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Human T-cell leukemia virus type 1 (HTLV-1) is the causative retro-
virus of adult T-cell leukemia (ATL) and HTLV-1-associated myelop-
athy/tropical spastic paraparesis (HAM/TSP). HTLV-1-specific T-cell
responses elicit antitumor and antiviral effects in experimental
models, and are considered to be one of the most important deter-
minants of the disease manifestation, since they are activated in
HAM/TSP but not in ATL patients. The combination of low T-cell
responses and elevated HTLV-1 proviral loads are features of ATL,
and are also observed in a subpopulation of HTLV-1 carriers at the
asymptomatic stage, suggesting that these features may be under-
lying risk factors. These risks may potentially be reduced by vacci-
nation to activate HTLV-1-specific T-cell responses. HAM/TSP and
ATL patients also differ in their levels of HTLV-1 mRNA expression,
which are generally low in vivo but slightly higher in HAM/TSP
patients. Our recent study indicated that viral expression in HTLV-
1-infected T-cells is suppressed by stromal cells in culture through
type-l IFNs. The suppression was reversible after isolation from the
stromal cells, mimicking a long-standing puzzling phenomenon in
HTLV-1 infection where the viral expression is very low in vivo and
rapidly induced in vitro. Collectively, HTLV-1 is controlled by both
acquired and innate immunity in vivo: HTLV-1-specific T-cells sur-
vey infected cells, and IFNs suppress viral expression. Both effects
would contribute to a reduction in viral pathogenesis, although
they may potentially influence or conflict with one another. The
presence of double control systems for HTLV-1 infection provides
a new concept for understanding the pathogenesis of HTLV-1-
mediated malignant and inflammatory diseases. (Cancer Sci 2011;
102: 670-676)

I t has been three decades since the discovery of human T-cell
leukemia virus type 1 (HTLV-1) as the causative retrovirus of
adult T-cell leukemia (ATL).“’Z) ATL develops during middle
age or later mainly in a small portion of vertically HTLV-1-
infected populations.®* HTLV-1 also causes HTLV-1-associ-
ated myelopathy/tropical spastic paraparesis (HAM/TSP) in
another small population of infected individuals.”"® Some other
inflammatory diseases such as uveitis and arthritis are also asso-
ciated with HTLV-1 infection.”"® New therapeutic approaches
such as hematopoietic stem cell transplantation (HSCT),(Q‘m) an
antibody therapy targeting CCR4,"'" and antiviral therapy with
interferon-alpha and zidovudin‘'® partly improved the prognosis
of ATL. However, ATL still shows high mortality, and
HAM/TSP remains to be an intractable disease.

Enormous amounts of research findings have been accumu-
lated regarding the virus-mediated pathogenesis. HTLV-1 Tax, a
virus-encoded regulatory gene product, mediates cell activation,
proliferation and resistance to apoptosis by transactivation
through NF-«B, cAMP response element binding protein
(CREB) and serum response factor (SRF), and by inactivation

Cancer Sci | April 2011 | vol. 102 | no.4 | 670-676

of tumor suppressors,''*™'* which would be involved in leuke-

mogenesis and inflammation in HTLV-1 infection. Another
minus-strand HTLV-1-encoded gene product, HTLV-1 basic
leucine zipper factor (HBZ), is continuously expressed in
infected cells in vivo regardless of the disease and may also be
involved in the growth ability of infected cells.'®

However, many unsolved questions still remain regarding the
pathogenesis of HTLV-1 infection, for example, how the same
virus causes totally different diseases such as ATL and
HAM/TSP, why only small portions of HTLV-1-infected popu-
lations develop diseases, and why it takes more than 40 years to
develop ATL. The answers to these questions would provide
hints for predicting disease risks as well as aiding the develop-
ment of prophylactic and therapeutic strategies.

HTLV-1-specific T-cell responses that contribute to antiviral
and antitumor surveillance could be one of the most important
determinants of the diseases. In fact, HTLV-1-specific T-cells
are activated in HAM/TSP but not in ATL.""""'®) Oral HTLV-1
infection induces T-cell tolerance to HTLV-1 and increased pro-
viral loads,®*" consistent with the epidemiological finding that
vertical HTLV-1 infection is one of the risk factors for ATL.®
Therefore, the individual status of HTLV-1-specific T-cell
responses is expected to be an indicator of risk for ATL.??
Although the pathological significance of HTLV-I-specific
T-cells in HAM/TSP remains controversial,®>>¥ advantages
for HLA-A02-positive individuals in protection against
HAM/TSP have been reported, and interpreted through the
association of this HLA with strong CTL responses to a major
epitope of HTLV-1 Tax.*”

Elevation of proviral loads is also a risk factor for ATL.
Given the fact that HTLV-1-specific CTLs have antiviral effects,
these CTLs are likely to be one of the determinants of proviral
loads.*® However, proviral loads are also increased in
HAM/TSP patients, and the correlations between proviral loads
and HTLV-1-specific T-cell responses vary among studies,*’*
suggesting the presence of additional factors for determining
individual proviral loads.

Another curious finding in HTLV-1 infection is the scarcity
of viral antigen expression in the (Beripheral blood, although the
viral mRNA is barely expressed.?® The transcription of HTLV-1
is mainly regulated by CRE-like repeats in the HTLV-1
LTR.®? Involvement of inducible cAMP early repressor (ICER)
and transducers of regulated CREB 2 (TORC?2) in the inhibition
of HTLV-1 transactivation has been suggested‘(’l’m However,
the mechanism involved in suppressing viral expression only
in vivo has remained obscure. It is a paradox that HTLV-1 Tax
contributes to the pathogenesis while Tax protein is undetectable
in vivo. Expression of HBZ in the absence of Tax may partly

3To whom correspondence should be addressed. E-mail: kann.impt@tmd.ac.jp

doi: 10.1111/j.1349-7006.2011.01862.x
© 2011 Japanese Cancer Association



explain the growth advantage of infected cells,®> but not all of
HTLV-1-mediated leukemogenesis. In addition, it does not
make sense that Tax-specific T-cell responses are maintained if
Tax is not expressed in vivo. The paradox will remain until the
state of viral expression and the mechanisms for suppressing
HTLV-1 expression in vivo are clarified.

We recently found that innate immune responses, esgecially
type-I interferons (IFNs), suppress HTLV-1 expression.®* This
integrates the issue of viral expression and the host defense sys-
tem against HTLV-1, which includes innate immunity as well as
acquired immunity. The presence of double control systems
explains some of the paradox in persistent HTLV-1 infection,
and adds new aspects to the pathogenesis of HTLV-1-mediated
diseases.

Control of HTLV-1 by HTLV-1-specific T-cell responses

Antitumor surveillance by HTLV-1-specific T-cells. CD8"*
HTLV-1-specific CTL responses are found in many HAM/TSP
patients and asymptomatic carriers (AC), but rarely in ATL
patients. 7193539 These CTLs kill HTLV-l-infected cells
in vitro, and mainly recognize HTLV-1 Tax.!'®*” The HTLV-1
envelope is also a popular target, especially for CD4* CTLs.®®
Other viral anti%ens, inc]udin% Polymerase,(”) ROF (pl2) and
TOF (p30/p13),""” and HBZ,“" have also been shown to be
targets of CTLs. Elimination of CD8" cells among PBMCs from
HAM/TSP patients induces HTLV-1 expression during subse-
quent cell culture,“? clearly indicating that CD8" HTLV-I1-
specific CTLs contribute to the control of HTLV-I-infected
cells.

A series of animal model experiments indicated that
HTLV-1-specific T-cell responses limit the expansion of HTLV-
I-infected cells in vivo. Oral HTLV-1 infection induced insuffi-
ciency of HTLV-I1-specific T-cell responses in rats, and the
HTLV-1 proviral loads were inversely correlated with HTLV-1-
specific T-cell responses.?" Re-immunization of these rats with
mitomycin C-treated HTLV-1-infected cells restored HTLV-1-
specific T-cell responses and reduced the proviral loads“”
(Fig. 1). In another rat model of HTLV-1-induced tumors, the
otherwise fatal HTLV-1-infected lymphomas in T-cell-deficient
rats were eradicated by transfer of T-cells from syngeneic rats
that had been vaccinated with a Tax-encoding DNA or Peptides
corresponding to a major epitope for Tax-specific CTLs.#4>

Recent clinical reports have indicated that HTLV-1-carrying
recipients after liver transplantation develo%)ed ATL under the
administration of immunosuppressants.“®*” In contrast, Tax-
specific CTL responses were strongly activated in some ATL
patients who obtained complete remission after HSCT, but were
not observed in the same patients before transplantation.*®
These findings suggest that HTLV-1-specific T-cells, including
Tax-specific CTLs, play important roles in antitumor surveil-
lance against HTLV-1 leukemogenesis.

Insufficient HTLV-1-specific T-cell responses as a potential risk
for ATL. Most HTLV-1-infected individuals are asymptomatic,
and only about 5% develop ATL and <l1% develop
HAM/TSP.®*? The epidemiological risk factors for ATL
include vertical transmission and increases in the number of
abnormal lymphocytes or HTLV-1 proviral loads.®*%3D HTLV-
1 proviral loads are also elevated in HAM/TSP patients.®>

Immunological studies have suggested that insufficiency in
host T-cell responses against HTLV-1 might be another risk fac-
tor for ATL.“? A small-scale survey measuring Tax protein-
specific IFN-y production revealed a wide variety in the
strengths_of HTLV-1-specific T-cell responses among HTLV-1
carriers.®® The combinations of HTLV-1-specific T-cell
responses and proviral loads categorize HTLV-1 carriers into
the following four groups: (i) low proviral loads with HTLV-1-
specific T-cell responses; (ii) elevated proviral loads with
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Fig. 1. Recovery of human T-cell leukemia virus type 1 (HTLV-1)-
specific T-cell responses and reduction of proviral loads by re-
immunization. Eight rats orally infected with HTLV-1 were divided
into two groups. (A) One group was left untreated (Infect. alone) and
the other was subcutaneously immunized with mitomycin C-treated
HTLV-1-infected syngeneic rat T-cells (Infect. + Imm.) at 4 weeks.
Spleen T-cells were harvested at 7 weeks after infection. (B,C) T-cells
from the re-immunized rats (Infect. + Imm.) show elevated levels of
Tax-specific T-cell proliferative responses (B) and lower proviral loads
(C), compared with untreated rats (Infect. alone).*3

HTLV-I-specific T-cell responses; (iii) low proviral loads with
low T-cell responses; and (iv) elevated proviral loads with low
T-cell responses (Fig. 2).

Regarding these groups, ATL patients exhibit elevated provi-
ral loads with low T-cell responses, while many, but not all,
HAM/TSP patients show elevated proviral loads with high
HTLV-1-specific T-cell responses. ACs are found in all four cat-
egories. It is noteworthy that small subgroups of ACs and smol-
dering ATL patients share a common feature with ATL patients.
This indicates that the insufficiency of HTLV-1-specific T-cell
responses is not merely the result of malignancy but is an under-
lying problem before the stage without apparent lymphoprolifer-
ation. Further follow-up studies are required to clarify whether
the extent of the combination of elevated proviral loads with
low T-cell responses could be a diagnostic indicator for risk of
ATL.

Dissociation between proviral loads and T-ceil responses.
Although HTLV-I-specific T-cells have the potential to
control infected cells, there are no clear correlations between
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Fig. 2. Diversities in Tax-specific T-cell responses and dissociation
with proviral loads in human T-cell leukemia virus type 1 (HTLV-1)-
infected individuals. (A) Diversity in CD8" T-cell functions in two
representative HTLV-1-infected individuals at the asymptomatic stage.
Abundant amounts of HTLV-1 p19 were produced in PBMC cultures
with or without CD8" T-cells in subject 1, but only after CD8" T-cell
depletion in subject 2.5 (B) A general image for the categories of
HTLV-1-infected individuals at various stages according to the
combinations of HTLV-1-specific T-cell responses (x-axis) and proviral
loads (y-axis) is shown schematically. AC, asymptomatic carriers; ATL,
adult T-cell leukemia; HAM/TSP, HTLV-1-associated myelopathy/
tropical spastic paraparesis; HSCT, hematopoietic stem celli trans-
plantation.

proviral loads and HTLV-1-specific T-cell responses among
HTLV-l-infected individuals. This is not surprising because
both the proviral loads and T-cell responses are high in
HAM/TSP patients. The proviral loads may be negatively corre-
lated with T-cell responses only within an individual but not
among individuals. Several other reports have indicated various
findings concerning this issue. For example, a study measuring
IFN-y-producing CD8" HTLV-1-specific CTLs indicated a posi-
tive correlation with proviral loads in HAM/TSP patients but
not in ACs,®® while a study evaluating CD8* CTL function by
ex vivo clearance of infected cells showed negative correlations
with low proviral loads within an AC or a HAM/TSP group,“?
and another study indicated an association of higher frequency
of tetramer-binding Tax-specific CTLs with low proviral loads
in ACs.*” Such inconsistent results suggest the presence of cer-
tain other determinants of proviral loads in addition to HTLV-1-
specific CTLs.

The HTLV-1 proviral loads reflect the number of infected
cells in the peripheral blood. Expansion of HTLV-l-infected
cells in vivo occurs through both de novo infection and prolifera-
tion of infected cells.®® The number of CD4* FoxP3* cells,(ss)
the frequency of iNKT cells,®® or MHC-I favorable for
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HBZ-specific T-cell responses™“" have been suggested to influ-
ence HTLV-1 proviral loads.

In HTLV-l-infected rats, however, the proviral loads are
inversely correlated with HTLV-1-specific T-cell responses.®"
One reason for the discrepancy between humans and rats may
be the genetic heterogeneity in humans. It appears that, under
the homogeneous genetic background in the experimental rat
system, the influence of insufficient HTLV-1-specific T-cell
responses may appear more clearly than in humans, allowing
de novo infection and proliferation of HTLV-1-infected cells
in vivo. The dissociation of proviral loads and HTLV-1-specific
T-cell responses in humans suggests that additional determinants
of proviral loads may vary genetically among individuals. As
described in the next section, we suppose that innate immunity
could be a candidate for this effect.

Control of HTLV-1 by innate immunity

Status of HTLV-1 expression in vivo. Since HTLV-1-specific
antibodies and T-cells are maintained in HTLV-1-infected indi-
viduals, viral expression must occur somewhere in vivo. This
notion is further supported by the emergence of Tax-specific
CTL responses in HTLV-1-uninfected donor-derived hemato-
poietic ssystems reconstituted in recipient ATL patients after
HSCT.“®” However, HTLV-1 mRNA but not viral proteins
are detectable in PBMCs freshly isolated from HTLV-1-infected
individuals. The levels of HTLV-l mRNA are higher in
HAM/TSP patients than in ACs,®® but viral proteins are still
undetectable. Only a few reports have indicated HTLV-1 protein
expression in situ.

HTLV-1 expression in ATL cells immediately after isolation
from the peripheral blood is very low, and becomes significantly
induced after culture for some hours in vitro.®>" This phenom-
enon is observed in about one half of ATL patients regardless of
the disease severity.®® Viral induction after in vitro culture does
not occur in the other one half of ATL patients, probably
because of genetic and epigenetic changes in the viral gen-
ome.(®*%9 Rapid induction of viral expression after in vitro
culture has also been observed in PBMCs from HAM/TSP
patients and ACs,®® indicating that there must be a common
mechanism for transiently suppressing HTLV-1 expression
in vivo regardless of the diseases.

Suppression of HTLV-1 expression by type-l IFN responses.
Recently, we found that type-I IFN responses are involved in
the suppression of HTLV-1 expression.® When HTLV-
l-infected T-cell line cells were co-cultured with stromal cells
such as epithelial cells and fibroblasts, HTLV-1 mRNA and
proteins were markedly decreased in HTLV-I-infected cells.
Similarly, induction of HTLV-1 expression in cultures of pri-
mary ATL cells was also suppressed by co-culture with stromal
cells. Type-I IFNs were involved in the stromal cell-mediated
suppression of HTLV-1 expression, because it was partly neu-
tralized by anti-IFN-o/B receptor antibodies. Since efficient
HTLV-1 expression is_dependent on transactivation of its own
LTR by Tax protein,®*%” limitation of this protein below a
certain level will lead to the maintenance of HTLV-1 expression
at low levels. Stromal cells reduced viral expression via type-I
IENs, but did not reduce cell growth and even supported it by
unknown mechanisms.*

It has been reported that plasmacytoid dendritic cells (pDCs),
a major pr ducer of type-I IFNs, are susceptible to HTLV-1
infection.®’? In ATL patients, pDCs are decreased in number
and also lack the ability to produce IFN-o.%” A recent report
indicated that pDCs generate t_}l'[))e—l IFNs mainly through TLR7
recognition of HTLV-1 RNA." The precise mechanisms of the
HTLV-1-mediated IFN responses remain to be clarified.

In addition to recombinant IFN-a and IFN-B, recombinant
IFN-y was also capable of reducing HTLV-1 expression to
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lesser extents in HTLV-I-infected cell lines.**"® Participation
of type-Il IFN-producing cells other than stromal cells in
HTLV-1 suppression in vivo is also conceivable.

Potential involvement of type-l IFNs in HTLV-1 suppression
in vivo. In in vitro experiments, co-cultured stromal cells sup-
pressed viral expression in HTLV-1-infected cells. Interestingly,
when infected cells were re-isolated from the co-cultures, viral
expression was restored to the original level over the following
48 h (Fig. 3).®¥ This observation shows a stnklng similarity to
the rapid induction of HTLV-1 expression in freshly isolated
ATL cells after culture in vitro.

Involvement of type-I IFN responses in the suppression of
HTLV-1 expression in vive was confirmed using interferon reg-
ulatory factor-7-KO mice, which are deficient in most type-I
IFN responses. Viral expression in HTLV-1-infected cells was
significantly suppressed when the infected cells were intraperito-
neally injected into WT mice but not into interferon regulatory
factor-7-KO mice.*

It is speculated that the levels of viral expression in HTLV-1-
infected lymphocytes may differ among various tissues depend-
ing upon the strength of IFN responses. Thus far, there is little
information regarding HTLV-1 expression in various tissues. In
transgenic mice with an HTLV-1 LTR-driven construct of the
pX gene, expression of the transgene was only observed in lim-

ited organs mcludm% the central nervous system, eyes, salivary
glands and joints.""”’ It is intriguing that all of these tissues are
involved in human inflammatory diseases related to HTLV-1
infection. Such coincidences suggest the involvement of HTLV-
I gene expression in the pathogenesis of these inflammatory
diseases.

Double control of HTLV-1 by innate and acquire immunity

Relationship between acquired and innate immune control in
HTLV-1 infection. At the primary infection, type-I IFNs gener-
ally play a critical role in limiting viral replication, and have
positive effects on antigen presentation by activating DCs, induc-
ing type-II IFN, and upregu]atmg MHC-I, which subsequently
augments T-cell responses.””” However, the role of type-I IFNs
in the chronic phase of viral infection may not alwayq be posi-
tive. In HIV-1 infection, type-I IFNs may be a plogre%lve factor
for the disease by accelerating T-cell exhaustion.’

Suppression of HTLV-1 expression by type-I IFNs may
reduce the efficacy of T-cell-mediated surveillance against
HTLV-1-infected cells, because T-cells require viral proteins for
recognition. On the contrary, if the IFN-mediated suppressive
system is insufficient, HTLV-1-specific T-cell responses will be
activated in response to viral antigens.
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Fig. 4. Hypothetical relationships among the host immunity, status of human T-cell leukemia virus type 1 (HTLV-1)-infected cells and symptoms.
HTLV-1-infected cells are controlled by at least two systems: type-l IFNs (innate immunity) and HTLV-1-specific T-cells (acquired immunity). The
former suppress viral expression and the latter kill infected cells. An increase in viral expression would accelerate inflammation, increase the
number of infected cells through de novo infection and activate HTLV-1-specific T-cells that determine an equilibrium level of proviral load
within an individual. Viral expression may be a positive, but not absolute, factor for cell proliferation. When the viral expression is well
controlled, the viral pathogenesis will proceed slowly, and may not be apparent until infected cell clones with a malignant phenotype finally
emerge from the enlarged infected cell reservoir. Without proper T-cell responses, the emergence of such clones may occur earlier, because they

would have more chance to survive.

The relationship between innate and acquired immunity may
also differ among tissues. In tissues with strong IFN responses,
viral expression in the infected cells would be suppressed and
CTLs would ignore these cells. However, in tissues with weak
IEN responses, infected cells would express viral antigens to be
recognized by CTLs (Fig. 3). These presumptions can explain
the status of HTLV-1-infected cells in vivo, which comprises a
large reservoir of infected cells without viral expression and a
low-efficiency surveillance system by CTLs that can only work
on limited occasions.

Potential relationship between disease manifestation and
innate and acquired host immunity in HTLV-1 infection.
Although suppression of HTLV-1 expression may partly inter-
fere with the efficacy of T-cell immunity, it may contribute to a
slowing down of the Tax-mediated pathogenesis, tumorigenesis
and inflammation (Fig. 4). In a rat model, shRNA-mediated
suppression of Tax in HTLV-I-transformed cells rendered
these cells resistant to Tax- specxﬁc CTLs but also reduced
their ability for tumorigenesis in vivo.’® Continuous suppres-
sion of HTLV-1 expression in humans may have a similar
decelerating effect against Tax-mediated tumorigenesis. This
might be a reason why it takes so long for ATL to develop. So
long as the viral expression is well controlled, the viral patho-
genesis may not be apparent until malignant cell clones finally
come through the process of clonal evolution in the infected cell
reservoir. Without proper T-cell responses, the emergence of
such clones may occur earlier, because they would have more
chance to survive.

HAM/TSP patients show elevated levels of viral expression
for an unknown reason. Increased levels of inflammatory cyto-
kines could be either a cause or a result of this phenomenon The
involvement of HTLV-1 proviral integration sites in transcrl t1on
units in elevated viral expression has also been suggested.”” An
experimental rat model of HAM/TSP using a certain WKAH
strain exhibits increased Tax mRNA expression in the spinal
cord without T-cell infiltration,”® suggesting that viral expres-
sion is a primary event while T-cell responses are not. Further
studies revealed that this particular rat strain contains mutations
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in the promoter region of the IL-12 receptor, whlch })otentially
lead to reduced IFN-y production in the spinal cord.”® The asso-
ciations of genetic factors related to the IFN system with
HAM/TSP patients have remained obscure. Very recently, a
gene expression profiling study indicated that expression of
suppressor of cytokine signaling 1 (SOCS1) is upregulated in
HAM/TSP patients and ACs and is positively correlated with
high HTLV-1 mRNA loads.”

Conclusions

HTLV-1 is controlled by both acquired and innate immunity.
HTLV-I-specific T-cells contribute to antitumor surveillance,
and type-I IFNs contribute to silencing viral expression. The
presence of the double control systems with partial conflicts
would explain some of the puzzles in HTLV-1 infection, such as
the transient suppression of viral expression in vivo, apparently
reciprocal occurrence of ATL and HAM/TSP, inconsistent cor-
relations of proviral loads with T-cell responses, and a long
incubation period.

Insufficient T-cell responses are regarded as a risk factor for
ATL, and vaccines that augment HTLV-l-specific T-cell
responses would be beneficial in reducing the risk in a subpopu-
lation of HTLV-1 carriers exhibiting insufficient T-cell
responses and elevated proviral loads.

Innate immune responses in HTLV-1 infection should be fur-
ther investigated, because they could be another important deter-
minant of disease manifestation and represent therapeutic
targets in HTLV-1-related diseases.
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