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Summary

Indications and contraindications for
exercise training for maintenance hemo-
dialysis patients

Toshiki Kutsuna * and Takashi Masuda ™"

Because exercise training is known to be one
effective means for improving the overall condition
of patients undergoing maintenance hemodialysis
(HD), the study titled, Kidney Disease Outcomes
Quality Initiative by the National Kidney Founda-
tion states that all HD patients should engage in
exercise training. Medical staff members must thor-
oughly evaluate the physical condition and circum-
stances associated with comorbidity in HD patients.
This must be accomplished to judge whether or not
they can safely perform exercises. In addition, it is
important to monitor blood pressure, heart rate,
electrocardiograms and other symptoms during
exercise routines to prevent cardiac overload. It has
been reported that exercise training can be safely
performed by HD patients on non-HD days or dur-
ing HD sessions, because most of these patients are
hemodynamically stable and feel fewer symptoms
at those times. Both aerobic and resistance exercis-
es have also been demonstrated to be effective
interventions to augment decreased exercise capac-
ity and reduced muscle strength in HD patients.

Key words : hemodialysis, exercise training,
comorbidity
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** Department of Rehabilitation, Kitasato University
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Endogenous hydrogen peroxide up-regulates the expression
of nitric oxide synthase in the kidney of SHR

Pengyu Cao? Osamu lto® Qi Guo®, Daisuke lto?, Yoshikazu Muroya?,

Rong Rong?, Takefumi Mori®, Sadayoshi lto® and Masahiro Kohzuki?

Background and method Both nitric oxide synthase
(NOS) expression and oxidative stress are elevated in the
tissues of spontaneously hypertensive rats (SHR)
compared with Wistar—Kyoto rats (WKY). The purpose of
the present study was to determine the relationship
between the endothelial and neuronal NOS (eNOS and
nNOS) expression and oxidative stress in the kidney of SHR
and WKY.

Results Plasma and urinary hydrogen peroxide (H,0,) and
nitrate/nitrite (NO,), the renal NADPH oxidase activity and
eNOS and nNOS expressions were all higher in SHR than in
WKY. Although the treatment with either the NADPH
oxidase inhibitor, apocynin or the superoxide dismutase
mimetic, tempol for 8 weeks decreased the systolic blood
pressure (SBP) and inhibited the renal NADPH oxidase
activity in SHR, apocynin decreased but tempol increased
the plasma and urinary H,0, and NO, and the eNOS and
nNOS expressions in the renal cortex and medulla of SHR.
In contrast to SHR, neither apocynin nor tempol affected
these parameters in WKY. H,0, administered intravenously
for 1 week in WKY increased plasma and urinary H,0, and
NO, and the eNOS and nNOS expressions in the renal
cortex and medulla in a dose-dependent manner without
changing the renal NADPH oxidase activity.

Introduction

Nitric oxide is a vasodilatory factor synthesized by three
isoforms of nitric oxide synthase (NOS): endothelial,
neuronal and inducible NOS (eNOS, nNOS and iNOS)
[1]. The eNOS and nNOS expression is elevated in the
kidney and vessels of spontaneously hypertensive rats
(SHR) compared with normotensive Wistar—Kyoto rats
(WKY) [2,3]. The NOS activity and nitric oxide pro-
duction were also elevated in these tissues of SHR
[4,5], and NOS blockade caused marked increases in
blood pressure in SHR [6]. However, nitric oxide-
mediated vasodilatory responses were impaired in SHR

[7].

Oxidative stress is involved in several pathophysiological
conditions, including hypertension, hypercholesterole-
mia and diabetes [8,9]. Superoxide anion (O,7) is gener-
ated by NADPH oxidase [8,10] and metabolized into
hydrogen peroxide (H;O;) by superoxide dismutase
(SOD). Oxidative stress and reactive oxygen species
(ROS) are elevated in SHR [11,12] due to increased
NADPH oxidase activity [5,13] and decreased SOD
activity [14]. O, and ROS can interact rapidly and

0263-6352 © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins

Conclusion These results indicate that oxidative stress
up-regulates the NOS expression in the kidney of SHR
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irreversibly with nitric oxide to yield peroxynitrite
(ONOOQO7), thereby restricting the half-life, diffusion
distance and bioactivity of nitric oxide in tssues [15].
Both the inhibitor of NADPH oxidase, apocynin and the
SOD mimetic, tempol reduced blood pressure and
improved the impaired vasodilatory responses in SHR
[5,16~18].

Several mechanisms are speculated to regulate the NOS
expression in a hypertensive state. Shear stress increased
the eNOS expression in cultured endothelial cells [19].
Nitric oxide exerted a negative-feedback influence on
the eNOS expression in cultured endothelial cells
[20,21], and an antioxidant therapy mitigated the up-
regulated eNOS and nNOS expression in SHR [4]
suggesting that oxidative stress may up-regulate the
NOS expression to compensate ROS-mediated nitric
oxide inactivation. Additionally, H,O, directly increased
the eNOS expression in cultured endothelial cells [22].
However, the precise mechanism that up-regulates the
NOS expression in the kidney of SHR has not been
clarified yet. To determine the role of oxidative stress in
the regulation of the renal NOS expression, the present

DOL10.1097/HJH.0b013e3283468367
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study compared the effects of apocynin and tempol on
the NOS expression in the kidney of SHR and WKY, and
also examined the effect of exogenous H,0; on the renal
NOS expression in WKY.

Methods

Animal and experimental protocol

Male SHR/Izm and WKY/Izm were obtained from SLC
(Shizuoka, Japan) and used in the different experimental
protocols. These rats were housed in a facility at the
Tohoku University School of Medicine and had free access
to standard laboratory chow and water while housed at a
controlled temperature (24°C) with a 12-h light, 12-h dark
cycle. All protocols involving rats were reviewed and
received prior approval by the Animal Welfare Committee
at the Tohoku University School of Medicine.

Protocol 1: Effect of apocynin and tempol in SHR and
WKY. Five-week old SHR and WKY were randomly
divided into three groups (# =6 in each group): a control
group, an apocynin group or a tempol group, and treated
with vehicle, apocynin (2 mmol/l) or tempol (2 mmol/l) in
drinking water for 8 weeks, respectively.

Protocol 2: Effect of H,0, administration in WKY. k

Twelve-week old WKY were anesthetized with ether
anesthesia and placed on a temperature-controlled sur-
gical table to maintain body temperature at 37°C during
the operation process. A catheter was implanted into the
right jugular vein. The rats were returned to individual
metabolism cages and allowed to recover for 2 days after
the surgery. To prevent vascular damage at the end of the
catheter, physiological saline was infused continuously at
12 ml/day to dilute H,0,. After 2 days, rats were ran-
domly divided into three groups (z =6 in each group): a
control group, a low-dose H,0O, group (1.2 pmol/kg per
day) and a high-dose H,0, group (4.0 pmol/kg per day).
The physiological saline and H,0, was infused continu-
ously for 1 week. These H,0, doses were selected to
obtain urinary excretion and plasma concentrations of

H,0; equal to those in SHR.

Blood pressure measurement and preparation of
plasma and urinary samples

The systolic blood pressure (SBP) was monitored by the
tail-cuff method (Model UR-5000; Ueda, Tokyo, Japan).
The rats were placed in individual metabolism cages on
the day before the final experimental day, and urine
samples were collected on ice. On the final experimental
day, the rats were anesthetized with pentobarbital sodium
(50 mg/kg, i.p.) and blood samples were collected by
decapitation. These samples were centrifuged for 5min
by 1500r.p.m., and separated from the sediments and
stored at —80°C.

Measurement of biochemical parameters in plasma and
urinary samples

Creatinine and urea nitrogen were measured by a stan-
dard autoanalysis technique (BML, Tokyo, Japan). H,0,

was measured using an Amplex Red Hydrogen Peroxide/
Peroxidase Assay kit (Molecular Probes, Eugene,
Oregon, USA) [23]. Nitrate/nitrite (NO,) was measured
by Griess reagent method [24] using Nitrate/Nitrite
Colorimetric Assay kit (Cayman Chemical Company,
Ann Arbor, Michigan, USA).

Preparation of tissue samples

The kidney and thoracic aorta were quickly removed
after decapitation. The kidney was hemisected and sec-
tioned into the cortex, the inner stripe of the outer
medulla, and the inner medulla. These tissues were
homogenized in a 100 mmol/l potassium buffer (pH
7.25) containing 30% glycerol, 1 mmol/l dithiothreitol,
and 0.1 mmol/l phenylmethylsulfonyl fluoride. The
samples were snap-frozen in liquid nitrogen and stored
at —80°C. The protein concentration of the samples was
measured using the Bradford mechod [25].

Measurement of the renal NADPH oxidase activity

The NADPH oxidase activity was measured as an index
of O, generation by the lucigenin-enhanced chemilu-
minescence method [26]. Proteins of the renal cortical
and- medullary samples (200 ng) were resupended
respectively in 1 ml Krebs-Hepes buffer (mmol/l: NaCl
119, Hepes 20, KCl 4.6, CaCl, 1.2, Na,HPO, 0.15,
KH,PO, 04, MgSO, 1.0, NaHCO; 25 and glucose
5.5). Chemiluminescence was recorded by a tube lumi-
nescencer (PSN AB-2200; ATTO, Tokyo, Japan) every
60s for 5 min after adding lucigenin (10 pmol/l; Sigma—
Aldrich, St Louis, Missouri, USA). The NADPH oxidase
activity was determined by deducting the background
value from the value obtained after adding NADPH
(100 wmol/l) and expressed as counts per minute
(CPU)/mg of protein.

Immunoblot analysis )

Proteins of the samples (50g) were separated by
electrophoresis on an 8.5% sodium dodecyl sulfate poly-
acrylamide gel. The proteins were transferred electro-
phoretically to a nitrocellulose membrane in a transfer
buffer consisting of 25mmol/l Tris—HCl, 192 mmol/l
glycine, and 20% methanol. The membrane was blocked
by immersion into a buffer (TBST-20) containing
10 mmol/l Tris—HCI, 150 mmol/l NaCl, 0.08% Tween-
20, and 10% nonfat dry milk. The membrane was then
incubated with primary antibodies raised against eNOS,
nNOS, iNOS (BD Transduction Laboratories, San Jose,
California, USA) or nitrotyrosine as an index of ONOO™
formation (Santa Cruz Biotechnology, Santa Cruz, Cali-
fornia, USA). The membrane was rinsed several times
with TBST-20 buffer and then incubated with a horse-
radish peroxidase-conjugated goat antimouse IgG (Santa
Cruz Biotechnology). After several washes in TBST-20,
the immunoblots were developed using an enhanced
chemiluminescence kit (Super Signal; Thermo Fisher
Scientific, Waltham, Massachusetts, USA). The relacive
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intensities of the bands at the 140kDa for eNOS,
155kDa for nNOS, 130kDa for iNOS and 70kDa for
nitrotyrosine were quantified using Image ] software
(version 1.40, National Institutes of Health, Bethesda,
Maryland, USA). The band intensities for each protein
were normalized to those for B-actins as an internal
standard, and the band intensity in the control group
was assigned a value of 1.

Statistical analysis

Data are presented as the means+SEM. Data were
analyzed by repeated-measure ANOVA, followed by
Tukey test for multiple comparison among the groups.
Paired data were analyzed by the Student’s ~test. A value
of P less than 0.05 was considered to indicate statistical
significance.

Results ,

Protocol 1: effect of apocynin and tempol in SHR and
WKY

The SBP and plasma and urinary parameters in the three
groups of SHR and WKY are shown in Table 1. The SBP,
plasma and urinary H,O, and NO, were significantly
higher in the control SHR group than in the control
WKY group (P<0.01), but the plasma creatinine and
urea nitrogen and creatinine clearance were not signifi-
cantly different between these control groups. In SHR,
both apocynin and tempol significantly decreased the SBP.
Tempol significantly decreased the plasma creatinine and
increased creatinine clearance, but apocynin did not affect
them. Apocynin significantly decreased the plasma and
urinary H,O; and NO,, but tempol significantly increased
them. In WKY, neither apocynin nor tempol affected the
SBP or plasma and urinary parameters.

The NADPH oxidase activities in the renal cortex and
outer medulla were significantly higher in the control
SHR group than in the control WKY group (27 743 £ 507
vs. 6720 £ 339 counts/min per mg protein in the cortex,
21038 +513 vs. 6326 £ 343 counts/min per mg protein in
the outer medulla; P < 0.01). The activities in the inner
medulla were barely detectable in SHR and WKY. In
SHR, both apocynin and tempol significantly inhibited
the NADPH oxidase activities by 72 and 56% in the renal
cortex and by 71 and 55% in the outer medulla. In WKY,

Table 1

H,0, up-regulates NOS expression in SHR Caoc etal. 1169

apocynin significantly inhibited the NADPH oxidase
activities by 48% in the renal cortex and by 43% in the
outer medulla, but tempol did not significantly affect
the activities.

The eNOS expression in the renal cortex, the outer
medulla, the inner medulla and aorta was significantly
higher in the control SHR group than in the control
WKY group (Fig. 1a). The nNOS expression in the three
sections of the kidney and aorta was also significantly
higher in the control SHR than in the control WKY
(Fig. 1b). The iNOS expression in the three sections of
the kidney and aorta was barely detectable and not sig-
nificantly different among the control SHR and WKY
groups (data not shown). The nitrotyrosine levels in the
three sections of the kidney and aorta were significantly
higher in the control SHR than in the control WKY
(Fig. 1¢).

The eNOS expression in the renal cortex, the outer
medulla, the inner medulla and aorta of SHR was sig-
nificantly decreased by apocynin, but was significantly
increased by tempol (Fig. 2a). The eNOS expression in
the three sections of the kidney and aorta of WKY was not
significantly affected by apocynin or tempol (Fig. 2b).
The nNOS expression in the renal cortex, the outer
medulla, the inner medulla and aorta of SHR was sig-
nificantly decreased by apocynin, but was significantly
increased by tempol (Fig. 3a). The expression of nNOS
protein in the three sections of the kidney and aorta of
WKY was not significantly affected by apocynin or tem-
pol (Fig. 3b). The iNOS expression in the three sections
of the kidney and aorta of both SHR and WKY was not
significantly affected by apocynin or tempol (data not
shown). The nitrotyrosine levels in the renal cortex, the
outer medulla, the inner medulla and aorta of SHR were
significantly decreased by apocynin and tempol (Fig. 4a).
The nitrotyrosine levels in the three sections of the
kidney and aorta of WKY were significantly decreased
by apocynin but not affected by tempol (Fig. 4b).

Protocol 2: effects of H,0, administration in WKY

Effects of H,O, administration on the SBP and plasma
and urinary parameters in WKY are shown in Table 2.
The SBP was significantly increased by H,0, adminis-
tered at the high dose but not at the low dose. The plasma

Effect of apocynin and tempol on the SBP and biochemical parameters in SHR and WKY

SHR WKY
Control (n=6) Apocynin {(n=86) Tempol (n=6) Control (n=6) Apocynin (n=6) Tempol (n=6)

SBP (mmHg) 224+3 202 +£3% 196 £ 3** 1533 150+3 15143

Plasma creatinine (mg/d) 0.17+0.01 0.17 40,01 0.183+0.01** 0.19+0.01 0.18:£0.01 0.18+£0.01
Creatinine clearance (ml/min) 2.50:+0.51 2.33+0.46 3.65 +0.46 2.16 +£0.31 2.11+0.38 2.29+0.35
Plasma urea nitrogen (mg/dl) 17.86 +0.60 20.50+0.85 17.68+£0.58 18.88+0.63 17.05 + 0.83 20.75+0.84
Plasma Ha0, (umol/l) 3.51+0.18 2.6240.23 5.45 + 0.26™* 1.71+£0.22 1.51£0.24 1.69+0.22
Urine H,0, (nmol/day) 26.45 +£1.24 21.25 £ 1.06* 38.16 £ 1.69™ 19.78+1.46 17.69 + 1.61 19.16 +£1.51
Plasma NO, (umol/l) 16.55+0.39 12.43 £ 0.36™* 19.80 £ 0.45™ 9.78 £0.39 9.14+0.41 10.12+0.38
Urine NO, (umol/day) 0.53:+0.03 0.33:+0.08%* 0.72 £ 0.33** 0.30 +£0.03 0.29::0.03 0.32+0.03

Values are means + SEM. SHR, spontaneously hypertensive rats; WKY, Wistar—Kyoto rats. *P < 0.05 vs. the control group. ** P < 0.01 vs. the control group.
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Basal levels of eNOS, nNOS and nitrotyrosine in SHR and WKY. The levels of eNOS (a), nNOS (b) and nitrotyrosine(c) proteins in the renal cortex,
the outer medulla, the inner medulla and aorta were compared between the control WKY group (open bars) and control SHR group (closed bars)
(n =6 in each group). Top panel shows representative immunoblots, middle panel shows the immunoblots B-actins and bottom panel shows data of
the densitometric analysis. **P < 0.01 vs. the control WKY group. NOS, nitric oxide synthase; SHR, spontaneously hypertensive rats; WKY, Wistar—

Kyoto rats.

creatinine and urea nitrogen were not affected by H,0,
administration. The plasma and urinary H,O, and NO4
were significantly increased by H,0, administration in a
dose-dependent manner. The NADPH oxidase activities
in the renal cortex and outer medulla were not affected by
H,0, administration (data not shown).

The eNOS expression in the renal cortex, the outer
medulla, the inner medulla and aorta of WKY was sig-
nificantly increased by H,0, administration in a dose-
dependent manner (Fig. 5a). The nNOS expression in
the three sections of the kidney and aorta of WKY was
also significantly increased by H,0, administration in a
dose-dependent manner (Fig. 5b). The iNOS expression
or nitrotyrosine level in the three sections of the kidney
and aorta of WKY was not significantly affected by H,O,
administration (data not shown).

Discussion

To determine the role of oxidative stress in the regulation
of the renal NOS expression, the present study first com-
pared the effect of apocynin and tempol on the NOS
expression in the kidney of SHR and WKY. Both the renal
NOS expression and oxidative stress were elevated in SHR
compared with WKY. Although both apocynin and tempol
decreased the blood pressure, inhibited the renal NADPH
oxidase activity and reduced the renal nitrotyrosine
expression in SHR, the effect of these drugs on the
H,0; and nitric oxide production and the renal NOS
expression was quite the opposite. The plasma and urinary
H,0; and NO,, and the renal eNOS and aNOS
expressions were decreased by apocynin but increased
by tempol in SHR. In contrast to SHR, they were not
affected by apocynin or tempol in WKY. The effect of
H,0; administration was further examined in WKY, and
exogenous H,0, increased the renal NOS expression
without changing the renal NADPH oxidase activity.

NADPH oxidase is considered to be the major source of
O, generation in hypertensive processes [17]. O, inter-
acting with nitric oxide forms ONOO™; this causes inac-
tivity of nitric oxide and further impairs vasodilatation.
ONOO™ interacting with tyrosine residues in proteins
forms nitrotyrosine which induces tissue injury [15].
Therefore, the nitrotyrosine levels can be used as an
index of ONOO™ formation. The renal cortical and
medullary NADPH oxidase activities, plasma and urinary
H,0,, and the renal and aortic nitrotyrosine levels were
all higher in SHR than in WKY, in agreement with
previous studies [5,13,27]. We also measured the total
SOD acuvity in the renal cortex and medulla and found
that these activities were not significantly different
between SHR and WKY (data not shown). Additionally,
a previous study reported that the catalase and gluta-
thione peroxidase activities in the renal cortex and
medulla were not significantly different between SHR
and WKY [28]. Therefore, elevated ROS levels in the
kidney of SHR may be dependent on the O, generation
by NADPH oxidase.

Chronic apocynin treatment reduced the blood pressure
and inhibited the expression of NADPH oxidase sub-
units in SHR [5,17]. Acute or chronic tempol treatment
reduced the blood pressure and inhibited the NADPH
oxidase activity by metabolizing O, into H;0, in SHR
[18,29,30]. In the present study, the nitrotyrosine levels
were alleviated by both apocynin and tempol treatments
in the kidney and aorta of SHR. On the basis of these
results, the antihypertensive effects of apocynin and
tempol in SHR may have been caused by lowering
O;” generation and ameliorating O; -induced nitric
oxide inactivation. In spite of the antihypertensive and
antioxidative effects, the effects of apocynin and tempol
on the NOS expression and nitric oxide production were
quite the opposite, and were accompanied by changes in
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Effects of apocynin and tempol on the eNOS expression in SHR and
WKY. The levels of eNOS protein in the renal cortex, the outer medulla,
the inner medulla and aorta of SHR (a) and WKY (b) were compared
among the control group (open bars), the apocynin group (closed bars)
and tempol group (hatched bars) (n=6 in each group). Top panel
shows representative immunaoblots, middle panel shows the
immunoblots B-actins and bottom panel shows data of the
densitometric analysis. **P < 0.01 vs. the control group. NOS, nitric
oxide synthase; SHR, spontaneously hypertensive rats; WKY, Wistar—
Kyoto rats.

the plasma and urinary H,O, in SHR. Neither apocynin
nor tempol affecced H,0,, NO, or NOS expression in
WKY indicating that the effects of these drugs on the
NOS expression and nitric oxide production are specific
in SHR with elevated oxidative stress.

To our knowledge, there has been no study which
compared the effects of apocynin and tempol on the
renal NOS expression in SHR, although it has been
reported that the antioxidant lazanoid mitigated the
up-regulation of NOS expression in tissues of SHR [3].
The present results indicating that apocynin decreased
the nitric oxide production and NOS expression in the
renal cortex, the outer medulla and inner medulla of SHR

Effects of apocynin and tempol on the nNOS expression in SHR and
WAKY. The levels of nNOS protein in the renal cortex, the outer medulla,
the inner medulla and aorta of SHR (a) and WKY (b) were compared
among the control group (open bars), the apocynin group (closed bars)
and tempol group (hatched bars) (n=6 in-each group). Top panel
shows representative immunoblots, middle panel shows the
immunoblots of B-actins and bottom panel shows data of the
densitometric analysis. **P < 0.01 vs. the control group. NOS, nitric
oxide synthase; SHR, spontaneously hypertensive rats; WKY, Wistar~
Kyoto rats.

are not consistent with those of previous studies. The
NOS activity in the aorta of SHR was increased by
apocynin treatment for 4 weeks [31], but was not affected
by apocynin treatment for 6 weeks [17]. Apocynin treat-
ment for 3 weeks normalized the elevated juxtaglomer-
ular nNOS expression in SHR [32], and apocynin treat-
ment for 1 week reduced the perivascular nitric oxide
concentration in the mesenteric arteries of SHR [5]. In
contrast to apocynin, the effect of chronic tempol treat-
ment on the NOS expression in the renal cortex, the outer
medulla and inner medulla of SHR has not been reported
[33]. Thus, the present study reported for the first time
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Effects of apocynin and tempol on the levels of nitrotyrosine in SHR and
WKY. The levels of nitrotyrosine in the renal cortex, the outer medulla,
the inner medulla and aorta of SHR (a) and WKY (b) were compared
among the control group (open bars), the apocynin group (closed bars)
and tempol group (hatched bars) (n=6 in each group). Top panel
shows representative immunoblots, middle panel shows the
immunoblots B-actins and bottom panel shows data of the
densitometric analysis. **P < 0.01 vs. the control group. SHR,
spontaneously hypertensive rats; WKY, Wistar—Kyoto rats.

Table 2 Effect of exogenous H,0, on the SBP and biochemical
parameters in WKY

Control Low dose High dose

(n=6) (n=6) (n=16)
SBP {(mmHg) 145+ 83 156+3 159 +3*
Plasma creatinine (mg/dl) 0.204+0.01  0.21 +0.01 0.22+0.01
Plasma urea nitrogen (ng/dl) 13.40+0.61 13.90+0.68 13.604+0.65
Plasma H,0, (umol/l) 1.8840.24 2244027  3.16+0.29"
Urine H,0, (nmol/day) 18.63+1.46 54.12:+1.39" 74.65+2.16M
Plasma NO, (umol/}) 9.49+0.40 17.74+041" 22.02+0.38"
Urine NO, (umol/day) 0.3240.03 0.51+£003" 0.83+004M

Values are means & SEM. WKY, Wistar—Kyoto rats. *P< 0.05 vs. the control
group. t P< 0.01 vs. the control group. * P< 0.01 vs. the low dose H,Oy-treated

group.

that chronic tempol treatment could increase the renal
NOS expression in SHR.

Several mechanisms such as shear stress [19], nitric oxide
inactivation [20,21], oxidative stress [4] and H,0, [22] are
speculated to up-regulate the NOS expression in the
hypertensive state. In the present study, apocynin
decreased but tempol increased the renal NOS expres-
sion and nitric oxide production in SHR, although both
drugs reduced the blood pressure, inhibited the renal
NADPH oxidase activity and decreased the nitrotyrosine
expression. Therefore, the opposite effects of these drugs
on the renal NOS expression can not be explained only
by shear stress (blood pressure), the renal NADPH
oxidase-produced O, or nitric oxide inactivation
(ONOO™). The opposite effects of these drugs on the
renal NOS expression and nitric oxide production were
accompanied by changes in the plasma and urinary H;O5,
suggesting that H,0, may up-regulate the renal NOS
expression in SHR.

To determine the role of H,O; in the regulation of
the renal NOS expression, the present study further
examined the effect of exogenous H,0, in WKY.
Although H,0O, administration at the high dose caused
a slight increase in the blood pressure, H,O, increased
the eNOS and nNOS expression and nitric oxide pro-
duction in a dose-dependent manner without changing
the renal NADPH oxidase activity and nitrotyrosine
levels. These results indicate that the H,Oj-increased
NOS expression and nitric oxide production were inde-
pendent of O, generation or blood pressure. Previous
studies reported that direct infusion of H,0; into the left
renal artery increased the urine volume and induced
transient massive proteinuria in the infused kidney of
Munich-Wistar rats [34], and that chronic infusion of
H,0, for 5 days into the renal medulla significantly
increased the blood pressure in Sprague—Dawley rats
[35]. In agreement with the present results, H,0,
increased the eNOS expression and activity in cultured
endothelial cells by changing the rate of gene transcrip-
tion and altering mRINA processing and stability [22].
H,0; increased the perivascular nitric oxide concen-
tration in rat mesenteric arteries [6]. However, other
studies have yielded conflicting results on the effect of
H;0; on vasomotor tone: vasoconstrictor [36], vasodilator
[37] or biphasic vasomotor [38,39] effects depending on
the vascular beds and the experimental conditions. In
addition to the eNOS expression, we also observed that
H,0; administration increased the levels of phosphory-
lated eNOS at Ser1177 but decreased the ratio of phos-
phorylated eNOS to total eNOS in the renal cortex, the
medulla and aorta of WKY (data not shown).

High pressure induced O,  production in isolated
arteries via NADPH oxidase activation [10], and oscil-
latory shear stress increased O, and H,O, production,
which stimulated the eNOS expression in cultured
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Effect of exogenous H,0, on the NOS expression in WKY. The levels
of eNOS (a) and nNOS (b) proteins in the renal cortex, the outer
medulla, the inner medulla and aorta of WKY were compared among
the control group (open bars), the low-dose H,0, group (closed bars)
and high-dose H,O, group (hatched bars) (n=6 in each group). Top
panel shows representative immunoblots, middle panel shows the
immunoblots B-actins and bottom panel shows data of the
densitometric analysis. **P < 0.01 vs, the control group. **£ < 0.01 vs.
the low-dose H,O, group. NOS, nitric oxide synthase; SHR,
spontaneously hypertensive rats; WKY, Wistar—Kyoto rats.

endothelial cells [40]. As well as endothelial cells,
increases of the renal perfusion pressure stimulated
H,0; and nitric oxide productions in the renal medulla
of Sprague—Dawley rats [41], whereas nitric oxide-
- mediated vasodilatory responses were impaired in SHR
[7]. Taken together with the present results, SOD may
alleviate ROS-mediated nitric oxide inactivation through
metabolizing O, into H,Oy; this causes the increase of
H;0;-induced NOS expression and further improves the
impaired vasodilatory responses in a hypertensive state.
Nitric oxide also has various renal effects including the

H,0, up-regulates NOS expression in SHR Cao etal 1173

regulation of renal hemodynamics, the inhibition of tub-
ular Na reabsorption, tubuloglomerular feedback and
sympathetic nerve activity [42]. In agreement with the
present results, tempol treatment for 2 weeks in SHR
increased the glomerular filtration rate (GFR) by 17%
[18]. In addition, tempol treatment for 7 weeks in SHR
selectively increased the renal medullary blood flow by
approximately 50% [43]. The tempol-increased GFR and
renal medullary blood flow in SHR might be mediated in
part through the ameliorated nitric oxide bioactivity
because of the increase of H,0,-induced NOS expres-
sion and the decrease of O, -induced nitric oxide inac-
tivation in the kidney.

In conclusion, the renal NOS expression and nitric
oxide production were elevated in SHR. Although both
apocynin and tempol decreased the blood pressure and
inhibited the renal NADPH oxidase activity in SHR,
apocynin decreased but tempol increased the renal NOS
expression and nitric oxide production together with the
plasma and urinary H,0,. Exogenous H,0; increased the
renal NOS expression and nitric oxide production in
WKY. These results indicate that among ROS, endo-
genous H,0, may be a mediator of the up-regulation of

the renal NOS expression and nitric oxide production
in SHR.
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Abstract The impairment of airway protective reflexes,
i.e., swallowing and cough reflexes, is thought to be one of
the major causes for aspiration pneumonia in older people.
Restoration of cough and swallowing reflexes in the elderly
is key to preventing aspiration pneumonia in the elderly.
Although, the medical literature has asserted that cough
and swallowing are controlled primarily by the brainstem,
recent advances in human brain imaging has provided
evidence that cortical and subcortical structures play crit-
ical roles in cough and swallowing control. Because of
their nature, reflexive cough and swallowing activate both
sensory and motor areas in the cortex. In both protective
reflexes, the sensory component, including sensory cortex
in reflexive circuits, seems to be more vulnerable to aging
than the motor component, including the motor cortex.
Therefore, the strategy to restore cough and swallowing
reflexes should be focused on compensations of sensory
components in these reflexive circuits. Remedies to
enhance sensory nerve terminals and sensory cortical areas
related to these reflexes might be useful to prevent aspi-
ration pneumonia in the elderly.
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Introduction

Aspiration is defined as the misdirection of either oropha-
ryngeal or gastric contents into the lower respiratory tract,
that is, the act of taking foreign material into the lungs.
This can cause an assortment of pulmonary syndromes
determined by the quantity and nature of the aspirated
material, the frequency of aspiration, and the host factors
that predispose the patient to aspiration and to modifying
the response [1]. Pulmonary aspiration syndromes include
aspiration pneumonitis, aspiration pneumonia, diffuse
aspiration bronchiolitis, airway obstruction, lung abscess,
exogenous lipoid pneumonia, chronic interstitial fibrosis,
and Mycobacterium fortuitum pneumonia. Among these
syndromes, one of most frequent and important is aspira-
tion pneumonia [1].

We opened an aspiration clinic in Tohoku University
Hospital in 2005. Most patients were referred by other doc-
tors inside of the hospital. Figure 1 shows the comorbidities
of patients suspected of aspiration from April 2005 to March
2011. Although, the background diseases are diversely dis-
tributed, the common mechanism for aspiration has to be
identified to develop a strategy to prevent aspiration.

Increased incidence of aspiration in the elderly is a
consequence of a number of age-related factors, including
comorbid illnesses, daily medications, and the aging pro-
cess itself [2]. These factors combine to adversely affect
upper and lower respiratory tract host defenses against
invading pathogens [3]. Among these factors, the major
compromises of mechanical airway clearance, such as
impaired cough and swallowing reflexes, probably present
the most severe general hazards. The progressive loss of
cough and swallowing reflexes with aging has been sug-
gested as leading to aspiration pneumonia [4], a most
common pneumonia in the elderly [5].
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Aging and Airway Protective Reflexes

Although impaired cough and swallowing reflexes have
been shown in patients suffering from aspiration pneumo-
nia [6-8], re-evaluation of age-related changes in protec-
tive reflexes in individuals who led active daily lives shows
that both reflexes do not decrease with the advance of age
[9, 10]. This suggests that involutional and degenerative
changes of aging often result in marginally compensated
protective reflexes [11].

Both cough and swallowing reflexes are well-integrated
and have the afferent limb consisting of receptors and
afferent nerves, the central cough or swallowing center in
the brainstem, and the efferent limb consisting of motor
nerves supplying the muscles used in coughing or swal-
lowing. Moreover, recent advances in neuroscience indi-
cated the importance of supra medullary structures in
cough and swallowing reflexes [12~16]. Since the effect of
aging on protective reflexes has been evaluated mostly by
net performance, it is of important to study its effect on
each component of the reflexive network in order to
develop the remedies that will restore the protective
reflexes.

Cortical Control of Airway Protective Reflexes

For many years the medical literature has asserted that

cough and swallowing are controlled primarily by the

brainstem. However, advances in human brain imaging
have provided evidence that cortical and subcortical
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Fig. 1 Background conditions 50
of aspiration in patients who had
been seen at our aspiration
clinic between April 2005 and
March 2011. One patient had
“ multiple diseases "
=
2
=]
©
2
k-]
b}
a
£
3
2
QO
&"
&

Motor region Sensory region

Relatively resistant
to aging

Prone to aging

Fig. 2 Cortical areas related to cough and swallowing reflexes.
Sensory regions of the cortex are prone to aging-related deficits

structures play a critical role in controlling cough and
swallowing [12-16]. Because of its nature, either reflexive
cough or swallowing activates both sensory and motor
areas in the cortex (Fig. 2). The most consistent areas in
neuroimaging studies include the primary sensorimotor
cortex, sensory motor integration areas, the insula, the
anterior cingulated cortex, and supplementary motor areas
[17-19].

Malandraki and colleagues [20] found that by the
functional MRI technique, the sensory processing areas in
the cortical areas involved in swallowing were deterio-
rated by aging rather than the motor processing areas.
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