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ARTICLE INFO ABSTRACT
Article history: This study was designed to clarify the effects of breathing with prolonged expiration on cardiopul~
Accepted 29 June 2011 monary responses and autonomic nervous activity during incremental exercise. Eleven healthy men
were randomly assigned to breathing mode: a prolonged expiration breathing with a 2-s inspired time
Keywords: and 4-s expired time and a spontaneous breathing without any constraints. Oxygen uptake (Vg, ), ven-
g;z;‘z‘;&ed exig'aﬁ‘m tilation efficiency (Ve/Vco,) and rate pressure product were measured. Low- (LF) and high-frequency
ing mode

(HF) components of blood pressure and heart rate variability were analyzed to assess sympathetic and
parasympathetic nervous activities, respectively. Vg/Vco,, rate pressure product and LF were signifi-
cantly lower, and Voz and HF were significantly higher during exercise with prolonged expiration than
with spontaneous breathing. Striking effects of prolonged expiration breathing included the improve-
ment of ventilation efficiency, the suppression of sympathetic nervous activity and the activation of
parasympathetic one during incremental exercise. Furthermore, prolonged expiration breathing may

Cardiopuimonary responses
Autonomic nervous activity
Incremental exercise

have suppressed the exercise-induced increase in myocardial Vo,.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The breathing technique of decreasing respiratory frequency
(fr) and increasing tidal volume (V) reportedly suppresses sym-
pathetic nervous activity and activates parasympathetic nervous
activity (Bernardi et al., 1998; Goso et al., 2001). Although many
studies have demonstrated an interaction between breathing tech-
nique and autonomic nervous activity as assessed by heart rate
and blood pressure variability (Bartels et al., 2004; Bloomfield et
al.,, 2001; Cottin et al., 1999; Péyhénen et al.,, 2004; Sanderson
etal., 1996), few have documented the effects of breathing mode on
cardiopulmonary responses during exercise. Our prolonged expi-
ration breathing technique, involving 2-s inspired time (Tj) and
4-s expired time (Tg), capitalizes on the suppression of parasym-
pathetic nervous activity during inspiration and its respective
activation during expiration (Hayano et al., 1994a,b), which occurs
concurrently with suppression of sympathetic nervous activity dur-
ing expiration (Seals et al., 1993). We previously reported that
prolonged expiration breathing enhances parasympathetic ner-

* Corresponding author at: Department of Rehabilitation, Kitasato University
School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kana-
gawa 252-0373, Japan. Tel.: +81 42 778 9699; fax: +81 42 778 9709.

E-mail address: tak9999@med kitasato-u.ac,jp (T. Masuda).

1569-9048/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.resp.2011.06.025

vous activity and suppresses heart rate elevation in healthy young
volunteers in comparison to breathing with a 3-s Ty and 3-s Tg
or spontaneous breathing during exercise with a moderate work-
load (Matsumoto et al,, 2008). It is known that heart rate and
blood pressure are excessively elevated during exercise in patients
with acute myocardial infarction or chronic heart failure in whom
sympathetic nervous activity is increased and parasympathetic
nervous activity is weakened, resulting in decreased exercise toler-
ance (Goldsmith et al., 2000; Rosenwinkel et al., 2001; Matsunaga
et al., 2004). Therefore, we hypothesized that prolonged expira-
tion breathing during exercise would enhance parasympathetic
nervous activity and enable safe exercise therapy without exces-
sively elevating heart rate or blood pressure. However, the effects
of prolonged expiration breathing on cardiopulmonary responses
and autonomic nervous activity as exercise intensity changes are
largely unknown. Exercise is prescribed at a variety of intensities
for patients with cardiopulmonary disease according to their con-
dition. To develop a clinically applicable exercise program using
prolonged expiration breathing, it is necessary to assess how this
technique affects cardiopulmonary responses and autonomic ner-
vous activity in increments from low exercise intensity to the
maximum exertion.

We hypothesized that prolonged expiration breathing would
enhance parasympathetic nervous activity and decrease sympa-
thetic nervous activity during incremental exercise, resulting in the
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Table 1
Participants’ charcteristics.

Participants Age (years) Height {cm} Weight (kg) BMI (kg/m?) Peak Voz (mL/min/kg) Peak work rate {W)
Spontaneous Prolonged Spontaneous Prolonged
breathing expiration breathing expiration

1 22 176 68 220 40.4 43.5 218 210

2 23 182 78 235 38.5 45.2 208 230

3 20 168 60 213 36.8 38.1 192 202

4 22 185 72 21.0 423 429 234 238

5 21 175 63 206 383 38.6 212 214

6 24 171 58 19.8 375 375 196 196

7 22 165 55 202 35.3 36.2 188 194

8 22 169 57 200 376 38.0 196 204

9 22 174 63 20.8 389 41.2 210 216

10 24 180 72 222 397 43.3 212 226

11 23 173 65 21.7 388 39.3 208 214

Means + SEM 221404 1746+ 19 64.8 £ 22 221403 386+£20 40.3 £ 2.4 204.8 + 6.8 2136+ 7.7t

SEM: standard error; BMI: body mass index; Vozi oxygen uptake.
t P<0.05 vs. spontaneous breathing.

suppression of excessive heart rate and blood pressure elevation,
in comparison to spontaneous breathing in healthy young volun-
teers. Therefore, this study was designed to investigate the effects of
prolonged expiration breathing on cardiopulmonary responses and
autonomic nervous activity during incremental exercise in healthy
young volunteers.

2. Methods
2.1. Participants

The study participants were 11 healthy young men. Partici-
pant characteristics are presented in Table 1. The study protocol
was approved by the Ethics Committee of Kitasato University,
and informed consent was obtained from each participant after
a detailed explanation of the study protocol. All participants vol-
unteered to participate in the study, and none of the volunteers
received monetary compensation. Participants were excluded if
they had a history of smoking, cardiopulmonary disease or motor
dysfunction due to orthopedic or central neurological disease. The
participants were instructed to maintain their usual sleep pat-
terns, refrain from exercise, and abstain from caffeine and other
autonomic stimulants for 2 days before the study. The study was
performed between 14:00 and 17:00 in an air-conditioned room
kept at 23-25 °C and 40-60% humidity.

2.2. Study design

This study employed a randomized, cross-over design. Partic-
ipants were randomly assigned to groups performing controlled
breathing with prolonged expiration first or spontaneous breathing
first. For prolonged expiration breathing, they were instructed to
breathe with a 2-s Ty and 4-s T at 10 breaths/min from the lightest
to the heaviest possible workload the incremental exercise pro-
gression. The participants were instructed to watch the Tj, Tz and
Tg/T; displayed on a gas analyzer monitor (AE300S, Minato, Osaka,
Japan).In addition, they maintained the breathing at approximately
a 1:2 ratio of T to T¢ until the endpoint of incremental exercise,
even if they experienced difficulty maintain a 2-s T; and 4-s Tg.
The participants practiced prolonged expiration breathing several
times before the study and were supervised by an instructor dur-
ing incremental exercise. For the spontaneous breathing, they were
instructed to breathe without constraint throughout incremen-
tal exercise. The incremental exercises with prolonged expiration
breathing or spontaneous breathing were performed at the same
time on 2 consecutive days.

2.3. Study protocol

Incremental symptom-limited cardiopulmonary exercise test-
ing was performed using a recumbent cycle ergometer (Strength-
Ergo.240, Mitsubishi Electric Engineering, Tokyo, Japan) according
to a ramp protocol. After resting for 15 min on the recumbent cycle
ergometer, participants started exercise at 10 watts (W) and 50 rev-
olutions per minute of pedaling for 3 min as a warm-up period.
Next, the exercise was performed with a workload increase of 1W
every 3 s (20 W/min) until the endpoint of cardiopulmonary exer-
cise testing, followed by a 3-min cool-down period at 10W and
finally a 5-min recovery period. The endpoint of cardiopulmonary
exercise testing was determined according to the criteria of the
American College of Sports Medicine (Kelsey, 2001). That is, the
cardiopulmonary exercise testing was finished when the partici-
pants could not continue pedaling at 50 revolutions or more per
minute, or when they were physically exhausted or complained of
severe dyspnoea or dizziness.

2.4. Cardiopulmonary responses

The Ty, T, Te/Ti, fr. Vi, expired ventilation (Vg), oxygen uptake
(V02 ), carbon dioxide output (Vcoz ), and ventilatory equivalents
for Vo, (Ve/Vo,) and Vo, (Ve/Vco, ) were measured with a breath-
by-breath method using a gas analyzer throughout the study. The
average values were computed every 10s. V02 and work rate were
used as parameters of aerobic capacity (Wasserman et al., 2005).
The anaerobic threshold was calculated from Vo2 and Vcoz using
the V-slope method (Koike et al., 2002). The ratio of Vi increase to
Vcoz increase (Vg/ Vcoz slope) was calculated by least-squares linear
regression using Vg and Vcoz measured from the beginning of incre-
mental exercise to the respiratory compensation point (Wasserman
et al., 2005). The Vg/Vo,, Ve/Vco, and Vg/Vco, slope were used as
parameters of ventilation efficiency (Koike et al., 2002; Wasserman
etal., 2005). The delta Voz /delta work rate was calculated by least-
squares linear regression using the delta Voz and delta work rate
measured from 1 min after the beginning of incremental exercise to
the anaerobic threshold (Toyofuku et al., 2003). The Voz /work rate
and delta VOz /delta work rate were used as parameters of exercise
efficiency (Wasserman et al., 2005). Percutaneous oxygen satura-
tion (Spo,) was continuously monitored using a pulse oximeter
(PULSOXé -Me, Nihon Kohden, Tokyo, Japan) throughout the study.

The heart rate, and systolic and diastolic blood pressures were
recorded continuously throughout the study using a Holter elec-
trocardiogram (FM-120, Fukuda Denshi, Tokyo, Japan) and a finger
sphygmomanometer (Finometer, Finapres Medical System BV, The
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Netherlands), respectively. The rate pressure product was calcu-

lated from heart rate multiplied by systolic blood pressure as a

parameter reflecting myocardial VOz (Nelson et al., 1974; Gobel
et al, 1978).

2.5. Heart rate variability and blood pressure variability

Offline beat-to-beat analyses of the digitized Holter electro-
cardiogram and Finometer signals were performed at a temporal
resolution of 1 ms. Time series of successive beats were extracted
for R-R intervals and beat-to-beat intervals. Occasional ectopic
beats were corrected by linear interpolation of adjacent normal
beats (Task Force of the European Society of Cardiology and the
North American Society of Pacing and Electrophysiology, 1996).
Any significant trends were removed by subtraction of the best
polynomial function fitted to the data using low-pass filtering.
Heart rate and blood pressure variability were analyzed by the max-
imum entropy method using MemCalc (MemCalc/TARAWA, GMS,
Tokyo, Japan) to obtain the power spectra of the low-frequency
(LF; 0.04-0.15Hz) and high-frequency (HF; 0.15-0.4Hz) compo-
nents. The power spectrum of the HF component of heart rate
variability is used as a parameter reflecting cardiac parasym-
pathetic nervous activity (Task Force of the European Society
of Cardiology and the North American Society of Pacing and
Electrophysiology, 1996), while that of the LF component of blood
pressure variability indicates vascular sympathetic nervous activ-
ity (Baselli et al., 1986; Laitinen et al., 1999). The LF/HF ratio in
heart rate variability indicates the predominance of sympathetic
nervous activity (Task Force of the European Society of Cardiology
and the North American Society of Pacing and Electrophysiology,
1996). The LF, HF and LF/HF ratio in heart rate and blood pres-
sure variability were analyzed at 10-s intervals for this study
protocol.

2.6. Rating of perceived exertion

The rating of perceived exertion was assessed every minute
throughout the study according to the Borg scale (Noble et al,,
1983).

2.7. Statistical analysis

All resting and warm-up parameters are shown as mean values
measured during the 15-min resting period and 3-min warm-
up period, respectively. The parameters measured at rest were
adopted as baseline values. The f, Vr, Vg, Tg, Tg/T; and Spo,
measured during incremental exercise are shown as mean val-
ues calculated every quarter of the individual’s particular exercise
time period from initiation to endpoint. The other parameters
measured during incremental exercise are shown as mean val-
ues calculated every tenth of the individual’s particular exercise
time period from initiation to endpoint. Two-way analysis of vari-
ance for repeated measures (3 time courses of rest, warm-up
and exercise vs. 2 breathing techniques) were used to analyze
differences in cardiopulmonary responses and autonomic ner-
vous activity between the prolonged expiration and spontaneous
breathing modes. If an F ratio was significant, differences in car-
diopulmonary responses and autonomic nervous activity between
the prolonged expiration and spontaneous breathing modes were
assessed using the paired t-test. All values were expressed as
means =+ standard error and a P value less than 0.05 was consid-
ered statistically significant. Descriptive analyses were performed
using SPSS 11.0 ] software for Windows (SPSS Japan Inc., Tokyo,
Japan). The abbreviations used in the present study are shown in
Table 2.

Table 2
Abbreviations.

LE: low-frequency component of the power spectrum
HF: high-frequency component of the power spectrum
T;: inspired time
Tz: expired time
fr: respiratory frequency
Vr: tidal volume
Ve: expired ventilation
Vo, : oxygen uptake
Veo, : carbon dioxide output
Spo, : percutaneous oxygen saturation

3. Results
3.1. Exercise times and work rate

All participants completed protocols without any adverse
events or complications, and the reason for exercise stoppage was
leg fatigue. The exercise times from the beginning of incremental
exercise until the anaerobic threshold and endpoint were 6min
124325 and 10min 24 13s with prolonged expiration breath-
ing, and 5min 56+19s and 9min 424245 with spontaneous
breathing, respectively. The work rate at the anaerobic threshold
and endpoint were 126.8 +10.6 and 213.6 + 7.7 W with prolonged
expiration breathing, and 109.6+10.5 and 204.84+6.8W with
spontaneous breathing, respectively. The exercise times and work
rate at the anaerobic threshold and endpoint were significantly
higher with prolonged expiration breathing than spontaneous
breathing (P<0.05).

3.2. Respiratory responses

Changes in respiratory responses during incremental exercise
are shown in Table 3. The fg was significantly lower from the
warm-up to the 75% point of the exercise period with prolonged
expiration breathing than with spontaneous breathing (P<0.01).
The Vr was significantly higher from the warm-up to the 75% point
of the exercise period with prolonged expiration breathing than
with spontaneous breathing (P<0.01). From the 50% point to the
75% point of the exercise period, Vg was significantly lower with
prolonged expiration breathing than with spontaneous breathing
(P<0.01).

The Tg was significantly higher from the warm-up to the 75%
point of the exercise period with prolonged expiration breathing
than with spontaneous breathing (P<0.01). The Tg/T; was signifi-
cantly higher in the warm-up and exercise periods with prolonged
expiration breathing than with spontaneous breathing (P<0.01).

There was no significant difference in Spo, throughout the
study between the prolonged expiration and spontaneous breath-
ing modes.

Changes in Vg /Vo, and Vg /Vco, during incremental exercise are.
shown in Fig. 1. The Vg/Vo, was significantly lower from the 60%
point to the 90% point of the exercise period with prolonged expi-
ration breathing than with spontaneous breathing (P<0.01). The
VE/Vcoz was significantly lower from the 10% point to the 80%
point of the exercise period with prolonged expiration breathing
than with spontaneous breathing (P<0.01). The Vg /Vco, slope was
19.1 £ 2.9 with prolonged expiration breathing and 22.1 £ 4.4 with
spontaneous breathing, and this difference was statistically signif-
icant (P<0.05).

3.3. Cardiopulmonary responses

Changes in heart rate, blood pressure and rate pressure prod-
uct during incremental exercise are shown in Fig. 2. There was no
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Table 3
Changes in respiratory responses during incremental exercise.
Breathing mode Rest Warm-up Incremental exercise
25% 50% 75% 100%
(endpoint)
F (breath/min) Spontaneous breathing 18.1(0.8) 24.0(2.8) 227(23) 24.7(1.6) 279(2.1) 35.8(2.6)
R {breathmin Prolonged expiration 17.3(1.2) 10.1{0.1)tt 10.0 (0.2) 11.1 (0.6)t 134 (34)1 29.0(4.9)
Vi (L) Spontaneous breathing 0.6(0.0) 0.7 (0.0} 1.0(0.0) 1.2(0.0) 1.5(0.0) 1.7 (0.0)
T Prolonged expiration 0.6 (0.0) 1.8 (0.2)F 2.0 (0.3)% 2.5 (0.2) 2.8(0.2)1 24(04)
Vs (Limi Spontaneous breathing 9.9(0.3) 16.6 (0.7) 21.4(1.6) 30.4(1.6) 44.1(3.1) 62.9(5.7)
s (L/min) Prolonged expiration 9.1(0.5) 183 (22) 197 (2.1) 25.1 (1.5 33.8 (2.5)1 58.1(69)
Te (s) Spontaneous breathing 2.1(0.1) 1.6(0.1) 1.6(0.2) 1.4(0.1) 1.2(0.1) 0.9(0.1)
els Prolonged expiration 2.2(0.1) 3.9(0.1)t 4.0 (0.1) 3.7(0.1) 3.7 (0.3)t 1.7(0.4)
TofT, Spontaneous breathing 1.5(0.1) 1.4(0.1) 1.3(0.0) 1.2(0.1) 1.2(0.0) 1.1(0.0)
EIN Prolonged expiration 1.4(0.1) 19(0.1) 1.9(0.2)" 1.9 (0. 2.0(0.1)1 1.9(0.1)
5 Spontaneous breathing 98.2 (0.4) 98.2(04) 98.3 (0.4) 98.2(0.4) 97.6(0.4) 96.8 (0.4)
po, Prolonged expiration 98.6(0.2) 98.6(0.2) 98.4(0.3) 98.4(0.2) 97.9(0.4) 96.8 (0.4)

Data are presented as means (+standard error). f: respiratory frequency; Vr: tidal volume; Vg: expired ventilation; T¢: expired time; Tj: inspired time; Spo, : percutaneous
oxygen saturation. The results of the two-way analysis of variance for repeated measures were as follows: interaction between time courses and breathing modes for fg
(F=2.2,P<0.05), Vy (F=2.3, P<0.05), Tz (F=7.8, P<0.01) and T/T; (F=3.1, P<0.01), and effects of time courses and breathing modes for Vi (time courses: F=51.5, P<0.01,

and breathing modes: F=14.4, P<0.01).
* P<0.01 vs. spontaneous breathing.
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Fig. 1. Changes in Vi/Vo, and V&/Vco, during incremental exercise. Data are pre-
sented as meanszstandard error, closed circle: prolonged expiration breathing,
open diamond: spontaneous breathing, tP<0.01 vs. spontaneous breathing. Vg:
expired respiration; Voz : oxygen uptake; Vcoz : carbondioxide emission; WU: warm-
up; AT: anaerobic threshold; EP: endpoint. The results of the two-way analysis of
variance for repeated measures were as follows: effects of time courses and breath-
ing modes for V¢ /Voz (time courses: F=10.0, P<0.01, and breathing modes: F=27.4,
P<0.01)and Vi /Vco, (time courses: F=24.0, P<0.01, and breathing modes: F=58.2,
P<0.01). '

significant difference in heart rate throughout the study between
prolonged expiration and spontaneous breathing modes. The sys-
tolic blood pressure was significantly lower from the 20% point
of the exercise period to the endpoint with prolonged expiration
breathing than with spontaneous breathing (P<0.01). The diastolic
blood pressure was significantly lower from the 30% point of the
exercise period to the endpoint with prolonged expiration breath-
ing than with spontaneous breathing (P<0.05). The rate pressure
product was significantly lower from the 20% point of the exercise
period to the endpoint with prolonged expiration breathing than
with spontaneous breathing (P<0.01).

Changes in Voz and Voz /work rate during incremental exercise
are shown in Fig. 3. The Voz at the endpoint were signifi-
cantly higher with prolonged expiration breathing than with
spontaneous breathing (P<0.05). The anaerobic threshold cor-
responded to 50.9+8.3% of the exercise period with prolonged
expiration breathing, and 50.9+2.9% of that with spontaneous
breathing, showing no significant difference between breathing
modes. The respiratory compensation point occurred at 80.6 + 8.2%
of the exercise period with prolonged expiration breathing and
78.5+6.3% with spontaneous breathing, showing no significant
difference between breathing modes. The V02 /work rate was sig-
nificantly higher from the 70% point of the exercise period to the
endpoint with prolonged expiration breathing than with spon-
taneous breathing (P<0.05). The delta Voz /delta work rate was
10.5+04mL/min/W with prolonged expiration breathing and
9.4+ 0.5 mL/min/W with spontaneous breathing, and the differ-
ence between the two breathing modes was statistically significant
(P<0.05).

3.4. Heart rate variability and blood pressure variability

Changes in LF, HF and LF/HF of heart rate variability during
incremental exercise are shown in Fig. 4. There was no signifi-
cant differences in LF throughout the study between prolonged
expiration and spontaneous breathing modes. The HF was signif-
icantly higher from the warm-up to the 50% point of the exercise
period with prolonged expiration breathing than with spontaneous
breathing (P<0.01). The LF/HF was significantly lower from the
warm-up to the 20% point of the exercise period with prolonged
expiration breathing than with spontaneous breathing (P<0.05).
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Fig. 2. Changes in heart rate, blood pressure and rate pressure product during
incremental exercise. Data are presented as means <+ standard error, closed circle:
prolonged expiration breathing, open diamond: spontaneous breathing, P<0.05
and ' P<0.01 vs. spontaneous breathing. SBP: systolic blood pressure; DBP: diastolic
blood pressure; WU: warm-up; AT: anaerobic threshold; EP: endpoint. The results
of the two-way analysis of variance for repeated measures were as follows: effect of
time courses for heartrate (F= 147.6,P<0.01), and effects of time courses and breath-
ing modes for SBP (time courses: F=50.7, P<0.01, and breathing modes: F=110.5,
P<0.01), DBP(time courses: F=53.2, P<0.01, and breathing modes: F=31.7,P<0.01)
and rate pressure product (time courses: F=154.8, P<0.01, and breathing modes:
F=40.8, P<0.01).

Changes in LF, HF and LF/HF of blood pressure variability during
incremental exercise are shown in Fig. 5. The LF was significantly
lower from the 50% point of the exercise period to the endpoint with
prolonged expiration breathing than with spontaneous breathing
(P<0.05 and P<0.01, respectively). There was no significant differ-
ences in HF throughout the study between prolonged expiration
and spontaneous breathing modes. The LF/HF was significantly
lower from the 80% point of the exercise period to the endpoint with
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Fig. 3. Changes in Voz and Voz /work rate during incremental exercise. Data are
presented as meansz standard error, closed circle: prolonged expiration breath-
ing, open diamond: spontaneous breathing, 'P<0.05 vs. spontaneous breathing.
Vozz oxygen uptake; WU: warm-up; AT: anaerobic threshold; EP: endpoint. The
results of the two-way analysis of variance for repeated measures were as follows:
effects of time courses and breathing modes for V02 (time courses: F=157.2,P<0.01,
and breathing modes: F=4.4, P<0.01) and V02 /work rate (time courses: F=156.5,
P<0.01, and breathing modes: F=9.3, P<0.01).

prolonged expiration breathing than with spontaneous breathing
(P<0.05).

3.5. Rating of perceive exertion

The respective ratings of perceived exertion at the anaerobic
threshold and endpoint were 11.4+0.7 and 16.6+0.7 with pro-
longed expiration breathing, and 11.2+0.8 and 16.8+0.7 with
spontaneous breathing. There were no significant differences inrat-
ing of perceived exertion at the anaerobic threshold or endpoint
between the prolonged expiration and spontaneous breathing
modes.

4. Discussion

The major findings of this study are that prolonged expiration
breathing improves ventilation efficiency, suppresses sympathetic
nervous activity and activates parasympathetic nervous activity
during incremental exercise. Furthermore, prolonged expiration
breathing may suppress exercise-induced increases in myocardial
Voz- Because no significant differences were observed in Spg, dur-
ing exercise between the two breathing modes, we believe that
hypoxemia was not induced by the prolonged expiration breathing
technique used in this study.
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Fig. 4. Changes in LF, HF and LF/HF of heart rate variability during incremental
exercise. Data are presented as means + standard error, closed circle: prolonged
expiration breathing, open diamond: spontaneous breathing, {P<0.05 and 'P<0.01
vs. spontaneous breathing. LF: low-frequency component; HF: high-frequency com-
ponent; WU: warm-up; AT: anaerobic threshold; EP: endpoint. The results of the
two-way analysis of variance for repeated measures were as follows: effect of time
courses for LF(F=15.8, P<0.01) and LF/HF (F=2.0, P<0.05), and interaction between
time courses and breathing modes for HF (F=2.1, P<0.05).

With prolonged expiration breathing, the participants were able
to control their respiration at 10 breaths/min from the warm-up
to the 75% point of the exercise period and to maintain a Tg/T; of
approximately 2 from the warm-up until the end of the to the incre-
mental exercise. It is generally known that Vg rises as Vg increases
with exercise intensity below anaerobic threshold during incre-
mental exercise, and the V¢ increase depends on an increased fi
when exercise intensity exceeds anaerobic threshold (Jones and
Doust, 1998; Neder et al.,, 2001, 2003). The present results demon-
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Fig. 5. Changes in LF, HF and LF/HF of blood pressure variability during incremen-
tal exercise, Data are presented as means + standard error, closed circle: prolonged
expiration breathing, open diamond: spontaneous breathing, {P<0.05 and ''P<0.01
vs. spontaneous breathing mode. LF: low-frequency component; HF: high-frequency
component; WU: warm-up; AT: anaerobic threshold; EP: endpoint. The results of
the two-way analysis of variance for repeated measures were as follows: interac-
tion between time courses and breathing modes for LF (F=3.7, P<0.01), and effects
of time courses and breathing modes for LF/HF (time courses: F=4.2, P<0.05, and
breathing modes: F=5.3, P<0.05).

strate that the Vg increase observed with prolonged expiration
breathing was controlled by an increase in Vr until the duration
of exercise reached the 75% point of the exercise period beyond
the time of anaerobic threshold. Furthermore, prolonged expiration
breathing was shown to provide more efficient ventilation, due to
the lower Vg, Ve/Vo,. Ve/Vco, and Ve/Vco, slope, improved oxy-
gen uptake and increased exercise efficiency due to higher Voz and
delta Voz /delta work rate, as compared with spontaneous breath-
ing mode. The improved ventilation efficiency may be attributable
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to the decreased f; and the increased Vr, which reportedly diminish
dead space ventilation and increase alveolar ventilation (Giardino
et al,, 2003; Thin et al.,, 2004). Furthermore, a significant negative
correlation has already been documented between peak Voz and
Ve/Vco, slope during exercise (Chua et al., 1997; Clark et al., 1997).
The present findings indicate that prolonged expiration breathing,
which decreases fg and increases Vi, improves the efficiency of both
ventilation and exercise. However, the \702 /work rate with pro-
longed expiration breathing was higher at high intensities of 70% or
above during incremental exercise as compared to that with spon-
taneous breathing. Although exercise efficiency was diminished at
high intensity by prolonged expiration breathing as compared to
spontaneous breathing, the Voz /work rate might have been higher
with prolonged expiration breathing due to improved uptake of
Vo, at high intensity. Nevertheless, Vo, and the work rate at high
intensity were high with prolonged expiration breathing because
Ve/Vo,.Ve/Vco, and Vi /Vco, slope, indices of ventilation efficiency,
were improved by prolonged expiration breathing as compared to
spontaneous breathing. The Voz and work rate, indices of aerobic
capacity, appeared to improve with prolonged expiration breathing
as compared to spontaneous breathing.

We examined cardiovascular responses with prolonged expi-
ration breathing and found that blood pressure and rate pressure
product were significantly lower during exercise period with pro-
longed expiration breathing than with spontaneous breathing.
However, heart rate did not differ significantly between the two
breathing modes. Therefore, prolonged expiration breathing was
shown to suppress excessive elevations of blood pressure and rate
pressure product during incremental exercise, and it might have
suppressed the increase in myocardial Voz' Our analysis of auto-
nomic nervous activity revealed that HF in heart rate variability was
higher and LF in blood pressure variability was lower during incre-
mental exercise with prolonged expiration breathing than with
spontaneous breathing. Therefore, we conclude that prolonged
expiration breathing contributes to decreases in blood pressure
and rate pressure product via the activation of parasympathetic
nervous activity and the suppression of sympathetic nervous activ-
ity. Conversely, LF/HF in heart rate and blood pressure variability
were significantly lower during exercise with prolonged expiration
breathing than with spontaneous breathing, although LF in heart
rate variability and HF in blood pressure variability did not differ
significantly between the two breathing modes. Our findings sug-
gest that prolonged expiration breathing may improve autonomic
balance during incremental exercise as compared to spontaneous
breathing (Task Force of the European Society of Cardiology and
the North American Society of Pacing and Electrophysiology, 1996;
Baselli et al., 1986; Laitinen et al., 1999).

Parasympathetic nervous activity is known to be suppressed
soon after the initiation of incremental exercise, whereas sym-
pathetic nervous activity shows no significant change at an
exercise intensity below anaerobic threshold (Goldsmith et al.,
2000; Rosenwinkel et al., 2001). When exercise intensity exceeds
anaerobic threshold, parasympathetic nervous activity decreases
markedly while sympathetic nervous activity begins to increase
according to the workload increment (Goldsmith et al., 2000;
Rosenwinkel et al., 2001). However, our results demonstrate that
prolonged expiration breathing suppresses both the decrease of
parasympathetic nervous activity after initiation of incremental
exercise and the increase of sympathetic nervous activity at exer-
cise intensity exceeding anaerobic threshold. Autonomic nervous
activity is known to be synchronized with the central respira-
tory drive (Barman and Gebber, 1976; Preiss et al., 1975; Spyer,
1990). Thus, parasympathetic nervous activity decreases dur-
ing inspiration and increases during expiration (Katona and Jih,
1975). In contrast, sympathetic nervous activity decreases dur-
ing expiration (Seals et al., 1993). The fz decrease and Vr increase

also reportedly activate parasympathetic nervous activity (Hayano
et al., 1994a,b) and suppress sympathetic nervous activity (Hayano
et al.,, 1994a,b). Therefore, prolonged expiration breathing, which
involves a decrease of fg and an increase of Vi, appears to effectively
improve the balance between parasympathetic and sympathetic
nervous activities (Berntson et al., 1993; Daly, 1985; Yasuma and
Hayano, 2004).

Ventilation efficiency was improved and aerobic capacity
was enhanced by incorporating prolonged expiration breathing,
which was examined in this study, during incremental exer-
cise. Prolonged expiration breathing also suppressed excessive
increases in blood pressure by activating parasympathetic ner-
vous activity and inhibiting sympathetic nervous activity during
incremental exercise. Therefore, exercise with prolonged expi-
ration breathing may be safer and more effective, not only in
healthy young adults but also in older individuals, than simi-
lar activity with spontaneous breathing. The effects of prolonged
expiration breathing on autonomic nervous activity and cardiopul-
monary responses in elderly subjects will be elucidated in future
studies.

The present study employed frequency components, which are
common markers of heart rate variability and blood pressure vari-
ability, in the analysis of autonomic nervous activity; however,
these markers are indirect indicators of autonomic nervous activ-
ity. Therefore, the activity evaluated based on heart rate variability
and blood pressure variability may limit the reliability and validity
of research results. The use of direct indicators of the activity such
as muscle sympathetic nerve activity (Goso et al., 2001), plasma
epinephrine and norepinephrine concentrations (Kasahara et al,,
2006), and baroreflex sensitivity (Bernardi et al., 2002) is worth
exploring as evaluation markers in future research in order to
improve the reliability and validity of analytical results of auto-
pomic nervous activity monitored during breathing in patterns
tested in the present study.

In the preceding studies that investigated the differences in
cardiopulmonary responses during exercise between upright and
recumbent bicycle ergometers, rate pressure product and rating
of perceived exertion were higher at low intensity, whereas blood
pressure, Vg, and Vg/Vco, were higher from low to high inten-
sity when a recumbent bicycle ergometer was used rather than an
upright bicycle ergometer (Quinn et al.,, 1995; Saitoh et al., 2005).
The rate pressure product and rating of perceived exertion might
have been lower at low intensity, whereas blood pressure, Vg and
V&/Vco, might have been lower from low to high intensity, if the
present study was designed using an upright bicycle ergometer
instead of a recumbent one.

In the present study, striking effects of prolonged expira-
tion breathing included the suppression of increases in blood
pressure associated with decreased sympathetic and increased
parasympathetic nervous activities during incremental exercise. In
addition, prolonged expiration breathing enhanced the efficiency
of both ventilation and exercise, and it might have suppressed the
exercise-induced increase in myocardial Voz in healthy young male
volunteers.
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