthermore, although much functional neuroim-

@ PLoS ONE | www.plosone.org

aging evidence has linked the memory-enhancing effect of emotion
to amygdalic modulation during encoding [13,15,16,17,18,19,20]
and retrieval [14], whether similar emotionality effects can be
observed on associative memory remains unclear. Indeed, emotion
does not necessarily enhance memory. When faced with negative
events, people tend to pay attention to central features of such events
while ignoring peripheral details [21,22]. As a result, memory of the
negative event itself is enhanced, whereas memory of peripheral
events is impaired. Furthermore, the difference between memory
for gist and memory for detail can be more pronounced for negative
than for positive events [23].

In this study, we hypothesized that negative emotion does not
necessarily promote good associative memory performance, and
that the amygdala has disparate influences on associative memory
for positive and negative information. We used fMRI to investigate
the effect of emotional (negative or positive) item valence on brain
activation during an associative memory task, and examined the
relationship between memory performance and brain activation
affected by emotion during encoding and retrieval.

Results

Behavioral results

During the fMRI protocol, 15 healthy volunteers performed a
novel face-emotional word paired associate task consisted of
‘encoding’, in which subjects were asked to remember pairs of
neutral face and emotional (positive or negative) words, and
‘control’ and ‘retrieval’, in which subjects were asked to indicate
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the word that was previously paired with that face (Fig. 1; see
Methods for details). The mean correct response rates (mean *
SD) during retrieval were 48.9%14.7% for negative word and
neutral face pairs and 58.1%13.3% for positive word and neutral
face pairs. Accuracy rates across the two emotional conditions
differed significantly (paired t-test, 1= —2.208, p=0.044).

Group analysis on each contrast

We performed fMRI group analysis on the four contrasts,
subtracting the control condition from each experimental
condition, according to a random effect model. All activations
satisfying our criteria for significance are shown in Tables 1 and 2.
We observed significant activation of the hippocampus during all
of the 4 conditions, and significant activation of the left amygdala
only during the negative encoding condition.

Correlation between activations in regions detected by
one sample t-tests and associative memory
performances

"We conducted a secondary correlation analysis to examine the

relationship between brain activation in regions detected by one

sample t-tests and associative memory performance. There wasn’t
positive correlation between brain activation and associative memory
performance in any areas. In contrast, this analysis revealed that left
amygdala and hippocampus activation during encoding of negative
word and neutral face pairs (contrast estimate of ‘negative encoding —
control’) was inversely correlated (r=-—0.527, p=0.043, and
r==0.519, p=0.047, respectively) with successful retrieval (Table 3).

Differential effects of negative and positive emotion on
encoding and retrieval

A 2x2 ANOVA was performed to examine the differential
effects of negative and positive emotion on encoding and retrieval.

Encoding

1.malicious

L+

4+ malicious

Co‘ntroi

Effect of Emotionality on Associative Memory

All activations satisfying our criteria for significance are shown in
Table 4. This analysis revealed significant emotion xtask interac-
tions in the left amygdala (Fig. 2A). Post hoc analysis (corrected by
Bonferroni) of the averages of contrast estimates of voxels in this
cluster revealed that the ‘Encoding of negative word and neutral
face pairs’ showed a greater BOLD response compared with the
‘Encoding of positive word and neutral face pairs’ (F=7.761,
£=0.012) and the ‘Retrieval of negative word and neutral face
pairs’ (F=8.335, p=0.015) in this area (Fig. 2B).

Correlation analysis between amygdala activation and
associative memory performance

We conducted a secondary correlation analysis to examine the
relationship between amygdala activation (mentioned above and
shown in Fig. 2A) and the corresponding behavioral performance.
This analysis revealed that amygdala activation during encoding of
negative word and neutral face pairs (contrast estimate of ‘negative
encoding — control’) was inversely correlated (r=—0.850,
»=0.00006), and that during encoding of positive word and
neutral face pairs (contrast estimate of positive encoding — control)
was positively correlated (r=0.599, p=0.018) (Fig. 3A) with
successful retrieval (Fig. 3B). Amygdala activation during retrieval
was not significantly correlated with a correct response rate
regardless of whether the words were positive (r=0.274, p=0.322)
or negative (7= —0.165, p=0.557).

Discussion

In this study, we explored the effect of emotion on associative
memory performance and its underling neural mechanisms. The
hippocampus showed activations during the encoding and
retrieval of word and face pairs regardless of whether the words
were negative or positive. However, there wasn’t positive
correlation between activations in these regions and associative

Retrieval

- 1.malicious
y 4 2.sarcastic

3.incompetent

Retrisve Encode Retrizve Encode ‘Retrizve

;

Controd Control Comroé
& ~ -
o~ . . =~ g . -
Negative word and neutral face pairs Positive word and neutral face pairs
Counterbalanced order

Figure 1. Face-Word Association Paradigm. Subjects were asked to learn pairs of neutral face and emotional (positive or negative) words
related to personality-trait by pressing a button. After the control task in which subjects were asked to press one of the target button, each face was
shown with 3 words and subjects were asked to indicate, via button press, which word was previously paired with that face. (The picture of one of
the authors was used in the Figure instead of that from the database of SOFTPIA JAPAN to protect the privacy of subjects participated in the
database).

doi:10.1371/journal.pone.0024862.g001 °
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Table 1. Results of one sample t-test for negative word and
neutral face pairs.

Effect of Emotionality on Associative Memory

Table 2. Results of one sample t-test for positive word and
neutral face pairs.

Gyrus

poral Gyrus

Inferior 18 L 474 0042 5 0015 -34 —88 -10
Occipital
Gyrus

Hippocampus L 365 0.023° 14° 0.023°

BA, Brodmann area; L, Left; R, Right; Z, Z value of the peak activation within the
cluster; Coordinates for the peak voxel are listed as MNI coordinates. p,
corrected p value for whole brain or region of interest (* bilateral hippocampus
which include 1667 voxels or ° bilateral amygdala which include 306 voxels); ke,
cluster size (voxels) difined by the same peak-level FWE thresholds and used for
the cluster level testing.

doi:10.1371/journal.pone.0024862.t001

memory performances, and on the contrary, there was significant
negative correlations between left hippocampus activation during
negative encoding and the rate of successful retrieval. In contrast,
left amygdala activation was observed only during encoding with
negative emotionality, and there was also significant negative
correlations between this amygdala activation and successful
retrieval. In addition, a 2x2 ANOVA and subsequent Post-hoc
analysis detected the region activated specifically during encoding
with negative emotionality in the left amygdala. Furthermore, this
amygdala activation was inversely correlated with subsequent
memory retrieval with high significance. These results suggest that
amygdala activation induced by negative emotionality may disrupt
associative memory encoding.

Although research on memory and emotion has demonstrated
that emotional (both positive and negative) events are often better
remembered than neutral events [13,14], we reported previously
that negative emotionality does not enhance memory for

@ PLoS ONE | www.plosone.org

cluster . cluster
side Peak level level x Region BA Side Peak level level x y z
Encoding Encoding
 Cerebellum R 550 0 002 42 -52 -30 - Cerebellum
Inferior Frontal - 47 - L 521 0.007 30 0001 -42 —18 -10 Cerebellum

_ Hippocampus

Hippocampus

0.035% 40 -—16 —22

R

it m :n —

Hippocampus
Retneva! L

‘Cereb’el‘lum
 Middle Occipital 18
- Gyrus. e

Insula 13
 Precumeus 7
Medial Frontal 6

Gyrus

 Inferior Frontal -

Inferior Occipital/ 18 R
Gyrus

| ‘Céitepelllum‘ o

Inferior Frontal

Cerebellum
Cesbdin

Cuneus 18 L

Hippocampus R 412 0.006* 151® 0.000*° 24 —-26 -8

BA, Brodmann area; L, Left; R, Right; Z, Z value of the peak activation within the
cluster; Coordinates for the peak voxel are listed as MNI coordinates. p,
corrected p value for whole brain or region of interest (* bilateral hippocampus
which include 1667 voxels or ® bilateral amygdala which include 306 voxels); ke,
cluster size (voxels) difined by the same peak-level FWE thresholds and used for
cluster level testing.

doi:10.1371/journal.pone.0024862.t002 !

associated word pairs [12]. In this study, we demonstrated that
paired items with negative emotionality are more poorly
remembered than those with positive emotionality. In this
discrepancy, the encoding of an association between items may
have played a role, as compared to encoding single items. This
hypothesis is supported by the results of previous studies
[21,22,24] demonstrating that negative emotion enhances mem-
ory for gist, but reduces memory for detail. Although the face and
emotional word associative memory assessment in the present
study are quite different from the gist and event detail assessments
used by previous studies, it is possible that the negative word
meanings operate as gist, while the relationships between word
and face pairs operate as more peripheral, less salient aspect of the
encoding task. This emotion-related effect of memory may be
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Table 3. Correlation between activations in regions detected by one sample t-tests and associative memory performances.

Region (peak coordinate)

Correct respons rate (negative)

Correct respons rate (positive)

Encoding (negative) - = *ﬂf‘Hlpp campus (8 = 38 0

Hlppocampus( 30 22 —16)

Retrieval (negative)

Ercoding postive) |

e Hlppocampus

’Hlppocampus( 26 —40 4)
Retr‘ie\ia‘l (positive) . - 1H|ppoca}m‘ptyls (=24 =30 —4) e

" Hippocampus (24 —26 —8)

r=-—0.527, p=0.043*%

r=0.037, p=0.895

r=0.079, p=0.780

r, correlation coefficiency; p, p-value;
¥, p<0.05.
doi:10.1371/journal.pone.0024862.t003

mediated by the amygdala, as suggested by the absence of the
effect in individuals with amygdala damage [25]. However, the
biological mechanism of such phenomenon has not been
examined in detail in human functional neuroimaging studies.
The pronounced inverse correlation between amygdala activation
induced by negative emotionality and the correct response rate
shown in this study provide direct evidence that amygdala
activation during encoding is a mediator of this phenomenon.

Table 4. Results of 2x2 ANOVA.

Although we do not know the neural mechanisms responsible for
the disruption of associative memory encoding with negative
emotionality by amygdala activation, one possible mechanism is
that amygdala activation enhances the attention to the negative
word itself and reduces the attention to the association of the items
required for task performance. This interpretation is consistent
with the idea that the amygdala focuses processing resources on
the most salient information, as Easterbrook originally proposed

Region peak level

Side

cluster level

x y z

Main effect of task

* Encoding>Retrieval

Angular Gyrus 39 6.46

L
 Parahippocampal Gyrus 37 R 49
Superior Frontal Gy;us ' ) ' 'L ‘ 4fﬂ :
 Superior Frontal Gyrus 6 e - ass
Middle Temporal Gyrus ' 39 ) L 4.53 o
: ,k'Hlppocampus Do R a8
Hippocampus L ' '356
' ’Ret‘ﬁevé‘l’}Eh’c’odi‘r‘ig‘ o = : ¢
Inferior Occipital Gyrus ‘ 17 Lo 58 '
nstlafe s g 572
Midbrain ‘ ‘ V L h 5.63
“ih‘fy‘erior Frontal Gyrusf i 2 47 : L , o 541 o
Vlnferror Frontal Gyrus 9 L 5;31 '
. "Hlppocampus e Sl 412 :

Mam effect of emouon
No area :
Interaction TaskxEmot'on

 Amygdala

0.000 312

-56
R R
0.020 7 ~20 44 44
L0038 =16 e 60
0.042 2 —40 —66 16
oo om2 3 Z1g -20
0.024° 6° -32 -26 -16
0.000 13337 -10 —92 S 12
00000 7 Rl s e gl
0.000 500 -4 -20 -6
0.001 53 —58 4 30
oo BT e 2200 e s
e -8

by the same peak-level FWE thresholds.
doi:10.1371/journal.pone.0024862.t004
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0.25 ~

Contrast estimate

-0.15 1

Retrieval
{positive)

Encoding Encoding Retrieval
(negative) (positive) (negative)

-0.2 ~

Figure 2. Differential effects of negative and positive emotion on encoding and retrieval. A. shows the brain region in which
task xemotion interaction was detected (MNI coordinate: x = —24, y= —8, z= —16). B. shows the graph displaying the contrast estimates (mean = SE)
for the region of interest shown in Figure 2A for the 4 contrasts (negative encoding, positive encoding, negative retrieval, and positive retrieval
compared to the relevant control) *: p<0.05. . i

doi:10.1371/journal.pone.0024862.g002

[26]. In fact, our regression analyses also revealed a significant through its effect on the hippocampus, it is plausible that the

inverse correlation between the correct response rate and the
magnitude of brain activation in the left hippocampus. This means
that activation of this region also disrupted rather than contributed
to the associative memory processing. Given the fact that
amygdala activity has been reported to correlate with subsequent
memory for emotional material [15,16,27] and the influence of the
amygdala on the efficacy of encoding is believed to be expressed

amygdala may focus processing recourses automatically on the
negative words and not the association of paired items required for
task performance.

In addition to the results mentioned above, amygdala activation
during the positive encoding was positively correlated with the task
performance of associative memory in this study. Although the
mechanism of this inverse effect of amygdala activation on

Positive encoding

&

A. B.
Negative encoding
06 1 04 -
05 - ® 03
C 02
04 -
0.1 ~
@ @
‘t‘v’ 0.3 - *‘:5 0‘ R
'i;.‘E' 02 '{'EZO‘I |
v @ -0.2 -
8 o1 805 -
— .
2 £-04 -
8 § 05 -
-0.1 0.6 -
) -0.7 -
-0.2
* 0.8 -
-0.3 T g T U -0.9
20 30 40 50 60 70 80 20 20

Correctresponse rate (%)

30 40 S0 60 70 80 90
Correctresponse rate (%)

Figure 3. Correlation between amygdala activation and associative memory performance. A. shows the graph illustrates the inverse
correlation between correct response rate of negative word - face pairs and the contrast estimates during encoding of negative word - face pairs in
the region of interest shown in Figure 2A. B. shows the graph illustrates the positive correlation between correct response rate of positive word - face
pairs and the contrast estimates during encoding of positive word - face pairs in the region of interest shown in Fig. 2A.
doi:10.1371/journal.pone.0024862.g003
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associative memory is unclear, results of previous studies of
patients with amygdalar damage suggest that the amygdala can
both potentiate and reduce gist memory, depending on the
encoding context [25]. Although additional research is required to
better understand the circumstances (positive or negative, single
item or paired item) in which amygdala activity can disrupt or
facilitate memory encoding, the number of cues to which an
organism attends may be modulated by emotional valence and not
by arousal mediated by the amygdala.

There are certain limitations in this study that should be taken
into consideration. First, we did not include a neutral word
condition, so there is the possibility that the significant difference of
associative memory performance between negative and positive
condition was due to the enhancing effect of the positive word rather
than the disrupting effect of the negative word. Although our
previous study demonstrated that the correct response rate of
negative word pairs was significantly lower than that of neutral word
pairs [12], it remains unclear whether the effect of a negative word
on face-word associative memory performance would be significant
relative to neutral stimuli. However, it is plausible that amygdala
activation during negative encoding disrupt the associative memory
performance from the pronounced inverse correlation between
amygdala activation and associative memory performance. Second,
we did not evaluate unpleasantness during the task, so the direct
relationship between amygdala activation and negative emotionality
is not necessarily clear in this study, although it is reasonable to
consider that amygdala activation was induced by negative
emotionality of words. Third, as in previous stadies [10,28], our
control (baseline) task did not include real faces, so our results of one
sample t-test included the regions which were related to the face
perception as well as memory and emotion. However, face
perception was equally included in each task (negative encoding,
positive encoding, negative retrieval, or positive retrieval), and our
results of a 2x2 ANOVA was never confounded by face perception.
Fourth, we could not examine whether amygdala activation was
positively or negatively correlated with the memory for the words
themselves, so we could not directly compare the role of amygdala
activation between single item memory and associative memory
encoding. Further study is needed to address this issue. Finally, we
did not use an event-related subsequent memory design which
would be appropriate to directory justify the role of brain activation
on associative memory performance, but the block-design in which
we can raise the BOLD signal to measurable level in shorter
scanning run. The major reason of this selection of design was that
we were interested in examining the neural activity of associative
memory performance in each individual subject, and applying such
paradigm to psychiatric disorders like depression that cannot be
forced into longer scanning run.

In conclusion, we observed that associative memory encoding is
differentially modulated by amygdala activation according to the
valence of emotionality. In particular, robust inverse correlation
between the amygdala activation during encoding with negative
emotionality and associative memory performance was observed.
These findings suggest that amygdala activation induced by
negative emotion may automatically focus processing resources on
the most salient information, and disrupt associative memory
encoding directed by instruction.

Materials and Methods

Ethics Statement

The study was conducted under a protocol that was approved
by the Ethics Committee of Hiroshima University. All subjects
submitted informed written consent of their participation.
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Subjects

Fifteen healthy volunteers (6 men and 9 women), aged 21-27
years (mean age = SD=23.6%1.9 years), with no history of
neurological or psychiatric illness, participated in the study. All
subjects showed a similar level of intelligence as assessed by the
Japanese Adult Reading Test (JART) (112.5%5.6).

Experimental task

During the fMRI protocol, subjects performed a novel block-
designed face-emotional word paired associate task. We developed
this task from a face-name paired associate task [10,28] that
included 3 distinct conditions: encoding, distracter {active
baseline), and recognition. The task consisted of 18 blocks, each
of which was preceded by an instruction slide informing the
subject whether the block was encoding, control, or retrieval
condition. Of these 18 blocks, 6 were encoding conditions, 6 were
control conditions, and 6 were retrieval conditions. Conditions
were interleaved and repeated 6 times (Fig. 1). The duration of
each condition was 24 seconds and the preceding instruction slide
was shown for 4 seconds. This resulted in a total task period of
9 minutes.

During encoding, pairs of a face and an emotional word were
presented serially every 3s, and subjects were asked to remember
each face-emotional word pair by pressing a button. The active
baseline (control) required subjects to press a button when 2 of 3
words disappeared (randomly within a 3s interval). We used the
same emotional words during the corresponding control condition,
so as to focus on how emotions modulate the associative memory
processing and not on emotional responses themselves. During the
retrieval condition, each face was shown with 3 emotional words
every 3s, and the subjects were asked to indicate, via button press,
which word was previously paired with that face. Forty-eight neutral
faces paired with 6 emotional words (3 positive and 3 negative) were
used during the experiment, because of the difficulty to select 48
appropriate emotional personality trait words. Although this means
that the same words were repeatedly presented with different faces,
a different face was presented every time and this task did not
require the ability to overcome interference. That is, 48 pairs were
presented within encoding condition, and no face-word pair was
repeated during the experiment. Each retrieval block tested
memory for only the pairs that were in the preceding encoding
block, but the presentation of faces was not in the same order in the
retrieval block as they were presented in the encoding block. Neutral
faces were selected from the database of SOFTPIA JAPAN (The
database is not available on line to protect the privacy of subjects
participates in the database). Three positive words and 3 negative
wards were selected from Anderson’s list of personality-trait words
translated into Japanese, and were rated on emotional valence and
familiarity by a different group of participants [29]. Positive words
were from the top 20 positive words and negative words were from
the bottom 20 negative words of this list. Positive and negative
words were matched in familiarity and word length. Each face and
word pair was presented only once during the encoding tasks. For
the retrieval tasks performed after the encoding tasks, the remaining
2 of the 3 words were used as distracters. The negative and positive
conditions were counterbalanced across the subjects. Stimuli were
generated using a personal computer with Presentation software
(Neurobehavioral Systems, Inc.; San Francisco, CA). Using an
angled mirror, participants viewed the stimuli on a back projection
screen mounted outside the scanner bore.

Acquisition of MRI data

Imaging data were acquired using a GE 3.0 T scanner (General
Electric, Milwaukee, Wisconsin). A time course series of 190
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volumes per participant (including pre- and post-task period) was
acquired with echo planar imaging sequences (TR = 3000 ms,
TE =27 ms, FA=90deg, Matrix size = 64 x64, FOV =256 mm,
4 mm slice thickness, 32 slice, no gap). Functional scans lasted
9 minutes 30 seconds. After functional scanning, structural scans
were acquired using T1-weighted gradient echo pulse sequences
(TR=7.2 ms, TE=2.1 ms, FA=20deg, Matrix size =256 x256,
FOV =256 mm, 1 mm slice thickness, 184 slice).

Analysis

Data were analyzed using the statistical parametric mapping
software package, SPM8 (Wellcome Department of Cognitive
Neurology, London, UK). The first 5 volumes of the fMRI run
(pre-task period) were discarded to ensure a steady-state MR
signal, and the remaining 185 volumes were used for the statistical
analysis. Each set of functional volumes was realigned to the first
volume, spatially normalized to a standard template based upon
the Montreal Neurological Institute (MNI) reference brain, and
spatially smoothed using an 8-mm FWHM Gaussian kernel.

We modeled four contrasts for each individual, using a general
linear model that included each condition (negative encoding,
positive encoding, negative retrieval, and positive retrieval)
compared to the relevant control conditions. Then, second level
analyses were performed according to a random effect model.
First, one sample #tests were performed for each contrast. The
statistical threshold of p<<0.05, corrected for whole-brain family
wise error (FWE) at a peak level was used, except for a priori
hypothesized regions, which were thresholded at $<<0.05, and
corrected for small volume (search volume is a prior: region of
interest mask) FWE at a peak level. These a priori regions of interest
included the hippocampus and amygdala, a region implicated in
the processing of memory and emotion. The hippocampal and
amygdalic region of the interest mask was created in Montreal
Neurological Institute (MINI) space using the WFU Pick Adas [30].
We used WFU Pick Atlas only for creating the hippocampal and
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conducted by using SPM 8.

Second, Pearson’s correlation analyses were performed using
the averages of contrast estimates (negative encoding-control,
positive encoding-control, negative retrieval-control, and positive
retrieval-control) of voxels within the clusters detected by the one
sample t-test, in order to examine whether activations of these
regions during each condition were correlated with corresponding
memory performances. Third, a 2x2ANOVA with factors of task
(encoding or retrieval) and emotion (negative or positive) was
performed. The statistical threshold for this analysis was also set at
$<<0.05, corrected for FWE at a peak level, and small volume
correction (SVC) were applied for the hippocampus and
amygdala. Finally, Pearson’s correlation analyses were performed
using the averages of contrast estimates (negative encoding-
control, positive encoding-control, negative retrieval:control, and
positive retrieval-control) of voxels within the same amygdala
cluster detected in the interaction task xemotion interaction shown
in Fig. 2, in order to examine whether activations of this region
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performances.
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Amyloid B-proteins in CSF

Altered y-secretase activity in mild cognitive
impairment and Alzheimer’s disease
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We investigated why the cerebrospinal fluid (CSF) concentrations of AB42 are
lower in mild cognitive impairment (MCI) and Alzheimer’s disease (AD) patients.
Because AB38/42 and AB40/43 are distinct product/precursor pairs, these four
species in the CSF together should faithfully reflect the status of brain y-secretase
activity, and were quantified by specific enzyme-linked immunosorbent assays in
the CSF from controls and MCI/AD patients. Decreases in the levels of the
precursors, AB42 and 43, in MCI/AD CSF tended to accompany increases in
the levels of the products, AB38 and 40, respectively. The ratios AB40/43 versus
AB38/42 in CSF (each representing cleavage efficiency of AB43 or AB42) were
largely proportional to each other but generally higher in MCI/AD patients
compared to control subjects. These data suggest that y-secretase activity in
MCI/AD patients is enhanced at the conversion of AB43 and 42 to AB40 and 38,
respectively. Consequently, we measured the-in vitro activity of raft-associated
y-secretase isolated from control as well as MCI/AD brains and found the same,
significant alterations in the y-secretase activity in MCI/AD brains.
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INTRODUCTION

Senile plaques, the neuropathological hallmark of Alzheimer’s
disease (AD), are composed of amyloid B-protein (AR). AB
is derived from B-amyloid precursor protein (APP) through
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sequential cleavage by B- and y-secretases. (3-Secretase cleaves
at the luminal portion (B-site) of APP to generate a B-carboxyl
terminal fragment of APP (BCTF), an immediate substrate of
~y-secretase, to produce different A species (for a review see
Selkoe, 2001). The most abundant secreted AB species is AR40,
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whereas the species that has two extra residues (Ap42) is a
minor one (<10%); however, the latter is the one that deposits
first and predominates in senile plaques (Iwatsubo et al, 1994).

Presenilin 1/2 make up the catalytic site of y-secretase. The
enzymatic properties of y-secretase that cleave the transmem-
brane domain of BCTF have been an enigma, although recent
studies provided partial elucidation of this mechanism (Qi-
Takahara et al, 2005; Takami et al, 2009). y-Secretase has two
product lines, which successively convert the AB49 and A48 that
are generated by e-cleavage, to shorter ABs by releasing tri- or
tetrapeptides in a stepwise fashion. AB49 is successively cleaved
mostly into AB40 via AB46 and AB43, while AB48 is similarly
cleaved into AB38 via AB45 and AR42 (see Fig 1). Importantly, the
differences between the amounts of released tri- and tetrapeptides
determine the levels of the different AR species produced (Takami
et al, 2009). Thus, the true activity of y-secretase is defined by the
amounts of tri- and tetrapeptides released, but not by the amounts
of A species produced. Of note, the most abundant species AR40
is derived not from AP42, but from ABR43. Also AB38 is derived
mainly from AB42 (Fig 1). The longer ABs in cerebrospinal fluid
(CSF) including AB49 and 46 as well as AB48 and 45 must be
generated at negligible levels, but may neither be secreted to the
interstitial fluid (ISF) nor recruited to CSF. This suggests that the
status of brain, and possibly neuronal, y-secretase could be
accurately assessed by measuring all four AR species generated by
the two product lines of y-secretase.

Using enzyme-linked immunosorbent assays (ELISAs), we
quantified AB40 and 43 and AB38 and 42 in CSF samples from
control subjects and mild cognitive impairment (MCI)/AD
patients. The CSF concentrations of AB43 and AB42 were found
to be significantly lower in MCI/AD compared with controls.
The ratio of AB38/42, which represents the ratio of product/
precursor and thus the cleavage efficiency of AB42, was plotted
against the ratio of AP40/43, which represents the ratio of
product/precursor in the other product line and thus the
cleavage efficiency of AB43. The ratio of AR38/42 was largely
proportional to that of AB40/43, indicating that the two cleavage
processes are tightly coupled, but both were generally higher in
MCI/AD patients compared to control subjects These results

Nobuto Kakuda et al.
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Figure 1. Generation of APs through stepwise processing of BCTF. At
the first step, BCTF is cleaved at the membrane-cytoplasmic boundary
(e-cleavage), producing AICD (APP intracellular domain) 50-99 and 49-99.
Counterparts AB49 and 48 in turn are cleaved in a stepwise fashion, releasing
tri- and tetrapeptides. One product line converts AB49 mostly to AB40 via
AR46 and AB43. The other product line converts AB48 to AB38 via AB45 and
AB42. 1t should be noted that the differences between the amounts of released
tri- or tetrapeptide determine the amounts of ARs produced. Broken lines
indicate corresponding ABs on the two product lines.

suggest that the activity of brain vy-secretase in MCI/AD is
enhanced at the conversion of AR43 to AR40 and AB42 to AB3S,
which would result in significantly lower CSF concentrations of
APB42 and 43. In support of this hypothesis, the activities of raft-
associated +y-secretase from control and MCI/AD brains were
found to be significantly different: although the total AR
production was similar, the +y-secretase in MCI/AD brains
produced significantly larger ratios of AR40/43 and AR38/42
than the enzyme in control brains. This raises the possibility that
lower CSF levels of AB42 and 43 simply reflect the altered
vy-secretase activity in the MCI/AD-affected brains.

RESULTS

The CSF concentrations of ABs were in the following order:
AB40 > AB38> AR42 > AB43 in all CSF samples examined
(Table 1 and Supporting Information Fig S2A). The relative
amounts of ABs were constant across the samples: AB38:40 ratio
in CSF was ~1:3, and AP42:43 ratio was ~10:1. The CSF

Table 1. Subject characteristics and CSF concentrations of Afs

Control Mci AD ANOVA **p-value
Age (years) 749+7.5 72.5+6.6 72.3+£82
N (male/female) 21 (10/11) 19 (7/12) 24 (7/17)
MMSE score 28.7+19 25.7+2.6 19.6+3.3
ApOE ¢4 3 (14.3%) 10 (52.6%) * 14 (58.6%) °
ABR38 (pM) 594.5+£286.3 669.4+247.6 760.57 +269.4
Ln(AR38) 6.28:£0.46 6.44+0.38 6.56+0.41 NS
AB40 (pM) 1607.9:4712.9 1939.5 £ 698.0 2292.64799.6
Ln{AB40) 7.28+0.47 7.51+0.38 7.68+0.35 0.007
AB42 (pM) 133.1+53.4 83.2+49.4™ 90.3£40.1°2
Ln(AR42) 4.80+0.47 4.25:+0.60 4.40+£0.47 0.004
AB43 (pM) 11.8:£5.7 6.8+5.6" 7.0£4.6™
Ln(AR43) 2.3240.60 1.59+0.86 1.76 £0.62 0.004

?2 MCI subjects were homozygous for g4, while 4 AD subjects were homozygous for the allele.
""p < 0.05; Dunnett’s t-test after log-transformation for comparing between control and MCI or AD.

ok

p-value of analysis of variance after log-transformation.
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