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EDL muscle, the GLUT4 protein increased (+38%) at 24
hours after the treatment from the pretreatment period
(Fig. 5B, P < .05). In addition, the GLUT4 protein
expression in the EDL muscle at 24 hours after the AICAR
freatment was significantly higher than that in the saline
treatment (Table 1, P < .03).

3.5. Hexokinase activity

Fig. 6 shows the change in the hexokinase activity after an
AICAR administration. In the soleus muscle, the hexokinase
activity increased at 18 and 24 hours after an AICAR
administration from the pretrial period (Fig. 6A; +12% and
+12%, respectively, from pre; P < .05). In the EDL muscle,
the activity increased at 12, 18, and 24 hours after an AICAR
administration from the pretrial period (Fig. 6B; +24%,
+36%, and +30%, respectively, from pre; P < .05). In
addition, the hexokinase activity in both the soleus and EDL
muscles at 24 hours after the AICAR ftreatment was
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significantly higher than that in the saline treatment
(Table 1, P < .03).

4. Discussion

The curtent study demonstrated that the activation of
AMPK with AMPK activator AICAR treatment in vivo
increases the SIRT1 protein expression in the rat EDL
muscle. The AMPK phosphorylation level in human
hepatoma cell line HepG2 is associated with the SIRT1
protein level [32]. Incubation of HepG2 cells in a high-
glucose medium (25 mmol/L} decreases the phosphorylation
of AMPK and its downstream target ACC with parallel
decline of SIRT1 protein level in comparison to that in low-
glucose medium (5 mmol/L). In contrast, incubation of
HepG2 cells with pyruvate (0.1 or 1 mmol/L} increases the
phosphorylation of AMPK and ACC and SIRT1 protein
content. These results suggest that AMPK controls SIRT1
protein content.
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The effects of AICAR treatment to animals seem similar
to those of endurance exercise training with regard to glucose
uptake, mitochondrial fatty acid oxidation, and mitochon-
drial and GLUT4 biogenesis in skeletal muscle [10]. The
endurance exercise increased the skeletal muscle SIRTI
protein expression [29]. Consequently, the results regarding
SIRT1 in the current study further suggest that the AICAR
treatinent mimics the benefits of endurance exercise. In
skeletal muscle cells, SIRTI plays an important role in
metabolic adaptations including mitochondrial biogenesis,
fatty acid oxidation, and glucose homeostasis through
deacetylation of PGC-1a [7-9]. Collectively, these observa-
tions raise the possibility that the AMPK-SIRT1-PGC-1a
pathway may, in patt, contribute to the metabolic adaptations
with endurance exercise training in skeletal muscle.

However, AMPK may not be the only way to regulate the
SIRT1 expression with exercise. The ablation of the AMPK
activity experiments using AMPK dominant negative or
AMPKo2 knockout mice models demonstrates that AMPK
is not always essential for the regulation of downstream
targets including ACC, fatty acid oxidation, mitochondrial
biogenesis, or the glucose metabolism [33-35], thus

suggesting that the redundant signaling pathways cooperate
with AMPK in many kinds of adaptations and that signaling
other than AMPK may compensate for such metabolic
characteristics in the AMPK ablation state. To elucidate the
mechanisms, other than AMPK, which regulate the SIRT1
expression with exercise, further experiments using AMPK
ablation animal models subjected to various types of exercise
are thus called for.

The mechanisms underlying the increase of SIRTI
protein content with AICAR treatment are unclear at present.
One potential mechanism for this phenomenon is that nitric
oxide synthase (NOS) mediates the SIRT1 expression after
an AICAR treatment. The AMPK-induced skeletal and
cardiac muscle glucose uptake depends on NOS [36]. In
addition, AMPK seems to enhance the NOS activity and
phosphorylation of endothelial NOS at Ser''”” [36,37]. The
level of expression and phosphorylation of endothelial NOS
is associated with SIRT1 expression in endothelial cells
[38,39]. Furthermore, long-term treatment of NOS inhibitor
NG—nitro—L—arginine~methyl ester decreases the skeletal
muscle SIRTT protein content (M Suwa and § Kumagai,
unpublished observation). Overall, it is likely that increasing
SIRTI protein expression with AICAR treatment is mediated
by NOS. However, other studies have demonstrated that
NOS inhibition does not affect the AICAR- or contraction-
induced glucose uptake in rat skeletal muscle [4041].
Further studies are necessary to clarify the mechanisms in the
increase of skeletal muscle SIRT1 dependent on NOS after
AMPK activation.

In the current study, the SIRT1 protein expression in the
EDL muscle increased with AICAR treatment but not in the
soleus. In addition, other characteristics examined in this
study indicate inconsistent results between EDL and soleus
muscles. The GLUT4 protein expression significantly
increased with AICAR in the EDL muscle but not in the
soleus muscle. In the hexokinase activity, AICAR treatment
also seems more effective to the EDL than soleus muscle.
The increase of AMPK phosphorylation level with AICAR
in the EDL (~+150% from pre) seems greater than that in
soleus (+32%-39% from pre) as well as ACC phosphory-
lation level (EDL, +173%-391%; soleus, +89%-179%; from
pre), raising the possibility that such difference in the effect
of AICAR against the AMPK phosphorylation partially
causes the different results between soleus and EDL muscles.
Another potential cause for such differences in regard to
AICAR treatment is the difference in the AMPK subunit
isoform distribution between muscle fiber types. The soleus
muscle possesses dominantly slow-twitch type I fibers (type
L, 84%; type IIA, 7%; type [IX, 9%, type IIB, 0%), whereas
EDL muscle possesses dominantly fast-twitch type 1I fibers
{type L, 4%; type IIA, 20%; type [IX, 38%, type [IB, 38%) in
rats [42]. In rodents, the y3-subunit of AMPK is dominantly
expressed in the fast-twitch muscle in comparison to the
slow-twitch muscle [43]. The y3-containing AMPK com-
plexes contain only a2- and f2-subunits [43], thus suggest-
ing that 2/52/y3 heterotrimer preferentially expressed in the
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fast-twitch muscle. Because «2- and f3-subunits play an
important role for metabolic and contractile properties in
skeletal muscle [44-46], it is likely that the different effects
between soleus and EDL muscles on AMPK activation
observed in this study are, at least in part, attributable to such
differences in the subunit expression pattern between muscle
fiber types.

The curtent study demonstrated that short-term AICAR
treatment to rats promotes the skeletal muscle SIRT1 protein
expression. On the other hand, a previous study has shown
that long-term AICAR treatment to rats for 5 successive days
decreases (white gastrocnemius and red and white tibialis
anterior muscles) or fails to change (heart and red
gastrocnemius muscles) the SIRT1 protein expression [47].
In addition, AICAR treatment for 14 successive days does
not alter the SIRT1 protein expression in the rat red and
white gastrocnemius muscles (M Suwa and S Kumagai,
unpublished observation). These observations suggest that
the effect of AICAR treatment on SIRT! protein expression
may thus differ depending on the treatment period. The
SIRT1 transcription is regulated by the transcriptional factors
E2F transcriptional factor 1 and hypermethylated in cancer 1
[48]. SIRT1 binds to these transcriptional factors, and the
complexes repress its franscription [49,50]. This negative
feedback loop in SIRT1 regulation might be at least partially
associated with the inconsistent results observed among the
different treatment period. '

Although several previous studies have demonstrated
that long-term AICAR treatment enhances the PGC-1o and
GLUT4 protein expression and hexokinase activity in the
skeletal muscles of rodents in vivo [23,24], the present
study is the first to demonstrate that short-term adminis-
tration of AICAR to rats also promotes them. These results
suggest that only a single AICAR ftreatment is sufficient to
promote such phenotypes. Previous studies have demon-
strated that short-term endurance exercise augments the
PGC-1o and GLUT4 expression and the hexokinase
activity and expression [51-33]. These short-term exer-
cise—induced changes may be at least partially associated
with AMPK.

Several observations may explain the mechanisms in
such changes with AICAR treatment. The PGC-la and
hexokinase II genes have a cyclic AMP—response element,
and their transcription is thought to be controlled by the
transcriptional factor cyclic AMP-response element bind-
ing protein [54-56]. The GLUT4 transcription is regulated
by the transcriptional factors myocyte enhancer factor 2
and GLUT4 enhancer factor [57,58]. All these transcrip-
tional factors are phosphorylated and/or ftranscriptionally
activated by AMPK [55,59]. Presumably, such mechanisms
are the possible causes for the increase in PGC-la and
GLUT4 expression and hexokinase activity with short-term
AICAR ftreatment.

SIRTI is associated with insulin sensitivity [7], insulin
[60] and adiponectin [61] secretion, mitochondrial biogen-
esis, fatty acid oxidation [9], protection of neurodegenerative

disorders, [62], and longevity [7]. The current study
contributes to the understanding of the role of AMPK in
the regulation of SIRT1 protein expression and further
supports the strategies aimed to activate AMPK as a means
of improving the outcome of chronic diseases.

In summary, these results show that short-term AMPK
activator AICAR treatment to rats enhances the skeletal
muscle AMPK and ACC phosphorylation and then coinci-
dently increases the SIRT1 protein expression. The PGC-lo
and GLUT4 protein expression and hexokinase activity also
increases with AICAR treatiment. Some of these changes
preferentially occur in fast-twitch EDL muscles. Therefore,
the observations in this study may provide new insights into
the mechanisms of SIRT1 regulation and thereby help in
both the prevention of and therapy for some chronic diseases
including insulin resistance, type 2 diabetes mellitus,
metabolic syndrome, and neurodegenerative disorders.
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8-Ox0-7,8-dihydroguanine (8-0xoG) accumulates in the genome over time and is believed to contribute to
the development of aging characteristics of skeletal muscle and various aging-related diseases. Here, we show
a significantly increased level of intrahelical 8-oxoG and 8-oxoguanine-DNA glycosylase (OGG1) expression
in aged human skeletal muscle compared to that of young individuals. In response to exercise, the 8-0xoG
level was lastingly elevated in sedentary young and old subjects, but returned rapidly to preexercise levels in
Keywords- the DNA of physically active individuals independent of age. 8-OxoG levels in DNA were inversely correlated
Exercise with the abundance of acetylated OGG1 (Ac-OGG1), but not with total OGG1, apurinic/apyrimidinic
Aging endonuclease 1 (APE1), or Ac-APE1. The actual Ac-OGG1 level was linked to exercise-induced oxidative stress,

DNA damage/repair as shown by changes in lipid peroxide levels and expression of Cu,Zn-SOD, Mn-SOD, and SIRT3, as well as the
Sirtuins balance between acetyltransferase p300/CBP and deacetylase SIRT1, but not SIRT6 expression. Together these
Antioxidants data suggest that that acetylated form of OGG1, and not 0GG1 itself, correlates inversely with the 8-oxoG level
8-Ox0G in the DNA of human skeletal muscle, and the Ac-OGG1 level is dependent on adaptive cellular responses to
OGGL physical activity, but is age independent.

Acetylation

Free radicals © 2011 Elsevier Inc. All rights reserved.

Age-associated increases in levels of reactive oxygen species
(ROS), especially during the last quarter of life, result in excessive
oxidative damage to macromolecules, including DNA [1-5]. Among
DNA and RNA bases, guanine is predominantly prone to oxidation
because of its lowest reduction potential [6]. It is modified primarily
by hydroxyl radicals at or near diffusion-controlled rates (reviewed in
[7-9]). More than 20 oxidation products of the guanine base have
been identified [10] and among them one of the most abundant is
8-0x0-7,8-dihydroguanine (8-oxoG) [7-9]. In DNA, the 8-0x0G level
increases upon radiation, ischemia/reperfusion, acute exerdse, and
aging [4,11-14]. 8-0OxoG is excised from DNA by formamidopyrimidine-
DNA glycosylase (Fpg) in Escherichia coli and by its functional homolog
8-oxoguanine-DNA glycosylase (0GG1) in mammals in the base ex-

* Corresponding author. Fax: +36 1 356 6337.
E-mail address: radak@mail hupe.hu (Z. Radak).

0891-5849/% - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.freeradbiomed.2011.04.018

cision repair (BER) pathway [15-18]. Whereas Fpg is well known to
excise 4,6-diamino-5-formamidopyrimidine (FapyA), 2,6-diamino-4-
hydroxy-5-formamidopyrimidine (FapyG), and 8-oxoG with nearly
similar exdsion kinetics [18,19], the mammalian and yeast OGG1 is
spedific for 8-oxoG and FapyG, but not FapyA [20,21]. When 8-0x0G is
not repaired, it is mutagenic, as it has been shown to pair with adenine
(A) instead of cytosine (C) and thereby induces G:C— T:A transversions
[15.22].

It is documented that in covalent modifications of DNA repair
proteins, e.g., by acetylation, phosphorylation plays a significant role,
particularly in their repair activity, which consists of the removal/repair
of oxidative base lesions [23,24]. In fact, it has been shown that OGG1
and human apurinic/apyrimidinic endonuclease 1 (APE1) activities are
primarily regulated by p300/CBP-mediated acetylation reactions,
processes that significantly influence their repair activities and hence
cell fate [23-25]. The role of sirtuin family deacetylases has gathered
considerable attention [26], as SIRT1 and SIRT6 have been shown to be
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involved in DNA repair [27-29]. An increased deacetylase activity of
sirtuins may lead to a decrease in acetylation levels of proteins, which, in
turn, woutld result in a decline in enzymatic activities, including those of
0GG1 and APET.

Although it is well documnented that acetylation increases OGG1
activity in cell cultures and in vitro assays, the existence of acetylated
0GG1 (Ac-OGG1) and APET (Ac-APE1) under in vivo conditions is still
unknown. The goals of this investigation were (a} to determine
changes in Ac-OGG1 and Ac-APE1 in human skeletal muscle, (b} to
study the effects of aging and acute as well as regular physical
conditioning on acetylation levels of these DNA repair enzymes, and
(c) to evaluate the possible roles of SIRT1, SIRT3, and SIRT6 in the
adaptability of human skeletal muscle. This report shows that the
level of acetylated OGG1 changes as a function of age, and exercise
training increases this posttranslational modification independent of
age in human musdes.

Materials and methods
Subjects

Forty-eight healthy men volunteered to participate in this study. A
written informed consent was signed by all participants regarding
their participation after they were told of all risks, discomforts, and
benefits involved in the study. Procedures were in accordance with
the Helsinki Declaration of 1975 and were approved by the ethics
committee of the University of Thessaly.

Participants were assigned to one of four groups according to a
cross-over, repeated-measures design: (a) young sedentary (YS;
26.04 4.5 years), (b} young physically active (YA; 30.24 7.9 years),
(c) old sedentary (0OS; 63.444.7 years), and (d} old physically active
(OA; 62.44 2.9 years). Subjects were exposed to a single bout of the
exercise protocol and muscle biopsies were taken. Participants were
assigned to the young or old sedentary group based on a maximal
oxygen uptake (VOymax) of below 25 mi/kg/min for old participants
and below 35 ml/kg/min for young participants, and the young and
old physically active groups were based upon the ACSM description
[30], VOzmax over 45 ml/kg/min for young participants and over
35 ml/kg/min for old (YS, 35.94+4.7; 08, 25.1£3.0; YA 51.84+7.9;
0A, 37.1 4 2.9 ml/kg/min).

Participants visited the laboratory on three occasions. During their
first visit, participants were examined by a trained physician for
limiting health complications; in their second visit, participants had
their body height/weight and skin-folds measured and underwent a
Graded Exercise Testing (GXT) to evaluate their VOsmax. During their
third visit, a week later, participants underwent a submaximal
exercise bout to exhaustion on the treadmill, and muscle biopsies
were collected before and after exercise.

Measurement of peak oxygen uptake (VOzpeqr)

VOypeac Was determined during a GXT on a treadmill to voluntary
exhaustion as previously described [31].

Exercise protoco!

A single bout of exercise included initially 45 min of running on a
treadmill at 70-75% of the subject's VOq .. After 45 min, the speed
increased to 90% of VO;max, and exercise was terminated at
exhaustion [32].

Muscle biopsy sampling
Participants had been instructed to refrain from physical activity

and caffeine consumption for 48 h before exercise. Both muscle
specimens (pre- and postexercise), of approximately 100-120 mg

each, were obtained from the vastus lateralis of the same leg of each
participant by using the needle biopsy technique [33]. The first biopsy
was obtained approximately 20 cm away from the midpatella of the
right (dominant} leg with the application of suction [34].

Assessment of malondialdehyde levels

Blood samples were collected from an antecubital arm vein into
evacuated tubes containing ethylenediaminetetraacetic acid. Plasma
was separated by centrifugation (1500 g 4 °C, for 15 min). Samples
were stored at — 80 °C. Malondialdehyde (MDA} levels were measured
by reverse-phase, high-performance liquid chromatography (HPLC)
with fluorimetric detection (excitation 532 nm and emission 550 nm}
as described [35].

Real-time quantitative RT-PCR

Total RNA from skeletal muscle samples (~30 mg) was extracted
with NucleoSpin RNA/protein (Macherey-Nagel, Diiren, Germany)
according to the manufacturer’s protocol. Analyses of the real-time
quantitative PCR data were performed using the comparative
threshold cycle (€} method, as suggested by Applied Biosystems
(User Bulletin 2). The primers used are listed in Table 1.

Fluorescence imaging and quantification

At optimal cutting, temperature-fixed, paraffin-embedded muscles
were sectioned into 5-pum sections. The measurement of 8-oxoGlevelsin
nuclear DNA of musdes was assessed by quantitative microscopic
imaging, as we previously described [23,36]. Briefly, sections were
deparaffinized, air-dried, and fixed in acetone:methanol (1:1), rehy-
drated in PBS for 15 min, and then sequentially treated with RNase
(100 ug/ml} for 15 min followed by 100 pg/ml pepsin in the presence of
0.1N HCl for 30 min at 37 °C. The sections were washed and then
incubated with affinity-purified, nonimmune IgG (100 pg/ml) for
30 min and washed in PBS containing 0.5% bovine serum albumin and
0.1% Tween 20 (PBS-T). After incubation with anti-8-oxoG antibody
(Trevigen, Gaithersburg, MD, USA; 1:300 dilution) [37] for 30 min, the
sections were washed for 15 min three times with PBS-T and then
binding of primary antibody was detected with conjugated secondary
antibody.

Table 1
Primers used in RT-PCR.

Primer sequence

Reference gene

{3-Actin Forward: 5/-GCTCGTCGTCGACAACGGCTC-3/
[3-Actin Reverse: 5-CAAACATGATCTGGGTCATCTTCT-3/
RP285 Forward: 5'-AGCCGATCCATCATCCGCAATG-3/
RP28S Reverse: 5/-CAGCCAAGCTCAGCGCAAC-3"
Target gene
0GG1 Forward: 5/-GTGGACTCCCACTTCCAAGA-3/
0GG1 Reverse: 5'-GAGATGAGCCTCCACCTCIG-3/
EP300 Forward: 5/-TCATCTCCGGCCCTCTCGGC-3/
EP300 Reverse: 5'-GCTCTGTTGGGCCTGGCTGG-37
SIRT1 Forward: 5/-TGCGGGAATCCAAAGGATAATTCAGTGTC-3/
SIRT1 Reverse: 5-CTTCATCTITGTCATACTTCATGGCTCTATG-3/
SIRT3 Forward: 5'-GTCGGGCATCCCTGCCTCAAAGC-3/
SIRT3 Reverse: 5-GGAACCCTGTCTGCCATCACGTCAG-37
SIRTE Forward: 5-GAGGAGCTGGAGCGGAAGGTGTG-3/
SIRTE Reverse: 5'-GGCCAGACCTCGCTCCTCCATGG-3/
SOD1 Forward: 5'-AGGGCATCATCAATTTCGAG-3/
SOD1 Reverse: 5'-ACATTGCCCAAGTCTCCAAC-3/
SOD2 Forward: 5-GCAGAAGCACAGCCTCCCCG-3¢
SOD2 Reverse: 5-CCITGGCCAACGCCTCCTGG-3/

Forward: 5/-CTGTCCAAGTTGGTCGCTTC-3/
Reverse: 5'-CTGCCCCTTAARACTGGTCAA-3/

XRCCE (Ku70)
XRCCE (Ku70)
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0GG1 and Ac-OGG1 levels were also determined via quantitative
microscopic imaging [36,38]. Pwrified mouse anti-OGG1 antibody
(human OGG1 reactive) generated against a synthetic peptide (C-
DLRQSRHAQEPPAK-N} representing the C-terminus of OGG1 was
acquired from Antibodies-Online (Atlanta, GA, USA). The immunogen
affinity-purified, human-reactive rabbit polyclonal antibody to Ac-OGG1
was generated against an Ac-Lys-containing peptide (PAKRRAKG
G™KGPEC) [23] obtained from AbCam (Cat. No. ab93670) [23.36].
Antibody reactive with human APE1 [39] and rabbit anti-Ac-APE1
antibody were characterized previously [40]. Binding of primary
antibodies was visualized with fluorochrome-labeled secondary anti-
bodies. Confocal microscopic evaluations were performed on a Zeiss
LSM510 META system using the 488-nm line of the argon laser for
excitation of FITC and the helium-neon 543-nm line for exdtation of
rhodamine, combined with appropriate dichroic mirrors and emission
band filters to discriminate between green and red fluorescence. Images
were captured at a magnification of 60 (60x oil immersion objective;
numerical aperture 1.4}. To objectively quantify fluorescence intensities
morphometric analyses were done by using MetaMorph software
version 9.0r (Universal Imaging Corp,, Downingtown, PA, USA} as we
have described [38]. Specifically, images were obtained from =15 fields
per muscle section containing 160-180 nuclei and reassembled using
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the montage stage stitching algorithm of the Metamorph software [41].
Colocalization was visualized by superimposition of green and red
images using MetaMorph software version 9.0r.

Statistical analyses

Statistical significance was assessed by three-way ANOVA (agex
physical activity status x time), followed by Tukey's post hoc test. The
significance level was set at p<0.05.

Results

Changes in 8-ox0G level in DNA as a function of age and physical activity
in human skeletal muscle

DNA glycosylase/apurinic/apyrimidinic (AP} lyase activity of
0GG1 dedlines with age [42-44]. Here, first we investigated the
association between abundance of 8-oxoG in DNA and OGG1, as well
as Ac-0GG1 in nuclei of skeletal muscle of OS and YS individuals.
Results from quantitative fluorescence intensity analysis showed that
there was a significant (p<0.01) increase in genomic 8-oxoG
{8-0x0dG; Fig. 1A} and total OGG1 (p=<0.01) levels in skeletal muscle
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Fig. 1. 8-0x0G, OGG1, and Ac-OGG1 levels in skeletal muscle (SkM} before and after single exercise bout (SEB). (A) Increase in 8-0xoG level in genomic DNA of aged muscles and in
response to SEB. (B) Total OGG1 level in SkM of sedentary and physically active subjects. In (A) and (B), sections were stained and fluorescence intensities were analyzed using a

montage stage stitching algorithm of the MetaMorph software {Materials and methods). (C)

of young individuals. Top: original magnification 69x. Bottom: original magnification 186x.

Representative fluorescence images of OGG1 and Ac-OGG1 in sections from the muscles
Leftmost images are DAPI, the rightmost images are the superimposition of the 0GG1-

and Ac-OGG1-mediated fluorescence images. (D) Representative fluorescence images of OGG1 and Ac-OGG1 in muscle sections of old volunteers. Top: original magnification 69x.
Bottom: original magnification 196x. Leftmost images are DAPI-stained, the rightmost images are the superimposition of 0GG1- and Ac-OGG1-mediated fluorescence images.
(E) Changes in Ac-OGG1 levels in skeletal muscle of young and elderly subjects in response ta SEB. (F) The relative expression of OGG1 mRNA is shown. DAPL, 4,6/-diamino-2-
phenylindole; YS, young sedentary; YSSE, young sedentary after a single bout of exercise; YA, young active; YASE, young active after a single bout of exercise; 0, old sedentary; OSSE,
old sedentary after a single bout of exercise; DA, old active; and OASE, old active after a single bout of exercise. Values are means = SE for six subjects per group. *p=0.05, *p<0.01.
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of elderly compared to young participants (Fig. 1B). This paradoxical
observation suggests an increase in oxidative stress and/or decrease in
OGG1 activity; the latter may be due to altered OGG1 posttransla-
tional modification(s), such as acetylation [23]. The acetylated form of
0GG1, compared to the unacetylated form, shows an approximately
10-fold increase in repair activity [23]. Immunochistochemical analysis
shows that the level of Ac-OGG1 was significantly higher in the
skeletal muscle of young individuals (Fig. 1C, top and bottom)
compared to that of older subjects. Ac-OGG1 was nearly undetectable
in the skeletal muscle of the elderly (Fig. 1D, top and bottom}. As
calculated from fluorescence intensities, only 5.1  2.5% of total 0GG1
was acetylated in the old, whereas 24.5 + 6% of total OGG1 reacted
with anti-Ac-0GG1 antibody in the young individuals (Fig. 1E). APE1
is a multifunctional and abundant protein [39] and has been shown to
stimulate 8-oxoG repair initiated by OGG1 during BER [45]. Because of
APET's abundance, it was not surprising to observe that its level was
not different in the muscle of the young and old groups {data not
shown). Ac-APE1 [46] levels were substantially higher only in skeletal
muscle of YS individuals compared to that of OS subjects (Fig. 2A}; not
the APE1 level but the Ac-APE1, together with Ac-OGG1, plays a role in
the repair of 8-0x0G. These results support the hypothesis that an
increase in the genomic 8-0x0G level is associated with an inability of
aged skeletal muscle to posttranslationally modify OGG1 [25].
OGGT1's acetylation level is altered by the activity of acetyltransferase
p300/CBP [23,25] and deacetylases such as sirtuins [27]. Our results
show that expression of p300/CBP is increased (p<0.01}) in skeletal
muscle of OS subjects compared to that in younger counterparts
(Fig. ZB). On the other hand, expression of SIRT1 and SIRT6 (Figs. 2Cand
E) was not affected by age, whereas SIRT3 expression was significantly
lower in the OS compared to the YS group (Fig. 2D). In controls, there
were no differences in the expression of Ku70 (binds directly to free
DNA ends) in the muscles of young and old individuals (Fig. 3A), an

indication that the repair efficiency of 8-0xoG is unaffected by age and
level of unrepaired AP sites, and DNA single-strand breaks are not
sufficient to alter the expression of Ku70.

Oxidative stress induced by physical activity mediates an adaptive
response for efficient oxidative DNA damage repair

Old and young physically inactive and active individuals were
subjected to a single exercise bout (SEB). SEB-induced changes in
oxidative stress levels were determined indirectly by measuring the levels
of the lipid peroxidation product MDA in plasma (YS, 0.176 & 0.02; YSSE,
0.262 4+ 003", YA, 0.1434+0.01; YASE, 0.181£0.02; 0S, 0.254+£0.04;
OSSE, 0.3384:0.06"; OA, 0.18840.03; OASE, 0.2334-0.03 umol/L;
*p<0.05). It is obvious that the MDA level was significantly increased
only in the plasma of physically inactive old and young subjects. Although
we recognize the limitations of MDA measurements [47], the strong
match between MDA and 8-oxoG (p=0.001) levels suggests that indeed
aging and SEB elevate the level of oxidative darnage. These results are
supported by the observed increase in the expression of Cu,Zn-50D
{Fg. 3B) in the muscle of physically inactive (old and young} subjects.
Mn-SOD expression is increased in response to SEB only in young subjects
{Fig. 3C). Surprisingly, Mn-SOD expression was not affected by SEB in
active/trained old and young individuals (Fig. 3C). Together these data
imply an adaptive response of the skeletal muscle to SEB in trained/active
individuals.

An increase in MDA level predicts enhanced genomic 8-oxoG
levels upon exercise. Thus we asked if regular physical exercise-
induced antioxidant responses protect guanine from oxidation in the
DNA from muscle biopsies of sedentary vs trained and young vs old
subjects. In response to a SEB, the 8-0x0G level was doubled in the
muscle of all individuals regardless of whether they were sedentary or
physically active. Importantly, whereas 8-oxoG levels returned to
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preexercise levels in physically active individuals, both OA and YA, its
level in DNA remained high in sedentary young and old subjects after
a 24-h recovery period (Fig. 1A). For example, 8-0x0G levels were
approximately four times higher in untrained older (Fig. 1A)
compared to younger individuals without SEB (Fig. 1A). Importantly,
there was no change in genomic 8-0xoG levels in muscle biopsies of
OA individuals after SEB (Fig. 1A).

The subphysiological level of genomic 8-oxo0G in physically active
subjects suggested an efficient repair of DNA. We observed that OGG1
levels did not significantly change in younger subjects, but they
increased in the older subjects in response to SEB (Fig. 1B). In contrast,
Ac-0GG1 levels were significantly increased in younger individuals,
whereas in the older subjects no significant change was observed in
response to SEB. Ac-OGG1 level was approximately threefold higher
in active compared to older, sedentary individuals (Figs. 1E and C).
SEB did not change Ac-APE1 (Fig. 2A), which was similar to APE1
levels (data not shown), suggesting that neither Ac-APE1 nor APE1 is
limiting in the repair of 8-0x0G.

In response to SEB, the expression of p300/CBP increased
approximately fivefold in the younger subjects, but unexpectedly, it
significantly decreased in older subjects (Fig. 3A}. If indeed p300/CBP
1s the acetyltransferase in muscle, these results are in line with the
levels of Ac-OGG1 (Figs. 1C and E). In physically active subjects SEB
did not significantly alter p300/CBP levels (Fig. 2B). Expression of the
deacetylase SIRT1 showed a significant increase only in younger
sedentary subjects in response to SEB (Fig. 2C). The expression of
SIRT3, which has no deacetylase activity, was the highest in muscle
biopsies of active, younger subjects (Fig. 2D), and its expression did
change upon SEB (Fig. 2D). SIRT6 expression (Fig. 2E), along with
Ku70 (Fig. 3A), decreased in both young and old muscles after SEB.
Together these data suggest that a physically active lifestyle induces
anadaptive response by generating mild oxidative stress and prevents
the age-associated increase in genomic 8-0xoG levels possibly due to
the age-independent increase in OGG1's acetylation.

Discussion

Age-related and physical exercise-associated changes in DNA
damage levels in skeletal muscle of experimental animals have been
reported previously [13,14,48]. This study analyzed levels of 8-0x0G
in DNA and the abundance of rate-limiting BER enzymes in human
muscle biopsies before and after a single exercise bout. We also
examined expression of acetyltransferases and deacetylases linked to
DNA repair pathways and antioxidant genes that could reflect on
cellular redox conditions. We show that the genomic 8-oxoG level is
lastingly elevated in sedentary young and old subjects, but it returned
rapidly to preexercise levels in physically active individuals indepen-

dent of age upon a single exercise bout. The 8-0x0G level in DNA
inversely correlated with the abundance of Ac-OGG1, but not with
total OGG1, APE1, or Ac-APE1. Importantly, our data also demonstrate
a physical activity-dependent increase in the acetylated forms of
OGGT in human skeletal muscle. Accordingly, it is possible that an
exercise-induced acetylation pathway would enhance OGG1 activity,
not only in muscles, but in other tissues, and thereby exercise may
decrease the incidence of various pathological conditions, such as
inflammation, that have been linked to carcinogenesis, cardiovascular
diseases, strokes, or Alzheimer disease.

8-0x0G is arguably one of the important forms of DNA base damage
induced by ROS, and it has been proposed to play a role in the aging
process and is also linked to age-associated diseases [1-3,5]. This
hypothesis is consistent with the severalfold increase in 8-0x0G (and
possibly of other oxidized bases) content in nuclear and mtDNA from
aged tissues [1-3,5]. A single bout of exercise has been shown to cause
mild oxidative stress [3249,50], and thus we applied a SEB and
determined cellular oxidative states, changes in 8-oxo0G levels, and
abundance of selected repair enzymes. Because of a limited amount of
muscle biopsies, we used quantitative fluorescence analysis [36,38,41]
to assess 8-oxoG levels, as the quantity of DNA isolated did not allow us
to use HPLC with electrochemical detection [7,8], which would provide a
better estimates. By using a highly specific, anti-8-oxodG-specific
antibody, we observed significantly higher levels of genomic 8-o0x0G
in human skeletal muscle of sedentary, older individuals compared to
the levels in younger subjects, in line with previous observations
[13,14,4344]. In response to SEB-induced ROS, 8-0x0G levels increased
further and were not repaired, even after a 24-h period, in sedentary
individuals, independent of age. In contrast, 8-0x0G levels returned to
preexercise levels in physically active individuals, a finding that may
mean regular physical activity could prevent accumulation and/or
increase repair efficacy of 8-oxoG and possibly other bases in DNA
human skeletal muscle.

The observed increase in 8-oxoG levels in sedentary individuals
points to a possible age-dependent decrease in levels of 0GG1. In
contrast, our data show a significantly increased OGG1 level in elderly
subjects and, interestingly, SEB furthered its level. Unexpectedly, the
8-0x0G level was also enhanced. These paradoxical observations
suggested to us that OGG1 may have a low DNA glycosylase/AP lyase
activity or that BER activities are significantly lower in aged human
muscle. Indeed, a recent publication documents decreased overall BER
activities in both the nuclei and the mitochondrial extracts from
skeletal muscles, compared to those from liver or kidneys of the same
mice [51]. Although decreased overall BER activity could be a
possibility, our data also imply that a lack of or delayed repair of
8-0x0G could be linked to a deficiency in posttranslationally modified
0GG1 in aged muscles. Indeed, 0GG1's glycosylase/AP-lyase activity is
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modulated via acetylation, phosphorylation, and redox [23,25]. For
example, OGG1 is acetylated on lysines 338 and 341 and has an
approximately 10-fold increase in its 8-oxoG excision activity
compared to unacetylated OGG1 [23]. To explore this possibility we
show that approximately one-fifth of 0GG1 isin an acetylated form in
younger individuals and, importantly, Ac-OGG1 was nearly undetect-
able in the sedentary elderly. This observation is a feasible possibility,
as 8-oxoG level in DNA was inversely correlated with levels of
Ac-0GG1 in muscles of young and old individuals.

Repair of 8-0x0G is initiated by OGG1 during the BER pathway,
followed by APE1-mediated cleavage of the DNA strand at the abasic
site. After removal of this 3/-blocking group, the single-nucleotide gap
is filled in by a DNA polymerase, and DNA ligase seals the nick to
restore DNA integrity [17]. It has also been shown that OGG1 remains
tightly bound to its AP product after base excision, and APE1 prevents
its reassociation with its product, thus enhancing OGG1 turnover [45].
Accordingly, APE1 is considered to be rate-limiting in the BER of 8-
oxoG [17,39]. However, neither APET nor Ac-APE1 showed significant
changes with aging and/or physical activity. Therefore, it may be
proposed that the Ac-0GG1 is limiting in the repair of 8-0x0G lesions
in human skeletal muscle during BER processes. As modification by
phosphorylation substantially alters the incision activity of only 0GG1
[24], our earlier observations of an exercise-induced increase in 0GG1
activity in skeletal muscles of human and experimental animals
[14,43] may be attributed to Ac-OGG1.

Acetylation levels of OGG1 and APE1 are dependent on the level/
activity of the acetyltransferase p300/CBP [23,25] and possibly on a
deacetylase(s) such as some of the sirtuins [52]. Results from our
studies show that p300/CBP's expression was increased in young
individuals by SEB, independent of whether they were sedentary or
active. However, we were not able show such consistency in the
elderly. SIRT1, a NAD-dependent histone deacetylase [53], has been
shown to interact with p300/CBP to regulate its acetyltransferase
activity [52]. SIRT1 levels increased in both young and elderly muscles
in response to exercise. These observations are in line with the general
role of SIRT1 in the DNA damage response and maintenance of
genomic integrity, as it promotes proper chromatin structure and
DNA damage repair foci formation for repair of DNA base lesions
[27,28]; however, the patterns of change in SIRT1 expression in young
vs old or sedentary vs physically active suggest an inverse correlation
between SIRT1 and the level of Ac-OGG1.

Among sirtuins, only SIRT3 expression correlates with the life span
of humans [54]. Interestingly, SIRT3 expression was increased with
physical fitness level only in young subjects in this study. SIRT3 has
two isoforms with different molecular masses (44 and 28 kDa), which
are localized in mitochondria and nucleus, respectively [55]. The
translocation of SIRT3 from the nucleus to the mitochondria has been
shown to be induced by oxidative stress [55]. SIRT3 is also a
modulator of apoptosis [56]. Recent findings also indicate that SIRT3
is a downstream target of PGC-1a and one of the regulators of
mitochondrial ROS production [57].

Exercise has been shown to cause mild oxidative stress [32,49,50,58].
Although the 8-0x0G level is a documented measure of such anoxidative
insult [14], MDA levels and expression of superoxide dismutase(s) were
used to evaluate further SEB-induced oxidative stress. An increase in
MDA levels in plasma correlated with genomic 8-0xoG level in both
young and old subjects in response to SEB. Interestingly, only the
expression of Cu,Zn-SOD showed age-independent and exercise-
assodated changes, and Mn-SOD expression was increased only in the
younger sedentary group. Based on these observations, it appears that
Cu,Zn-SOD expression is a better measure of an adaptive response to ROS
than that of mitochondrial Mn-SOD. These data also imply a decline in
adaptive response with age at the level of Mn-SOD. These observations
are in line with those showing that the adaptive capability of an
organism to withstand oxidative stress challenge(s) is markedly
decreased as a function of age [59,60]. Based on our data, however, we

propose that adaptive responses to ROS are not age dependent, but
decided by the physical status of an individual.

In conclusion, this investigation offers insight info interactions
between aging processes, exercise, and regulation of the repair of
oxidized DNA base lesions in human skeletal muscle. We show for the
first time that (1) acetylated forms of OGG1 and APE1 are present in
human tissues, but (2) only Ac-OGG1 seems to be rate limiting in the
BER processes of 8-oxoG, and (3} repair of 8-oxoG seems to be
independent of age, but (4) is dependent on the physical state of
muscles. Our data also imply that regular exercise induces an adaptive
response that involves an improved, more efficient antioxidant and
DNA repair machinery.
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Abstract:  [Purpose] This study explored the characteristics of elderly patients with knee pain and
examined the effects of differences in the level of knee pain and affected side on patients’ mental
health. [Methods] The study examined knee pain, mental health (depression, quality of life (QOL),
cognitive functioning), physical functioning, smoking habits, and socioeconomic factors involving
750 elderly subjects aged over 65. The obtained characteristics were compared between male and
female subjects. [Results] Female patients with moderate to severe knee pain showed significantly
lower physical QOL and cognitive function scores. No significant correlation was observed between
the CES-D score and differences in the level of knee pain and affected side in both genders. [Con-
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clusion] The results suggest that the level of knee pain and affected side have different effects on the

mental health of female patients.
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. BEEFRE CRBEHFAERE COFESMOLER
fRIEA TR, 33.6% (252%) THh -7z, BEIE
BFEEHBLT, BRAREIERCTENS
<0.0001), BMI&fE (p<0.01), A7 WELEE (p
<0.05), & v» QOL (p<0.0001), & \»CES-D& &
(p<0.01), EWIADL (p<0.05), A7 \wirh ks
D EE (p<0.05), BWHITHE (p<0.01) TH -
72 (1)

2. BREOEEROEND S A -EISHOBLEE
EREAFREIL, BUHIERERE% (36%), Ll
54% (43%), EIHEERE0% (914), FHBE40%
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x1 BREAFRELRRIEAFE TORFED LR

ESEE i ERARE P
n 498 (66.4%) 252 (33.6%)
Fig (%) @ 72.5 (5.8) 73.3 (6.1)
R, & (%) 223 (44.8%) 167 (66.3%)  #*xo
BMI¥ 22.8 (2.9) 23.5 (3.2) )
BEE (%) 159 (32%) 61 (24.4%) *0)
HERE (£) 9 12.1 (2.5) 11.9 (2.8)
WAEFTR, 2505 B &mE (%) 85 (19%) 52 (23.7%)
(vs2577 ./ B LLEEE)
QOL (g) @ 3.6 (0.5) 3.4 (0.5) okd)
B 3.8 (0.5) 3 5 (0.6) *ak
LY 3.6 (0.6) 5 (0.6)
& 3.5 (0.5) 3.5 (0.5) ,
BN 3.6 (0.5) 3.4 (0.5) Aok
LNy 3.4 (0.6) 3.2 (0.6) ok
CES-D (&) ® 4 (1~10) 6 (2~12) #0xe)
RarkeE (&) ® 15 (13~15) 15 (14~15)
IADL (&) » 14 (13~15) 13 (12~15) #2)
BFPODLL EAY (|) @ 18.8 (5.5) 17.8 (6.1) o
S5mBATEE (F) » 2.9 (0.8) 3.3 (1.2) Hoxd)

BMI; Body mass index, QOL; Quality of life, IADL: Instrumental activity of daily living
CES-D; the Center of epidemiologic studies depression Scale

DPIGE L RERE, wPRE (USEE), 9%RE, SO %V (EE
Wilcoxon DNERLFIMETE, *p<0.05 *+p<<0.01 **¥p<C0,0001

RK2 BEOBRBEOECHDLALEREDCTILILE

B T
B R P EBE EBE P

n 36 (46%) 43 (54%) 1 (60%) 1 (40%)

£# (%) @ 74.7 (6.8) 72.2 (5.0) 73.8 (6.3) - 73.1 (6.5)

HEE () » 12.1 (2.0) 12.2 (2.1) 11.6 (2.0) 11.7 (2.1)

BMI® 23.9 3.7 23.4 (2.75) 22.9 (3.3) 24.6 (3.2)

VAS (mm) @ 43.9 (25.3) 40.4 (24.0) 40.4 (23.3) 45.2 (29.0) #0)
HEE (%) 25 (42%) 20 (46.5%) 45 (49.4%) 28 (46%)

FHTEE (%) 2 (5.5%) 1 (2.3%) 5 (5.5%) 4 (6.5%)
HRRYQOL (&) » 3.5 (0.5) 3.4 (0.4) 6 (0.5) 3.4 (0.4)

CES-D (/&) ® 3.3 (1~10) 6.3 (2~14) 7 (3~12) 9.5 (2 ~15)
SRAtERE (&) W 15 (13~15) 15 (13.5~15) 14.5 (13~15) 15 (13~15)

IADL (&) ® 14 (12~15) 14 (12~15) 13 (12~15) 13 (12~15)
BFrLOML EAY (E) @ 19.3 (8.1) 19.1 (5.8) 17.8 (5.0) 16.5 (5.8)
5mBF{THRE () 2.8 (0.7) 2.9 (0.9) 3.5 (1.2) 3.5 (1.1

BMI; Body mass index, VAS; Visual analog scale, QOL; Quality of life
CES-D; the Center of epidemiologic studies depression Scale, IADL: Instrumental activity of daily living
IPHELFERE, OhRE (UOUEE), SFE0H 5 (BE, *p<0.05

(61%) Tholze BHDALREEFE L LB LT
ERERREIIAEIZ VAS EE (p<0.05) ThHo 575,
2o TOMIIEBZRBBE SN 2oz (R2),

T VAS EEMETH o7 (p<0.0l)e BHEDATH
GRERAFE CHRE LB L ChEE~BED
FHEEIZEAER QOL (p<0.05) I L UERAEEE (p

<om>®%ﬁﬁﬁ#oto%ﬁk%* FiE DR
3. BREOBMELBERAODEVD,L A-BIEHDE CRBAOENTCESDEAICAEEZEIZD LN
TH& hofz (£3, 4),
Birk bz, MBETHEL LKL (HPEE~BED
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®3 FRIBITIBRBOEE L BEAOEN DS B FBEFED B

R S

HREE R IR EE P PR SRR 3EE P
n 19 17 18 25
Fi () 75.5 (6.7) 73.8 (6.9) 70.5 (4.6) 73.9 (5.3) #9)
HEE (£) » 12.2 (2.1) 12.1 (2.0 12.2 (2.2) 12.1 (2.1)
BMI¥ 23.2 (2.4) 24.6 (2.6) 23.0 (1.9) 23.8 (3.6)
VAS (mm) @ 63.6 (18.2) 30.7 (17.3) ) 60.4 (17.2) 29.4 (17.0) k)
HIRE QOL (&) @ 3.6 (0.3) 3.5 (0.5) 3.3 (0.4) 3.5 (0.4)
CES-D () ® 3.5 (1.0~10.0) 3 (1~7) 8.5 (2.0~14) 4 (2~10)
antkRe (&) » 15 (14~15) 15 (13~15) 15 (13.5~15) 15 (14~15)
IADL (f) ® 15 (14~15) 15 (14~15) 15 (13~15) 15 (14~15)
BFrHOEL EA0 () @ 19.3 (8.1) 19.2 (8.1) 19 (6.2) 19.1 (5.3)
5 mBITHEE () 2.9 (0.7 2.7 (0.6) 2.8 (0.6) 3.0 (1.2)

GRS~ REE ) TI9M43.0 (BEREL25.3) mblk, 558 FIHE43.0 (ERMEE+25.3) mEis

TEMEHG | PSR~ TR THM40.4 (RERE+24.0) mblb, 553 FI9E40.4 (BBME+24.0) mkis

BMI; Body mass index, QOL; Quality of life, CES-D; the Center of epidemiologic studies depression Scale

TADL: Instrumental activity of daily living, “F39{E +BEREE, o RE (WAIHE), 9WIE0H 5 t4EE, *p<0.05 =p<0.0]

R4 THIIBITLBEOBELBEMOEND L AEFEO LR

BB s

T~ AR 5o P HE AT EE P
n 40 51 29 32
Fim (GF) @ 74.3 (6.4) 73.3 (6.2) 73.7 (6.3) 72.5 (6.6)
BEE () » 11.1 (2.0) 12.1 (2.0) 1.2 (2.1) 12.1 (2.1)
BMI® 23.5 (3.8) 22.3 (2.9) 24.5 (2.6) 24.7 (3.7)
VAS (mm) 66.7 (17.6) 30.2 (16.8) #ke) 71.6 (19.2) 35.7 (18.3) i)
1R85 QOL (s1) @ 3.4 (0.6) 3.7 (0.5) s#6) 3.4 (0.4) 3.4 (0.5)
CES-D (&) v 8 (3~12) 6 (3~11) 12 (3 ~15) 7 (2~12)
FRAIHERE (B) w 14 (13~15) 15 (14~15) k) 14.5 (13~15) 15 (14~15)
IADL (f) ® 13 (13~14) 13 (12~15) 13 (12~15) 12 (12~14)
WFrooirb XY (E) @ 15.8 (4.2) 18.2 (5.7) 16.1 (6.1) 16.9 (5.5)
5mBITEE (B) @ 3.6 (1.3) 3.3 (1.0) 3.7 (1.5) 3.2 (0.7)

TR PR~ SAR ) TIE40.4 (BEREEL23.3) mbll, 5 TIHME40.4 (EEEE+23.3) mkis

TEREHE PSR~ BREE ) TIOME45.2 (BEEREL20.0) mill, % T2 (EEREL29.0) mkiH

BMI; Body mass index, QOL; Quality of life, CES-D; the Center of epidemiologic studies depression Scale, IADL: Instrumental activity of daily living
DFHELERERE, PRl (WS IEE), ofm0od 5 (HEE, YWilcoxon DIERIFIMEE, *p<0.05 *+p<0.01

N. & =

. BEEREOREMICOVT

AAFFEN B 5 R ATREL, 33.6% (2524) TH -
72 WFEEIC & D BB DERRPBEHEILEVIE D 5 9%,
HNECBTAEELr A TCORBEAFEIIS~
19.3% DFEFEY 2 TH D Z L b T 5 &, KEF5E
THEWEFRECTH L Z EHBAL -, EfEznsE
M (60 LOMBAEFEERE) CORVEORSET
X, BFE1ET1Ly BULEERTIBEOAFED
32.8% Tholzk LTwaEY, 372, %L DT,
FBHELDILEDHD, ARESBNIEFRESL
TWaH, D ELh, RFERICBTABEEFE
&, BACHHE L-FREL BN LTBY,
FIZZEOFREBIEERICH 572,

i}

AR TIE, BUBIEARE & LB L CBEERED
BMI "= ET & o 72, FEFE & BMI & O B |2 B4
BEATHIGE, 13 A COWEPEROREDEERE
FO—2E LTHEDTWAEY, BEEIR, HEMEHIC
DEHA NV AZELAZ EIIMA, JRIFMEM (adi-
pose tissue) 253U S A KIEWET A M A A VA
HEENHICEE L 5 2 L WEEESRES A Tn AT,

BUEBBIZOWTHRE L7oR, BEREEHRE LT
WL TRBEREOREZSEE L h ol B
OA & BIE & ORLEMEIZE T 554703812, BEOA @
FEEZH L TOTPIFHRTFL LCOBEEZRLT
W39,

HEEFORTICB VTR, BBARE L HERES
LOMEE L OMEEITEE SN2 o 72, 2,113
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LOERENSE L L7206 M OMERTZE <, MBS
KOBEIHBEEBLIUCNA L OBMER I P o7z L
LTBYY, KL —HTAEREE o7, LkL
B h, AW E ORFFETH A ¥ OE R IUADEIE
EPBAFBE TR (HERETHL I L DENR Y
HbRBO—HKEARTBLY, B bREFLET
H5b,

BT, BEERFE LB L URERED
CESDEAFEEILEETH-7/2, )2, O b
=V, JVIERT)UYBIUP =83 U EOMRE
FEWEOEHAZET S L BN REEORK
RThrLEND, Tz, ERETITHEEBIERIC
LOHEIN, ) OLRAKOMRIZEDEICLD, &
SR L CRBAEHH T A L I TS, £D7:
O, FREIDREAHENBVDIDEEZLNLY,
AFFRICBNTY, BRBEFEIIERICCESDER
PEET, BEL) oL 0BEERE RBT HEERT
Hoi,

BHBETOLRE BT, BEARE LBk
BEE DBEMZ D L h o 720 FTATHIZETIE, MRS
FERE™, SEMEEREARRIBEY B L UHEEH ) v T
EOEBFREICBWT, BIEEEE OEEKE, 15
RALFR/FEFEERE B X O EOETAEHE SN T
Wb,

2. BREOBELBEROBEVTF X > ZILAILRIC
RIFTEHEIIONT

BROBEEOE NS L ALEEEOLEIZBWT
i, ZTHOAEREAFE B LT, ERREFRE
PEEICVASIEHETH o7z, QOL, 5 2B LU
MRS L TiE, BBOEGEERD LN E o7,
4, PET X fMRI 7% EOBEEZWORKRBIC X W ES
TR EFROBBEMZRFHL PICEN TN 5,
EBOFZVEEROAE LY b EANIE W L3k
TTRFRICBWTHRE SN TV DAY, METIE, GEE
OEBHHIE ORBEEREMED S, HFICHERMENE
ERERETETAZLENPRBEINTWE?, /2, 9
DR EE ORIFLE A TS RTERTE BB O & WiE
BLEET LI EMESN, ) OIEIMI BT EATE
DEE T HRERIENE L BET 5 2 EATRIEENT
WY, BENRITREEEREE LR ICIKHER
IERE Lo A, BB, REAAEETS X
M DOIREEDRERE L T I E PRI Ty
B,

T ER O BRI T O RRRYE IR IC BT A58 T
X, WEBALELT A L) REE T ERORME
BBAE L, BELERBEICHT 2 RETIIAERORM
FBEWRENZEFRESNTWE?, 72, ERk
RIZRIBOBANFIE E, ERMEIZERE O B8R0
HEBETAZEOHEESNTNEY, 62, £F
HIBEBRLCEHCERICHE T A HEOBAEIT BN L
o, EERICHEEDD L BE T, HEERE L
LCTQOLMWET L TWwAHREELSRRH I L TWw5EY,

INLOHRENS, BAEMEMEE~OBEIZITE
BEEDHEEFHERINL L OO, AR TIX, QOL,
I OB LURMEBRICEEOLAEERD O N o
7oo TAUE, TEEDRYEITES R RRANAY I~ O R A B
DEBIIEIERE IKGET 5 L ORENDS, KEEBE
I LT, BREOEVATA Y F VAV REE
T5HI RPN EATRIBE N,

SR DR & BB OE VDS A FEEEO REIC
BWTIL, THEOAICEREEHRE CHAFLHELT
FEE -~ BEICHAEN QOL &Mk NG
BPE»ro7/ze L22L, CES-D CERlis /-9 o4&
RUIBOTREREFBHE S 2o,

COEELLT, AfETIIEEYEE ] » BT
LT3, HIDEFRAERELEET S
hod, BUERELIEMERENEELTNS I EPE
BLOTEZBREEZ D,

I, HEDFFEDLENZ EIZE LT, KEOHR
AL BE T B B OEEN L OV D EEDERAE
DEEIZHETDH I EPBEIN TV EY, BiZ, &
HREARZ, 9 2% EOTEE) - RAREITE I BHET 5
EEIL ANV BCOZ LT, BiidakilaoEmicE
EYABIER L ANUAE L E BT, BE, WHI
BUWOLEMRERICL D, BHEEECHRTES, BF
BE QOL 2tEL, SHLIEBRERAENSKTLL
CEPRREENTVAE®, ZDXHI, WHEEE®T
1, BERBICH T A HHRGEICB W TFEIE AL D&
WRHFRMERN DY, WHEOFIEBIIHFLTLDY
HEINRLTWVWE)ITHD, INOLOMA LD, FFIC
THTIEEBEBOBEICEKTEL TA VY VAIVAILE
HBERIZTTORE LNV,

AHFFEDRFEE LTIE, UTO4HIEZON S,
TFE LI, SIEIMLAR LR ETH D, B
SN, MOEFIC—BILTE 2 WITEERD 5,
212, AECTIEEROSTELEBREDEVET
QEELIHTH D, EREEVIBERICHET 5 A
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BB, ERTEEE L SHMICEENHLHETO
REEILE L Twikvy, 510, EEREDGEICTE
HEZ RV ESBRICEEL-TREND 5, 8
, BHEETIE, BRE2B8E1 r ATHREL Y
73, &f@ﬁﬁ%ﬁ FEDH TRV, alkEms
CEBEEBEMREL TV LARETTETE 2\, 6
402, REFFETH A VIdBITITE Ch 2720, FOH
RERPABLZETH A, Thbh, AVF AN
ANDEENL, BRPBER L OPERLE DD, Eé>L<
@%@ﬁﬁ@%ﬁ%ﬁ?%T%ﬁ#%x%h%o
, AR BT LI, FikF @ﬁéﬁ#%ﬂ~
ﬁ &LtMW%&ﬁ%iUFKﬁm@Z%@iT%
B LTEIN,

V. #
KFFZETIE, THEICBWTOL, GREEFRETE
BEC LB L TR EE ~SREE O 51KAY QOL & ZRAntksE

DEBEPBRNZ LB SN, —F, BEWRE L
CES-D CEMis N7z ) 2L 0BEHRIIBWTIIER
EVBBEIN G hol, TN, THERBEOR

FEEBEMOENTA Y ¥ VAL ANDFERE L 5
AERMEATRIE S 7z,
V. #

KEZElL, KEFTH?LOZEMEO—EHTH 5,
BHFROREICH-), 74—V FRAEOEES 5 2
T2 E o /o REN T EIE EROER, #AEICD
B2 8 o MR OBERS L OTUINKEEER %

YE=AY v T OBBRIOEEBE LT T,
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