cultures, in which all neurons showed no Ca®" oscillations as
previously reported (Numakawa et al. 2002). Then, the
glutamate-evoked increase in intracellular Ca** concentration
was also checked using such resting neurons (Fig. 8D,F and
Supplementary Fig. 54). Importantly, PCP treatment for 3 h
repressed the glutamate-stimulated Ca** (Fig. 8D,E and
Supplementary Fig. 54). Such suppression of Ca** elevation
was still observed at 6 h after PCP addition (Supplementary Fig.
5B). In line with the low expression level of glutamate
receptors, immature neurons at DIV 5 did not respond to
glutamate with or without PCP (Fig. 8E). In the DIV 5 immature
neurons, PCP had no effect on intracellular BDNF expression
(Supplementary Table 1). Furthermore, we confirmed a positive
effect of other noncompetitive and competitive antagonists for
NMDA receptors (MK-801 and APV, respectively) on intracel-
lular BDNF levels in DIV 12 neurons (but not in DIV 5 neurons)
(Supplementary Table 2), indicating that the effect is not
specific to PCP but it holds true for NMDA receptor antagonists
in general. These results suggest that inhibition of Ca®* influx
via NMDA receptors was involved in the decrease in BDNF
secretion by PCP.

Discussion

In the present study, we found that intracellular BDNF protein
was transiently increased by 3-h PCP exposure. Despite such
a BDNF increase, activation of Trks and downstream signaling
pathways (ERK1/2 and Akt) were diminished. Importantly, the
number of synaptic sites and expression of synaptic proteins
were reduced 48 h after PCP application. Furthermore, both
basal and depolarization-evoked glutamate release were de-
creased in PCP-treated neurons, and the electrophysiological
studies also revealed a reduced frequency of mEPSCs by PCP.
Interestingly, we discovered suppression in BDNF secretion
after PCP treatment both in cortical cultures and acute slices.
Application of exogenous BDNF prevented the PCP-induced
reduction in expression of synaptic proteins in cortical
cultures. It is possible that the PCP-induced impairment of
BDNF secretion results in the transient accumulation of
intracellular BDNF and leads to down regulation of BDNF/TrkB
signaling, which is required for maintenance of synaptic
protein expression. As PCP treatment significantly inhibited
the spontaneous Ca®>* activity and evoked Ca** influx by
glutamate, the inhibition of Ca®" mobilization may contribute
to the PCP-induced impairment of BDNF secretion.

In hippocampal and cortical neurons, BDNF showed
a vesicular expression pattern in dendrites and axons and
appeared to be sorted into a regulated pathway in which BDNF
is secreted in response to neuronal activity (Goodman et al.
1996; Farhadi et al. 2000; Hartmann et al. 2001 Kojima et al.
2001; Kohara et al. 2001; Gartner and Staiger 2002; Lessmann
et al. 2003; Wu et al. 2004; Adachi et al. 2005). The activity-
dependent secretion of BDNF is triggered by an increase in
intracellular Ca®>* concentration via ionotropic ghutamate
receptors, voltage-gated Ca®* channels, and internal Ca®* stores
(Hartmann et al. 2001; Lessmann et al. 2003). In the present
study, we examined the possibility that PCP attenuated an
increase of intracellular Ca** concentration at basal and evoked
conditions, contributing to the transient increase of intracel-
lular BDNF and suppression of its secretion. In mature cortical
neurons, we found that PCP induced an inhibition of Ca*
mobilization, and that BDNF protein released into the culture

medium was reduced after PCP application compared with
control. This reduction in BDNF secretion was demonstrated
by both immunoblotting and ELISA methods after immunopre-
cipitation with anti-BDNF antibody. Interestingly, when we
examined the effect of PCP on de novo synthesis of BDNF, we
found decreased levels of BDNF mRNA (Supplementary Fig.
1B), suggesting that PCP-dependent BDNF increase is not due
to transcriptional activity. Resultant down regulation of BDNF
protein levels might appear as a reduction in the amount of
intracellular BDNF at 6 h or later. Importantly, other NMDA
antagonists, MK-801 (noncompetitive) and APV (competitive),
also elevated BDNF levels in neurons, suggesting that the PCP-
increased BDNF would be due to the inhibitory effect of PCP
on NMDA receptors. Furthermore, such an increase of BDNF by
NMDA antagonists occurred only in mature cortical neurons
(DIV 12) that express adequate glutamate receptors. PCP-
dependent impairment of BDNF secretion and subsequent
decrease in synaptic function may only occur in mature fully
developed neurons that express adequate NMDA receptors.
The reduction of BDNF secretion is considered to be
a neuronal response to PCP, as we confirmed that the majority
of cultured cells in the experiment were indeed neurons.
Furthermore, PCP did not cause an intracellular increase of
BDNF in pure astroglial cultures. In our cortical cultures,
vesicular expression of BDNF was observed only in GAD-
negative neurons. If this vesicular pattern of BDNF expression
reflects the activity-dependent population of BDNF secretion, it
is possible that PCP specifically impacts the regulatory release
of BDNF from glutamatergic (not GAD-positive) neurons.
Importantly, some reports suggest that preferential binding of
PCP to NMDA receptors on GABAergic interneurons results in
the activation of glutamatergic pyramidal neurons in vivo
(Homayoun and Moghaddam 2007; Kargieman et al. 2007).
Homayoun and Moghaddam reported that firing rates in ~69%
of GABAergic neurons and 86% of pyramidal neurons were
decreased after PCP injection (Homayoun and Moghaddam
2007). Interestingly, Kargieman et al showed that PCP
increases and decreases the activity of 45% and 33% of the
pyramidal neurons, respectively (Kargieman et al. 2007). Our
results indicated a decreased synaptic activity in cultured
cortical neurons after 48 h PCP exposure. Furthermore, PCP-
dependent decrease in the secretion of BDNF from acute
cortical slices, in which local neuronal circuits remain intact,
was confirmed. It is possible that differences in experimental
conditions including dose of PCP and neuronal maturity may
influence such a different neuronal response to PCP, although
future studies will be needed using in vivo and in vitro systems.
Secretion of BDNF to the extracellular space is required to
generate its biological effects via activation of TrkB. Indeed,
activation of Trk receptors and downstream signaling cascades
(ERK1/2 and Akt) were reduced by PCP. In our system, BDNF
and NT-4/5 functioned as major contributors for the activation
of Trk receptors, suggesting that TrkB signaling is predominant.
A subset of the BDNF/TrkB downstream signaling molecules,
especially ERK1/2 activity, is known to be regulated by NMDA
receptor-mediated Ca®* influx (Xia et al. 1996; Sutton and
Chandler 2002). Therefore, it is possible that decreased activity
of ERK1/2 may be attributable, at least in part, to the blockade
of the NMDA receptor by PCP directly. However, simultaneous
application of exogenous BDNF blocked the PCP-dependent
suppression of synaptic protein levels as well as ERK1/2 and
Akt signaling pathways even when NMDA receptors were
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blocked in the presence of PCP. Recently, we reported that
ERK1/2 activity is involved in the maintenance of synaptic
protein expression (Kumamaru et al 2011). Furthermore,
delayed application of exogenous BDNF reversed the suppres-
sion of some synaptic proteins inhibited by PCP. All things
considered, impaired BDNF secretion substantially contributed
to the down regulation of ERK1/2 activity and synaptic protein
expression.

The number of synaptic sites was decreased when chronic
PCP exposure was administered. There are 2 lines of evidence:
1) the reduced expression of pre- and postsynaptic proteins
assessed with Western blotting and 2) the decreased number of
presynaptic sites estimated with immunostaining. We also
obtained evidence for functional changes, showing a marked
reduction in glutamate release as well as a decreased frequency
of mEPSCs mediated by NMDA and AMPA receptors. Taken
together, excitatory neurotransmission is suppressed by 48 h of
PCP treatment.

It is well known that BDNF/TrkB signaling plays an
important role in synaptic plasticity. BDNF stabilizes and
increases dendritic synapse density in the optic tectum (Hu
et al. 2005; Sanchez et al. 2006). BDNF increases spine density
in hippocampal neurons through ERK1/2 activation (Alonso
et al. 2004). We also reported that BDNF increases the
expression of pre- and postsynaptic proteins via ERK1/2
signaling in cultured cortical neurons (Kumamaru et al
2011). Overexpression of TrkB or activation of PI3K/Akt
signaling enhances motility of dendritic filopodia and synaptic
density (Luikart et al. 2008). These findings, including our
current results, suggest that decreased BDNF secretion caused
by PCP is one of the major factors for loss of synaptic
connections and/or overall neuronal function.

In the present study, 48 h of PCP treatment did not change
both the number of MAP2-positive cells and mitochondrial
activity in cortical cultures. Mitochondrial activity was not
influenced even when a critically high concentration of PCP
(25 pM) was applied. Furthermore, expression levels of both an
antiapoptotic protein Bcl-2 and a proapoptotic protein Bad
were unchanged after PCP application. These data suggest that
PCP has no major influence on survival of cultured cortical
neurons, although it does inhibit synaptic connectivity and
function. Interestingly, Lei et al. (2008) reported that PCP
causes apoptosis in cultured cortical neurons through sup-
pression of Akt activity and activation of GSK3p and caspase-3.
This discrepancy between Lei et al. (2008) and our study may
be attributable to differences in culture conditions, as their
neurobasal medium contained B27 while our 5/5 DF medium
contained serums.

PCP induces schizophrenia-like behaviors in humans (Allen
and Young 1978; Javitt and Zukin 1991) and rodents (Noda
et al. 1995; Furuta and Kunugi 2008). In vivo administration of
PCP causes extensive reduction in the number of spines in the
rat prefrontal cortex (Hajszan et al. 2006) and suppression of
glutamate release in the prefrontal cortex of mice (Nabeshima
et al. 2006; Murai et al. 2007). Postmortem brain studies from
schizophrenia patients demonstrate that the number of
neurons in the prefrontal cortex is not decreased (Pakkenberg
1993; Akbarian et al. 1995), although synaptophysin immuno-
reactivity and dendritic spine density of pyramidal cells are
reduced (Glantz and Lewis 1997; Glantz and Lewis 2000;
Knable et al. 2004). These findings are consistent with our
observation of synaptic loss and decreased glutamatergic
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transmission without any change in cell viability in PCP-treated
cortical neurons. Therefore, impairment in BDNF secretion
and downstream signaling may be involved in the pathogenesis
of schizophrenia-like behaviors. In fact, altered expression of
BDNF and TrkB has been reported in postmortem brains of
schizophrenia patients in several studies (e.g., Takahashi et al.
2000; Durany et al. 2001; Weickert et al. 2003; Weickert et al.
2005; Hashimoto et al. 2005; Altar et al 2009). Recently,
biological functions of proneurotrophins through the p75
receptor were revealed (Lee et al. 2001; Dechant and Barde
2002; Pagadala et al. 2006). Considering this, it may be valuable
to study not only TrkB-stimulated signaling but also p75-
stimulated signaling, during PCP exposure.

In conclusion, our results suggest that impaired secretion of
BDNF and the resultant decrease in activation of Trk receptor
signaling pathways are responsible, at least in part, for the PCP-
dependent reduction in synaptic connectivity and function,
which may be involved in PCP’s ability to elicit schizophrenia-
like behaviors. Our experimental system might be a “cell
model” suitable for studies to clarify the molecular mechanisms
of schizophrenia.

Supplementary Material

Supplementary material can be found at: hutp://www.cercor.
oxfordjournals.org/
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Neuroimaging study in subjects at high risk
of psychosis revealed by the Rorschach test

and first-episode schizophrenia

Ota M, Obu S, Sato N, Asada T. Neuroimaging study in subjects at high
risk of psychosis revealed by the Rorschach test and first-episode
schizophrenia.

Objective: There is increasing evidence of neuroanatomical pathology in
schizophrenia, but it is unclear whether changes exist prior to disease
onset. This study aimed to examine whether changes exist prior to disease
onset, especially in the temporal lobes.

Methods: T1-weighted and diffusion tensor magnetic resonance imaging
were performed on 9 first-episode schizophrenia patients, 10 patients who
were at high risk of schizophrenia and 10 healthy controls. Voxel-based
analysis using the normalised images of cortical volume data was
examined, and the fractional anisotropy value at three component fibres of
the temporal lobes, inferior longitudinal fasciculus, superior longitudinal
fasciculus (SLF) and cingulum hippocampal part was compared among the
three groups.

Results: There were statistically significant volume differences at the
bilateral temporal lobe between the healthy subjects and high-risk group.
Between the schizophrenic group and healthy subjects, statistically
significant volume differences were detected at the bilateral temporal lobes
and anterior cingulate cortex. The fractional anisotropy values of the SLF
in the schizophrenic and high-risk groups were significantly lower than in
the healthy subjects.

Conclusion: Our findings indicate that some brain alterations may
progress in patients at psychosis pre-onset, possibly because of disrupted
developmental mechanisms, and these pathological changes may be
predictive of functional outcome.
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Introduction

Structural brain abnormalities have consistently been
shown to be present in people with schizophre-
nia (1-3), and how the brain abnormalities observed
in schizophrenia develop is of great interest. Some
behavioural features can be observed in patients with
schizophrenia years before the onset of illness (4,5),
suggesting that there are neural differences from a
very early age that may make these individuals more
vulnerable to later insults. Early detection and pre-
vention strategies for schizophrenia have led to inves-
tigations of individuals at the high risk of psychosis,
who present with a constellation of clinical symptoms

thought to be characteristic of the psychosis in the
‘prodromal period’, when the onset of schizophre-
nia would be expected to occur. Such studies seek
to characterise the developmental processes that lead
to disturbances of the brain structure and function
associated with the onset of psychosis, and to find
baseline traits that are predictive of later diagnos-
tic conversion or functional decline. Previous studies
mainly used the PACE criteria for the identifica-
tion of those high risk of development psychosis (6).
However, the previous neuroimaging studies adopt-
ing showed inconsistent results (7—11).

The Rorschach test has been used historically as
a way to identify psychological processes associated
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with thought and perceptual disturbance, and to aid
in the differential diagnosis of schizophrenia. For
the differential diagnosis, the Perceptual Thinking
Index (PTI) comprised of eight Rorschach variables
that are arranged based on a combination of dif-
ferent values on five empirical criteria was devel-
oped (12,13). It measures both perceptual oddities
and cognitive slippage, and sufficient (Intraclass Cor-
relation Coefficient >0.8) reliability and validity was
also investigated (14). This supports the notion of
applying it to the detection of psychosis risk in a
clinical population. The preceding studies showed
that individuals at clinical high risk for psychosis
established using the Structured Interview for Pro-
dromal Symptoms and the Scale of Prodromal Symp-
toms (SIPS/SOPS; 15) displayed substantial deficits
in visual form perception prior to the onset of psy-
chosis revealed by Rorschach test (16,17). Ilonen
et al. showed that the PTI distinguished patients at
clinical high risk for psychosis from those diagnosed
as having non-psychotic disorders (16). The deficits
in visual form perception revealed by the PTI fell
under the group 1; the attenuated psychotic symp-
toms of the PACE criteria. In this study, we used the
PTI to evaluate patients without delusion, hallucina-
tion and catatonic behaviour, but at high-risk mental
state for schizophrenia.

Previous cross-sectional imaging studies in schizo-
phrenia found reduced grey matter volume com-
pared to controls, particularly in the temporal lobes,
and some studies showed that there were significant
differences in temporal lobes between the healthy
subjects and pre-onset or at high genetic risk of
schizophrenia groups (11,18,19). However, no study
investigated the impairment of the component fibres
at temporal regions coupled with volume data. In
this study, therefore, we first evaluated the corti-
cal volume difference among the pre-onset group,
first-episode schizophrenic group and healthy con-
trols. We then investigated the microstructural change
among the three groups at three component fibres of
the temporal lobes, the inferior longitudinal fasci-
culus (ILF), superior longitudinal fasciculus (SLF)
and cingulum hippocampal part that runs along the
ventral aspect of the hippocampus.

Method
Subjects

Five male and four female first-episode schizophrenia
patients, defined according to the criteria described
in the fourth edition of the Diagnostic and Statis-
tical Manual of Mental Disorders (DSM-1V), were
recruited at Hospital Bando (Ibaraki, Japan). Their
mean age was 29.0 & 4.3 years (ranging from 23 to
34 years). Only one patient was drug naive, while
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the other eight were being treated with antipsychotic
medication. The mean interval between the first
patient contact and magnetic resonance imaging
(MRI) scan was 33.9 &+ 21.7 days (ranging from 0
to 70 days). :

We also recruited patients who were regarded as
having a clinical high risk for schizophrenia but
who did not fulfill the schizophrenia criteria. Patients
showing the presence of at least one of the fol-
lowing symptoms were tested with the Rorschach
test: ideas of reference, magical thinking, percep-
tual disturbance, paranoid ideation, odd thinking and
speech. The individual PTI was scored, and a score
of 21 was regarded as showing perceptual distur-
bance (16). As a consequence, four male and six
female patients (mean age 25.5 = 11.1 years, ranging
from 16 to 46 years, mean PTI score 3.6 &= 0.8) were
regarded as at high risk for the developing psychosis.

Exclusion criteria included a history of head
injury, neurological symptoms, speech or hearing
difficulties, significant cerebrovascular diseases (cor-
tical infarctions, multiple lacunar lesions or leu-
koaraiosis) and fulfilment of the DSM-IV criteria for
abuse of illicit drugs or alcohol at any point during
their lifetime.

Ten sex- and age-matched healthy subjects (four
males and six females, mean age 26.1 & 3.8 years,
ranging from 16 to 30 years) were also included in
the study.

All participants provided their written informed
consent, and the local ethics committee approved the
study protocol.

Data acquisition and processing

MRI was performed on a 1.5 Tesla Siemens Magne-
tom Harmony (Erlangen Germany). Diffusion tensor
imaging (DTI) was carried out on the axial plane
(echo time (TE)/repetition time (TR) = 100/7000 ms;
field of view (FOV), 262 x 262 mm; matrix 128 x
128; 40 continuous transverse slices; slice thickness,
4 mm with no slice gap). To enhance the signal-to-
noise ratio, acquisition was repeated four times. Dif-
fusion was measured along 12 non-collinear direc-
tions with the use of a diffusion-weighted factor b
in each direction of 1000 s/mm?, and one image
was acquired without the use of a diffusion gradi-
ent. High-spatial-resolution, 3-dimensional (3D) T'1-
weighted images of the brain were obtained for
morphometric study. 3D T1-weighted images were
scanned on the sagittal plane [TE/TR, 3.93/1460 ms;
flip angle, 15°; effective section thickness, 1.5 mm;
slab thickness, 168 mm; matrix, 256 x 256; FOV,
250 x 250; 1 number of excitations (NEX)], yielding
112 contiguous slices through the head. In addition to
DTI and 3D T1-weighted images, we also acquired



axial T2-weighted turbo spin echo images (TE/TR,
95/3800 ms; slice thickness, 6 mm,; intersection gap,
1.2 mm; matrix, 384 x 288; FOV, 220 x 175 mm;
acquisition, 1) and fluid attenuation inversion recov-
ery (FLAIR) images on the axial plane (TE/IR,
104/9000 ms; flip angle, 170°; slice thickness, 6 mm;
intersection gap, 1.2 mm; matrix, 256 x 192; FOV,
220 x 175 mm; acquisition, 1) to rule out cerebral
vascular disease.

The raw diffusion tensor and 3D T1-weighted vol-
ume data were transferred to the workstation and
the DTI data sets were analysed using DtiStudio
(H. Jiang and S. Mori; Johns Hopkins University).
The diffusion tensor parameters were calculated on
a pixel-by-pixel basis, and the FA map, b = 0 image
and finally 3D fibre tracts were calculated (20).

To clarify volume differences among the two
patient groups and healthy subjects, structural 3D
T1-weighted MR images were analysed using an
optimised voxel-based morphometry (VBM) tech-
nique. Data were analysed using Statistical Para-
metric Mapping 5 (SPMS5) software (Welcome
Department of Imaging Neuroscience, London, UK)
running on MATLAB 7.0 (Math Works, Natick,
MA, USA). Images were processed using optimised
VBM script. Details of this process are described
elsewhere (21). Normalised segmented images were
modulated by multiplication with Jacobian determi-
nants of spatial normalisation function to encode the
deformation field for each subject as tissue density
changes in normal space. Images were smoothed
using an 8-mm full-width half-maximum of an
isotropic Gaussian kernel.

To exclude some of the subjectivity involved in
defining regions of interest (ROIs), we made fibre
ROIs normalised to the standard space, and then
placed the ROIs on all of the individual FA images
normalised to the standard space for the evalua-
tion of FA. First, each individual 3D-T1 image was
coregistered and resliced to its own b = 0 image.
Next, the coregistered 3D-T1 image was normalised
to the ‘avgl52T1’ image regarded as the anatom-
ically standard image in SPMS. Finally, the trans-
formation matrix was applied to the FA map. Each
map was then spatially smoothed by a 6-mm full-
width half-maximum Gaussian kernel in order to
decrease spatial noise and compensate for the inexact
nature of normalisation following the ‘rule of thumb’
developed for functional MRI and positron emission
tomography studies (22).

Fibre tractography was performed on the data of
10 healthy subjects with a threshold value of fibre-
tracking termination of FA = 0.2 and a trajectory
angle of 50° (23). The definition of the bilateral ILF,
SLF and cingulum hippocampal part was described
in detail in a previous publication (24), and we used
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Green, Cingulum hippocampus part
Red:  Inferior longitudinal fasciculus
Yellow: Superior longitudinal fasciculug

Fig. 1. Diffusion tensor tractography of three fibres. Red, yel-
low and green fibres represent the inferior longitudinal fascicu-
lus, superior longitudinal fasciculus and cingulum hippocampus
part, respectively.

these bilateral fibres within the temporal lobe as
ROIs. Then, each six fibre tracts of 10 subjects
were normalised to the standard space as mentioned
above. The normalised six fibre tracts of 10 subjects
were averaged respectively, and regarded as the nor-
malised fibre ROIs. Figure 1 shows the fibre ROIs
for SLF, ILF and the cingulum hippocampal part on
the anatomically standard space.

Statistical analysis

Statistical analyses for the grey matter volume were
performed using SPM2 software. First, we evaluate
the difference among the three groups using the one-
way analysis of variance (ANOVA). Only correla-
tions that met these criteria were deemed statistically
significant. In this case, seed levels of p < 0.001
(uncorrected) were selected. Then, the post hoc anal-
ysis, the differences in regional grey matter vol-
ume between first-episode schizophrenic patients and
healthy subjects, high-risk groups and healthy sub-
jects and first-episode schizophrenia and the high-risk
groups were assessed using the mask image derived
from the result of first-level ANOVA, respectively.
Only correlations that met these criteria [seed lev-
els of p < 0.001 (uncorrected), and cluster levels
of p < 0.05 (uncorrected)] were deemed statistically
significant.

Statistical analysis for the FA value was per-
formed with SPSS for Windows 11.0 (SPSS Japan,
Tokyo, Japan). Group differences of regional FA val-
ues among the three groups were compared with
repeated measures of ANOVA. When significant
group or group X region interactions were obtained
with ANOVA, follow-up ¢-tests were performed for
regional FA values of individual ROIs. The least sig-
nificant difference method was used to avoid type 1
errors in the statistical analysis of multiplicity.
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Results

There were significant volume differences in cortical
volume among the two patient groups and healthy
subjects. First, there were statistically volume dif-
ferences in the bilateral temporal cortices between
the high-risk patients and healthy subjects (Figure 2,
upper column; Table 1). Second, volume losses in
the bilateral temporal cortices and anterior cingulate
cortex (ACC) were detected between the first-episode
schizophrenia group and healthy subjects (Figure 2,
lower column; Table 1). The locations of the bilateral
temporal cortices detected by these analyses were
almost the same coordinate (Figure 2). No differ-
ences were detected between the high-risk patients
and first-episode schizophrenia patients in our study
(data not shown).

The ANOVA of FA values for the healthy subjects
and patient groups showed a significant main effect
of group and regions. Follow-up unpaired z-tests
revealed that the mean FA value of the healthy
subjects was significantly higher in the bilateral SLF
regions (Table 2) than in the two patient groups.

Discussion

To the best of our knowledge, this is the first inves-
tigation of brain alterations in a clinical high-risk
sample showing perceptual disturbance revealed by
Rorschach test. Perceptual and thought disorders
are commonly associated with psychiatric disorders

Table 1. Regions of statistically significant cerebral grey matter volume change
among the three groups: one-way ANOVA among the schizophrenia, high-risk patient
and healthy subject

Cluster size T score X y H Brain region

Post hoc analysis

Healthy subject > high-risk patient

1024 520 57 —53 —6  Left middle temporal
region

730 5.45 66 —33 -89  Right middle temporal
region

Healthy subject > first-episode schizophrenia

1372 577  —60 ~53 -7  Left middle temporal
region

465 548  —57 -38 6  Left middle temporal
region

807 5.55 66 —35 —8  Right middle temporal
region

600 4.69 8 48 ~7  Right anterior
cingulate

4,68 -5 48 3 Left anterior cingulate

and are particularly considered a primary feature
of schizophrenia. Some preceding studies showed
that the high-risk populations present disorders of
thought, perceptual abnormalities and disorganised
speech (16,17,25,26). In this study, we pointed on the
perceptual disturbance as the major symptom of the
high-risk patients. Furthermore, we found that there
were precedent changes in the brains of high-risk
patients revealed by 3D-volume data and DTIL This

Fig. 2. Cortical grey matter volume loss was detected among the high-risk patients, first-episode schizophrenia and healthy subjects.
Upper column: significant volume differences were detected in the bilateral temporal areas between the healthy subjects and high-
risk patients (one-way ANOVA). Middle column: significant volume losses were detected not only in the bilateral temporal area but
in the anterior cingulate cortex between the first-episode schizophrenia patients and healthy subjects. Lower column: superposition
of upper two results. Yellow showed the difference between the healthy subjects and high-risk patients, green pointed the difference
between the first-episode schizophrenia patients and healthy subjects and dark green showed the layered region.
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