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used were anti-MAGE-A1 (clone MA454), anti-MAGE-A3
(clone M3H67), anti-MAGE-A4 (clone 57B), anti-CT7/
MAGEC1 (clone CT7-33) and anti-CT10/MAGEC2 (clone
LX-CT10.5). For cancer-testis (CT) antigens, only strong
nuclear and/or cytoplasmic staining as observed in testicular
tissue (positive control) in at least 5% of cells was scored as

Table 1. Heteroclitic antibody response and clinical response after
CHP-NY-ESO-1 vaccination

ID Heteroclitic response  Weeks (the No.)  Clinical response
No. of antigens

E-1 0 89 (31) Regression

E2 2 14 (7) Partial regression
E3 1 28 (12) Stable

E-4 3 12 (6) Progressive

E-5 2 22 (11) Partial regression
E-6 0 4 (3) N.E.

E-7 4 2(2) N.E.

E8 7 54 (27) Stable

P2 1 28 (10) PSA stabilization
P-3 5 29 (13) PSA stabilization

Abbreviations: Weeks (the No.): weeks after the start of vaccination
and the number of vaccinations given; N.E.: not evaluable.

NY-ESO-1 MAGE-A4 p53

0 5790 5790 5789
vaccinations

587

positive. 57B and M3H67 mAbs generated against MAGE-A3
and MAGE-A4 recombinant proteins, respectively, were both
shown to recognize multiple MAGE-A family molecules.**>®

Reverse transcription-polymerase chain reaction

Total cellular RNA was extracted from frozen tissue using
TRIzol Reagent (Invitrogen, Carlsbad, CA). Conventional
reverse transcription-polymerase chain reaction (RT-PCR)
was performed against NY-ESO-1, LAGE-1, MAGE-AI,
MAGE-A3, MAGE-A4, CT7/MAGEC1, CT10/MAGEC2,
CT45, CT46/HORMADI, SOX2, SSX2 and XAGE1B.**!

Results

Antibody response against 13 tumor antigens in
CHP-NY-ESO-1-vaccinated patients

We analyzed antibody responses against NY-ESO-1, NY-
ESO-1-related antigen LAGE-1, other CT antigens MAGE-
Al, MAGE-A3, MAGE-A4, CT7/MAGEC1, CT10/MAGEC2,
CT45, CT46/HORMADI, SSX2 and XAGE1B, SOX2 and p53
in esophageal cancer patients E-1, E-2, E-3, E-4, E-5, E-6, E-
7 and E-8 and prostate cancer patients P-2 and P-3 before
and after a cycle of CHP-NY-ESO-1 vaccination (Fig. 1 and
Table 1). Before vaccination, strong antibody responses
against NY-ESO-1 and/or LAGE-1 were observed in E-2 and
P-3 and defined as baseline seropositive. Additionally,
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Figure 2. IgG antibody response against NY-ESO-1, MAGE-A4 and p53 in sera from patients before and after CHP-NY-ESO-1 vaccination by
ELISA. Sera diluted at 1:100 were assayed against N-His6-tagged recombinant proteins NY-ESO-1, MAGE-A4 and Akt produced in E. coli and
recombinant proteins p53 and CCDC-62 produced in Baculovirus. Akt and CCDC-62 were included as negative control (dotted line). Positive
reaction (closed circles) represented the OD values exceeding three times the control OD value.
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Figure 3. Serially diluted sera from patients before (open squares)
and after (closed squares) CHP-NY-ESO-1 vaccination were assayed
against MAGE-A4 peptide 15 and peptide 21 by IgG ELISA.

marginal antibody responses were observed in E-1, E-3 and
E-7. In E-5, antibody against MAGE-A1, MAGE-A3, MAGE-
A4 and SOX2 was observed. In E-7, antibody against MAGE-
A4, CT7/MAGECI, p53 and SOX2 was observed. In P-3,
antibody against p53 was observed. After vaccination, in all
patients except E-6, antibody response against NY-ESO-1
and LAGE-1 was increased or induced. In E-2, antibody
responses against MAGE-A3 and MAGE-A4 were induced.
In E-3, antibody response against SOX2 was induced. In E-4,
antibody responses against MAGE-A3, MAGE-A4 and CT10/
MAGEC2 were induced. In E-5, antibody responses against
MAGE-A3 and MAGE-A4 were increased. In E-7, antibody
responses against CT7/MAGECI1, p53 and SOX2 were
increased and that against CT10/MAGEC2 was induced. In
E-8, antibody responses against MAGE-Al, MAGE-A3,
MAGE-A4, CT7/MAGEC1, CT45, CT46/HORMADI and
p53 were induced. In P-2, antibody response against MAGE-

Heteroclitic antibody response

A4 was induced. In P-3, antibody response against CT7/
MAGECI was induced and that against p53 was increased.
No antibody against DHFR included as a control was
detected in any patient. Furthermore, no increase of antibody
response was observed against EBV and CMV after CHP-
NY-ESO-1 vaccination.

Expression of 13 tumor antigens in tumor specimens
Expression of NY-ESO-1 was detected by RT-PCR and IHC
in tumors from all patients before vaccination. Expression
of other tumor antigens except p53 was analyzed by RT-
PCR in E-1, E-5, E-6, E-7 and E-8, and expression of
MAGE-Al, MAGE-A3, MAGE-A4, CT7/MAGEC1 and
CT10/MAGEC2 was also analyzed by THC in E-1, E-2, E-4,
E-5, E-6, E-7 and E-8 (Fig. 1 and Supporting Information
Table). Mutation of p53 was not determined in our study.
Expression of corresponding antigen was confirmed with tu-
mor specimens in patients who showed antibody against tu-
mor antigens.

Antibody response against tumor antigens in
CHP-NY-ESO-1-vaccinated patients: No involvement of
antibody against Hisé6-tag and the product of E. coli
present in the vaccine
Antibody responses against selected tumor antigens were fur-
ther confirmed in sera obtained at each time during multiple
vaccinations. As shown in Figure 2, IgG antibody against
MAGE-A4 was detected in sera from E-5 and E-7 before vacci-
nation, and the response was increased or induced in E-2, E-4,
E-5, E-8 and P-2 after vaccination. IgG antibody against p53
was detected in sera from E-7 and P-3 before vaccination, and
the response was increased or induced in E-7, E-8 and P-3.
Induction of IgM antibody against MAGE-A4 was
detected in sera from E-8 after vaccination (Supporting Infor-
mation Fig. 1). IgM antibody against p53 was detected in
sera from E-7 before vaccination. Increase or induction of
IgM antibody against p53 was detected in E-7 and E-8 after
vaccination. Interestingly, in E-8, transient IgM response
against MAGE-A4 and p53 was followed by IgG response.
Recombinant NY-ESO-1 protein used for vaccination has
His6-tag in the N-terminus and was produced in E. coli as
the host cells. All antigens shown in Figure 1 also have His6-
tag and were produced in E. coli. To exclude the possibility
of detecting antibody against His6-tag and/or the product of
E. coli in the assay that might be raised by vaccination,
DHEFR was tested as control. No antibody against DHFR was
detected (see above). To further exclude the possibility, the
antibody response against control antigens was examined by
IgG ELISA using serum samples obtained in each time dur-
ing multiple vaccinations. As shown in Figure 2, antibody
against Akt protein with His6-tag and produced in E. coli
was within a background level (<0.2 OD value). p53 used in
the experiments shown in Figure 2 and Supporting Informa-
tion Figure 1, but not in Figure 1, and CCDC-62 protein
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Figure 4. Westemn blot analysis. Reaction of sera against MAGE-A1, MAGE-A4 and p53 was investigated. Recombinant proteins (20 ng) were
run by SDS-PAGE and transferred to a membrane by electrophoresis. Sera (1:1,000) from all patients obtained before and after vaccination
were examined. Marker and control bands of each protein detected by monoclonal or polyclonal antibody (1:1,000) are also shown.
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Figure 5. Western blot analysis of sera against MAGE-A4 in lysate
of MAGE-A4-transfected CMS5a cells. Cell lysate (20 pg) was run
by SDS-PAGE, transferred to a membrane by electrophoresis and
sera (1:200) from E-4 and E-5 patients obtained before and after
CHP-NY-ESO-1 vaccination were examined. Control band of the
protein detected by monoclonal antibody (1:1,000) is shown.
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share His6-tag and were produced by Baculovirus. Antibody
against CCDC-62 was undetectable in sera from any patients.

Next, we synthesized MAGE-A4 OLPs and investigated
antibody response by ELISA. Antibody response against
MAGE-A4 peptides 15 and 21 was frequently observed in
patients showing antibody response against MAGE-A4 pro-
tein (Supporting Information Fig. 2). Serially diluted sera
from patients E-4, E-5, E-7 and E-8 obtained before and after
CHP-NY-ESO-1 vaccination were examined against MAGE-
A4 peptides 15 and 21 by IgG ELISA (Fig. 3). Increase or
induction of antibody response was observed in E-4, E-5 and
E-8, but not E-7 after vaccination. No antibody response was
detected in E-1 included as negative control. These results
were consistent with those by ELISA using recombinant
MAGE-A4 protein in Figure 2.

Western blot analysis

The specificity of antibody against MAGE-Al, MAGE-A4
and p53 in sera from all patients vaccinated was further ana-
lyzed by Western blot (Fig. 4). Each antibody as positive con-
trol showed the representative band for MAGE-A1 protein at
59 kDa, for MAGE-A4 protein at 49 kDa and for p53 protein
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at 55 kDa. Increase of reaction with the bands was observed
with recombinant MAGE-A1 protein in sera from E-8, with
recombinant MAGE-A4 protein in sera from E-2, E-4, E-5,
E-8 and P-2 and with p53 in sera from E-7, E-8 and P-3
obtained after vaccination.

Specificity of the reaction was further confirmed using
transfectants. As shown in Figure 5, sera from E-4 after vac-
cination and from E-5 before and after vaccination reacted to
MAGE-A4 in lysate of MAGE-A4-transfected murine fibro-
sarcoma CMS5a cells. No reaction was observed with lysate
of mock-transfected CMS5a cells.

Discussion

Efficient elicitation of host immune response is a prerequisite
for successful immunotherapy using cancer vaccine, and
immune monitoring of specific antibody, CD4 and CD8 T
cell responses against tumor antigens after vaccination is cru-
cial to evaluate the response. In our study, we investigated
antibody response against 13 tumor antigens by ELISA using
recombinant proteins to evaluate the immune response more
precisely. Nine of ten patients analyzed except E-6 showed an
increase or induction of antibody response against NY-ESO-1
and its related LAGE-1 antigen after CHP-NY-ESO-1 vacci-
nation. Eight of these nine patients showed an increase or
induction of antibody response to either of these antigens af-
ter vaccination. Previously, it was reported that sera from
patients vaccinated with recombinant NY-ESO-1 protein and
CpG in Montanide sometimes showed nonspecific produc-
tion of antibody against other recombinant proteins used for
control,'*” and some of these responses could be attributed
to reactivity against bacterial components or His6-tag. To
address this possibility, we performed specificity analysis of
the antibody response using control recombinant proteins,
synthetic peptides and by Western blot that showed hetero-
clitic responses were not against His6-tag and/or bacterial
products included in a preparation of CHP-NY-ESO-1 used
for vaccination.

We reported previously that those patients showed NY-
ESO-1 specific antibody and CD4 and CD8 T cell responses
during vaccination.'"® The findings suggest that increase or
induction of antibody response against tumor antigens, e.g.,
MAGE-A3 and MAGE-A4, as well as NY-ESO-1 after CHP-
NY-ESO-1 vaccination may be caused by their release from
tumor cells damaged by NY-ESO-1-specific immunity. There-
fore, antibody response to multiple tumor antigens may sug-
gest an intensity of the overall host immune response against
the tumor, and detection of multiple heteroclitic serological
responses using a panel of recombinant proteins would be a
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Introduction

Abstract

IgG4-related sclerosing sialadenitis is currently considered as an autoimmune
disease distinct from Sjogren’s syndrome (SS) and responds extremely well to
steroid therapy. To further elucidate the characteristics of [gG4-related scle-
rosing sialadenitis, we analysed VH fragments of IgH genes and their
somatic hypermutation in SS (» = 3) and IgG4-related sclerosing sialadenitis
(n = 3), using sialolithiasis (# = 3) as a non-autoimmune control. DNA was
extracted from the affected inflammatory lesions. After PCR amplification of
rearranged IgH genes, at least 50 clones per case (more than 500 clones in
total) were sequenced for VH fragments. Monoclonal IgH rearrangement was
not detected in any cases examined. When compared with sialolithiasis,
there was no VH family or VH fragment specific to SS or IgG4-related
sclerosing sialadenitis. However, rates of unmutated VH fragments in SS
(30%) and IgG4-related sclerosing sialadenitis (39%) were higher than that
in sialolithiasis (14%) significance (P = 0.0005 and
P < 0.0001, respectively). This finding suggests that some autoantibodies

with  statistical
encoded by germline or less mutated VH genes may fail to be eliminated
and could play a role in the development of SS and IgG4-related sclerosing
sialadenitis.

related sclerosing cholangitis [6] and other sclerosing
lesions. Steroids are very effective in treating these IgG4-
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Chronic sclerosing sialadenitis, also known as a Kuttner
tumour, is a benign inflammatory process which is usu-
ally unilateral and which occurs almost exclusively in the
submandibular gland [1, 2]. It is characterized histologi-
cally by periductal fibrosis, dense lymphocytic infiltra-
tion, loss of the acini and marked sclerosis of the salivary
gland. As chronic sclerosing sialadenitis manifests as a
hard mass, it usually raises a strong clinical suspicion of
a malignant neoplasm. Recent studies have shown that
IgG4 concentrations in serum are elevated and that plas-
macytic cells infiltrating the salivary glands are positive
for 1gG4 in chronic sclerosing sialadenitis but not in Sjo-
gren’s syndrome [3, 4], suggesting that the former
involves inflammatory processes distinct from those of
the latter. A dense IgG4-positive plasma cell infiltration
has also been found in Mikulicz's disease, chronic scleros-
ing pancreatitis (or autoimmune pancreatitis) [5], IgG4-

44

related disorders, and autoimmune mechanisms may play
a role in their development [7].

Analysis of the immunoglobulin heavy chain gene is
helpful in clarifying the characteristics of B cells infiltrat-
ing inflammatory autoimmune lesions. In this study, we
analysed immunoglobulin heavy chain gene rearrange-
ment and somatic hypermutation of SS and IgG4-related
sclerosing sialadenitis, using sialolithiasis as a control.

Materials and methods

Case selection. Typical cases of primary SS (» = 3), [gG4-

related sclerosing sialadenitis (z = 3) and sialolithiasis
(n = 3) were recruited. None of these cases showed evi-
dence of virus-associated hepatitis or tuberculosis. Clini-
copathological data were obtained from the medical

records, and the study was approved by the institutional
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review board of Nagoya City University. For SS cases,
biopsy specimens of the minor salivary gland of the lower
lip were obtained to histologically confirm the diagnosis
(focus scores for three SS cases were 4, 4 and 5, respec-
tively) [8], and small germinal centres were present in all
cases), which was further supported by the increased lev-
els of serum anti-SS-A/Ro antibody, anti-SS§-B/La anti-
body and rheumatoid factor. The diagnosis of SS was
made according to revised Japanese criteria for SS [9].
The lip biopsy specimens were used for this study.
Patients with sclerosing sialadenitis presented with pain-
less swelling of the submandibular glands. Cryptogenic
tumours were suspected, and the patients underwent sur-
gical resection of the submandibular glands, which were
subjected to examination in this study. Typical cases of
sialolithiasis of the submandibular glands were resected
and used as a control.

Immunobistochemical  techniques.  The sections were
immunostained for IgG (Eu-N1; Dako, Tokyo, Japan)
and IgG4 (MCO11, Binding-Site, Birmingham, UK).
Infiltration of IgG-positive or IgG4-positive plasma cells
was evaluated by counting the number of positive cells
in ten high-power fields (x400), and the percentage of
the IgG4-positive cells/IgG-positive cells was calculated
in each case. Percentages of memory B and plasma cells
to total B and plasma cells were calculated using immu-
nohistochemical techniques in each case. CD27-positive
B cells have been considered as memory B cells, and
CD27 is positive for T, B and plasma cells [10]. We
detected memory B and plasma cells using subtractive
double immunostain for CD27 (137B4; Leica Biosystems
Newcastle, Newcastle Upon Tyne, UK) and CD3e (SP7;
Dako) as described by Steiniger er @/ [11] with some
modifications. In brief, CD27 signals were visualized first
with brown chromogen using Bond Polymer Refine
Detection kit (Leica Biosystems), and then, using the
same tissue slides, T cells were stained using anti-CD3e
antibody with purple chromogen using Bajoran Purple
Chromogen System (Biocare Medical, Concord, CA,
USA). Thus, only CD27-positive B and plasma cells were
left to be revealed in brown colour. Total B and plasma
cells were detected in serial sections using conventional
immunostain for CD79a (JCB117; Leica Biosystems)
[12]. After examining ten high-power fields in each case,
the percentage of the memory and plasma cells to total B
and plasma cells was estimated.

DNA  extraction, IgH gene amplification and subclon-
ing. Genomic DNA was extracted from formalin-fixed,
paraffin-embedded sections by overnight digestion with
proteinase K. DNA of all cases was found to be of satis-
factory quality as confirmed by PCR for the beta-globin
gene. A seminested strategy was used for PCR amplifica-
tion of the VH genes using a consensus primer for con-
served framework-2 (FR2A) and a consensus primer for
the J region (LJH and VLJH). These primers have been
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used most commonly for VH gene analysis of formalin-
fixed, paraffin-embedded tissue specimens tissue [13-15].
The PCR products were stained with ethidium bromide
and run on agarose gels. To minimize any amplification
bias, genomic DNA from each case was amplified in
multiple PCR runs (z > 80), and the amplified products
were mixed in one tube and then subcloned for DNA
sequencing. Subcloning of the PCR products was per-
formed with pGEM T-easy vector (Promega, Madison,
WI) using DNA that was excised from a polyclonal band
in the agarose gel and purified. Recombinant clones were
randomly picked-up and amplified by PCR using primers
encompassing the insert. Those showing the expected
insert size were then sequenced using an ABI Prism Big
Dye Terminator kit (Applied Biosystems, Foster City,
CA) on an automatic DNA sequencer. More than S0
polyclonal clones from each case of SS, MD and chronic
sialolithiasis were sequenced.

Sequence analysis. The DNA sequences were aligned
with IgH sequences from IgBLAST (available at http://
www.ncbi.nlm.nih.gov/igblast/). Clones that showed non-
productive rearrangements were excluded from the pres-
ent analysis. VH gene sequences deviating more than 2%
from that of the corresponding germline gene were
defined as mutated [16].

Statistical analysis. Statistical evaluation of data from
the two groups was performed using Fischer’s exact test
(two-tailed). Analysis was performed using the statistical
package JMP (SAS Institute Inc., Cary, NC, USA).

Results

Clinical data and immunohistochemistry

Clinical features of SS (n = 3), IgG4-related sclerosing
sialadenitis (# = 3) and sialolithiasis cases (7 = 3) are
shown in Table 1. The IgG4-related sclerosing sialadeni-
tis cases showed no xerostomia or xerophthalmia, and
serum SS-A and SS-B were normal. One case involved
bilateral submandibular glands (case #1), while in the
other two, only one gland was affected. SS and sialolithi-
asis cases were typical in their clinical presentation and
their histopathology. As shown in Table 1 and Fig. 1,
the percentage ratio of IgG4/IgG-positive plasma cells in
IgG4-related sclerosing sialadenitis tissues was more than
70%, whereas in SS and sialolithiasis, it was less than
10%.

Memory and plasma cells, as detected by subtractive
double immunostains (Fig. 2), were found mainly in the
areas where atrophic mucous acini and ductules were pres-
ent and occasionally found in the areas where lymphoid
follicles were formed. The former areas predominated over
the latter in all the tissue samples studied. The percent-
ages of memory and plasma cells to total B and plasma
cells were similar in three inflammatory lesions and were
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Table 1 Clinical data on Sjogren’s syndrome, IgG4-related sclerosing sialadenitis, and sialolithiasis.

Case  Diagnosis ~ Age/sex  Xerostomia  Xerophthalmia ~ Serum SS-A/B  Samples 1gG4/1gG (%)  Follow-up (months)
1 SS 67/F + = +/+ Lower lip 0 W/A (5)

2 SS 57/F + 4 +/ % Lower lip 3 W/A (49)

3 SS 53/F + - 3/ % Lower lip 0 W/A (13)

4 1gG4 SS 65/M - - -/- Submandibular gland 84 W/A (25)

5 1gG4 SS 62/M = - =~ Submandibular gland 76 W/A (67)

6 1gG4 SS 54/M - - -/- Submandibular gland 89 W/A (49)

7 SL 73/M - - -/— Submandibular gland 6 W/A (6)

8 SL 46/F = = S Submandibular gland 0 W/A (15)

9 SL 48/F - - —/= Submandibular gland 8 W/A (13)

S8, Sjogren’s syndrome; IgG4 SS, IgG4-related sclerosing sialadenitis; SL, sialolithiasis; W/A, alive and well.

Figure 1 A-I: Histopathological findings of Sjogren’s syndrome (A—C), IgG4-related sclerosing sialadenitis (D—F) and sialolithiasis (G-I). H&E stain
(A, D and G); immunohistochemistry for IgG4 (B, E and H, haematoxylin counterstain) and immunohistochemistry for IgG (C, F and I, haematoxy-
lin counterstain). Note that majority of IgG-positive plasma cells are positive for [gG4 in I[gG4-related sclerosing sialadenitis.

45%, 43% and 42% for SS, IgG4-related sclerosing sialo-
adenitis and sialolithiasis, respectively.

VH gene fragment analysis

Monoclonal IgH rearrangement was not detected in any
cases of SS, IgG4-related sclerosing sialadenitis and sialo-
lithiasis. Sequence analyses of VH fragments are shown
in Supplementary data S1-3. In SS cases, a total of 161
VH clones were sequenced for VH fragments. Among
the seven VH families, the VH3 family was most fre-
quently used in all three cases, with a rate of VH3/total

clones of 64-78% (mean 72%). The VH3 family was fol-
lowed in usage by the VH4 or VH1 family. Among
VH3 family members, VH3-23 was the fragment most
frequently used. VH clones were frequently unmutated:
rates of unmutated clones relative to total clones, to VH3
family clones and to non-VH3 family clones were 30%
(range, 29-31%), 36% (range, 32-43%) and 16% (range,
10-20%), respectively.

In IgG4-related sclerosing sialadenitis cases, a total of
221 clones were sequenced for VH fragments. As with
SS, the VH3 family was most frequently used in all three
cases of this disease, with a rate of VH3/total clones of
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Figure 2 A-C: IgG4-related sclerosing sialadenitis. H&E (A); subtrac-
tive double immunostain for CD27 (brown) and CD3e (purple) (B, hae-
matoxylin counterstain); and conventional immunostain for CD79a (C,
haematoxylin counterstain). In subtractive double immunostains, CD27-
positive T cells are masked by CD3e purple chromogen, and CD27-
positive B and plasma cells are left to be revealed in brown colour.

70-76% (mean 72%). The VH3 family was followed in
usage by the VH4 or VH1 family. Among VH3 family
members, VH3-23 consistently emerged as the most fre-
quently used fragment. The VH fragments were often

© 2010 The Authors
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unmutated: the rates of unmutated clones relative to total
clones, to VH3 family clones and to in non-VH3 family
clones were 39% (range, 37-42%), 47% (range 42—50%)
and 16% (range, 10-24%), respectively.

Among the sialolithiasis cases, VH3 family clones
were consistently the most frequent (mean 75%, range
74-75%), and VH3-21 and VH3-23, VH3-23 and VH3-
30 were selected the most frequently in sialolithiasis case
#1, #2 and #3, respectively. In addition, the rates of
unmutated clones were low in this disorder when com-
pared with SS and IgG4-related sclerosing sialadenitis:
the rates of unmutated clones relative to total clones, to
VH3 family clones and to non-VH3 family clones were
14% (range, 12-15%), 15% (range, 14—15%) and 11%
(0—18%), respectively.

A statistical comparison is presented in Table 2.
When compared with sialolithiasis (non-autoimmune
control), VH clones of SS were frequently unmutated
(P = 0.0005) as they were with IgG4-related sclerosing
sialadenitis (P < 0.0001). For VH3 family clones, rates
of unmutated clones in cases of SS and IgG4-related scle-
rosing sialadenitis were significantly higher than in the
sialolithiasis cases (P = 0.002 and P < 0.0001, respec-
tively). In contrast, there were no significant differences
in non-VH3 family clones.

Discussion

In our study, we retrieved typical clinical cases of SS,
IgG4-related sclerosing sialadenitis and sialolithiasis. We
then analysed VH fragments of B cells infiltrating these
three types of lesions. After PCR amplification of rear-
ranged IgH genes, at least 50 clones per case and more
than 500 clones in total were sequenced for VH frag-
ments, and the data obtained showed that VH fragments
of SS and IgG4-related sclerosing sialadenitis cases were
frequently unmutated. We employed sialolithiasis tissues
as a non-autoimmune control and observed chronic
inflammation together with many mature lymphoid and
plasma cells. In previous VH analyses [17, 18], peripheral
blood B cells have been used as a control. However, as
about 70% of peripheral blood B cells are naive or
unmutated [19], we consider that local non-specific
inflammatory lesions (e.g. those of sialolithiasis) would
be a more appropriate control in analysing local inflam-
mation in autoimmune diseases.

Hansen et al. reported that the VH3 family was pref-
erentially used in a patient with SS (VH3
> VHI1 2 VH4 > others) [18]. In this study, a similar
VH usage was observed in SS and IgG4-related sclerosing
sialadenitis cases: the VH3 family was the most fre-
quently used and VH3-23 was the most often used
among VH3 fragments. However, this usage of the VH3
family and a tendency towards use of VH3-23 was also
found in the sialolithiasis controls, suggesting that the
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Table 2 Unmutated clone ratios in Sjogren’s syndrome, chronic sclerosing sialadenitis, and sialolithoasis.

Total VH3 family Non-VH3 family
ss 48/161 (30%) 41/115 (36%) 7/46 (15%)
NS JNs. NS.
1gG4SS  86/221 (39%) P =0.0005 76/160 (48%) P=0.002 10/61 (16%) NS,
SL 24/173 (14%) J P <0.0001 19/129 (15%) JP<o000t 5/44 (11%) Jns.

SS, Sjogren’s syndrome; 1gG4 SS, IgG4-related sclerosing sialadenitis; SL, sialolithiasis; N.S., not significant.

VH usage patterns observed in SS and IgG4-related scle-
rosing sialadenitis were not specific. Most interestingly,
VH clones were often unmutated in SS and 1gG4-related
sclerosing sialadenitis and the percentage ratios of unmu-
tated/total clones were 30% and 39%, respectively.
These rates were significantly higher than that of sialoli-
thiasis clones (14%). In addition, the unmutated clones
appeared to be derived mainly from the VH3 family
because VH3 family clones were often unmurated in SS
(36%) and IgG4-related sclerosing sialadenitis (48%),
when compared with those in sialolithiasis (15%). In
contrast, when non-VH3 family fragments were analysed,
the unmutation ratios were uniformly low (11-16%) in
all three lesions. Unfortunately, owing to the small num-
ber of clones analysed, we were unable to determine
which fragment of the VH3 family contributed most to
the higher rates of unmutated clones in SS and IgG4-
related sclerosing sialadenitis cases.

Whether autoantibodies arise from somatic hypermu-
tation of Ig genes or from less mutated or germline Ig
genes has been controversial. Several studies have shown
that autoantibodies are heavily mutated and back muta-
tion of mutated human V genes to the germline
sequences resulted in a loss of antigen binding [20-22].
However, other reports did not support these findings
[23-25]. Some studies have shown a low rate of somatic
mutation in autoantibodies of patients with SS [17, 26,
27]. In another study, an increased rate (19.6%) of
unmutated clones was reported in the parotid gland spec-
imen from a patient with SS [18]. In addition, VH gene
analyses of non-Hodgkin lymphomas in patients with SS
have shown that neoplastic B cell populations are often
unmutated [14-28]. Our finding that B cells infiltrating
inflammatory lesions of patients with SS possess less
mutated VH genes is in line with these observations and
supports the hypothesis that some germline or less
mutated genes may play a role in the development of this
autoimmune disease. Moreover, autoantibodies encoded
by such genes fail to be deleted in patients with SS.
IgG4-related sclerosing sialadenitis is a chronic inflam-
matory disorder characterized by a dense infiltration of
IgG4-positive plasma cells. As treatment with steroids is
very effective, an autoimmune mechanism is highly
implicated in the aetiology of IgG4-related sclerosing sia-
ladenitis. In this study, we showed that VH fragments of
IgG4-related sclerosing sialadenitis and SS cases shared a
common characteristics, a high rate of unmutated VH

clones probably derived from the VH3 family. This find-
ing suggests that an autoimmune mechanism similar to
that of SS may also be responsible to the development of
IgG4-related sclerosing sialadenitis.

In conclusion, we studied VH wusage and VH
somatic hypermutation in SS and IgG4-related sclero-
sing sialadenitis using sialolithiasis tissues as a control.
The VH fragments, especially those of the VH3 family,
were often unmutated when compared with those of
the sialolithiasis cases. This finding will provide insight
into the pathogenesis of SS and IgG4-related sclerosing
sialadenitis.
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Human T-cell leukemia virus type 1 (HTLV-1) is the causative retro-
virus of adult T-cell leukemia (ATL) and HTLV-1-associated myelop-
athy/tropical spastic paraparesis (HAM/TSP). HTLV-1-specific T-cell
responses elicit antitumor and antiviral effects in experimental
models, and are considered to be one of the most important deter-
minants of the disease manifestation, since they are activated in
HAM/TSP but not in ATL patients. The combination of low T-cell
responses and elevated HTLV-1 proviral loads are features of ATL,
and are also observed in a subpopulation of HTLV-1 carriers at the
asymptomatic stage, suggesting that these features may be under-
lying risk factors. These risks may potentially be reduced by vacci-
nation to activate HTLV-1-specific T-cell responses. HAM/TSP and
ATL patients also differ in their levels of HTLV-1 mRNA expression,
which are generally low in vivo but slightly higher in HAM/TSP
patients. Our recent study indicated that viral expression in HTLV-
1-infected T-cells is suppressed by stromal cells in culture through
type-l IFNs. The suppression was reversible after isolation from the
stromal cells, mimicking a long-standing puzzling phenomenon in
HTLV-1 infection where the viral expression is very low in vivo and
rapidly induced in vitro. Collectively, HTLV-1 is controlled by both
acquired and innate immunity in vivo: HTLV-1-specific T-cells sur-
vey infected cells, and IFNs suppress viral expression. Both effects
would contribute to a reduction in viral pathogenesis, although
they may potentially influence or conflict with one another. The
presence of double control systems for HTLV-1 infection provides
a new concept for understanding the pathogenesis of HTLV-1-
mediated malignant and inflammatory diseases. (Cancer Sci 2011;
102: 670-676)

I t has been three decades since the discovery of human T-cell
leukemia virus type 1 (HTLV-1) as the causative retrovirus of
adult T-cell leukemia (ATL)."""* ATL develops during middle
age or later mainly in a small portion of vertically HTLV-1-
infected populations.** HTLV-1 also causes HTLV-1-associ-
ated myelopathy/tropical spastic paraparesis (HAM/TSP) in
another small population of infected individuals.>® Some other
inflammatory diseases such as uveitis and arthritis are also asso-
ciated with HTLV-1 infection.”® New therapeutic approaches
such as hematopoietic stem cell transplantation (HSCT),(g‘IO’ an
antibody therapy targeting CCR4,""" and antiviral therapy with
interferon-alpha and zidovudin'? partly improved the prognosis
of ATL. However, ATL still shows high mortality, and
HAM/TSP remains to be an intractable disease.

Enormous amounts of research findings have been accumu-
lated regarding the virus-mediated pathogenesis. HTLV-1 Tax, a
virus-encoded regulatory gene product, mediates cell activation,
proliferation and resistance to apoptosis by transactivation
through NF-kB, cAMP response element binding protein
(CREB) and serum response factor (SRF), and by inactivation

Cancer Sci | April 2011 | vol. 102 | no.4 | 670-676

3_15 ; . .
of tumor suppressors,"*'* which would be involved in leuke-

mogenesis and inflammation in HTLV-1 infection. Another
minus-strand HTLV-1-encoded gene product, HTLV-1 basic
leucine zipper factor (HBZ), is continuously expressed in
infected cells in vivo regardless of the disease and may also be
involved in the growth ability of infected cells."®

However, many unsolved questions still remain regarding the
pathogenesis of HTLV-1 infection, for example, how the same
virus causes totally different diseases such as ATL and
HAM/TSP, why only small portions of HTLV-1-infected popu-
lations develop diseases, and why it takes more than 40 years to
develop ATL. The answers to these questions would provide
hints for predicting disease risks as well as aiding the develop-
ment of prophylactic and therapeutic strategies.

HTLV-1-specific T-cell responses that contribute to antiviral
and antitumor surveillance could be one of the most important
determinants of the diseases. In fact, HTLV-1-specific T-cells
are activated in HAM/TSP but not in ATL.""""'®) Oral HTLV-1
infection induces T-cell tolerance to HTLV-1 and increased pro-
viral loads,?*?" consistent with the epidemiological finding that
vertical HTLV-1 infection is one of the risk factors for ATL.®
Therefore, the individual status of HTLV-I-specific T-cell
responses is expected to be an indicator of risk for ATL.??
Although the pathological significance of HTLV-1-specific
T-cells in HAM/TSP remains controversial,*>* advantages
for HLA-AO2-positive individuals in protection against
HAM/TSP have been reported, and interpreted through the
association of this HLA with strong CTL responses to a major
epitope of HTLV-1 Tax.*

Elevation of proviral loads is also a risk factor for ATL.
Given the fact that HTLV-1-specific CTLs have antiviral effects,
these CTLs are likely to be one of the determinants of proviral
loads.?®  However, proviral loads are also increased in
HAM/TSP patients, and the correlations between proviral loads
and HTLV-1-specific T-cell responses vary among studies, *”-*®
suggesting the presence of additional factors for determining
individual proviral loads.

Another curious finding in HTLV-1 infection is the scarcity
of viral antigen expression in the peripheral blood, although the
viral mRNA is barely expressed.*” The transcription of HTLV-1
is mainly regulated by CRE-like repeats in the HTLV-I1
LTR.®? Tnvolvement of inducible cAMP early repressor (ICER)
and transducers of regulated CREB 2 (TORC?2) in the inhibition
of HTLV-1 transactivation has been suggested.*'*? However,
the mechanism involved in suppressing viral expression only
in vivo has remained obscure. It is a paradox that HTLV-1 Tax
contributes to the pathogenesis while Tax protein is undetectable
in vivo. Expression of HBZ in the absence of Tax may partly
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explain the growth advantage of infected cells,** but not all of
HTLV-1-mediated leukemogenesis. In addition, it does not
make sense that Tax-specific T-cell responses are maintained if
Tax is not expressed in vivo. The paradox will remain until the
state of viral expression and the mechanisms for suppressing
HTLV-1 expression in vivo are clarified.

We recently found that innate immune responses, esgecially
type-I interferons (IFNs), suppress HTLV-1 expression.** This
integrates the issue of viral expression and the host defense sys-
tem against HTLV-1, which includes innate immunity as well as
acquired immunity. The presence of double control systems
explains some of the paradox in persistent HTLV-1 infection,
and adds new aspects to the pathogenesis of HTLV-1-mediated
diseases.

Control of HTLV-1 by HTLV-1-specific T-cell responses

Antitumor surveillance by HTLV-1-specific T-cells. CD8"
HTLV-1-specific CTL responses are found in many HAM/TSP
patients and as%mptomatic carriers (AC), but rarely in ATL
patients.'’~13%39" These CTLs kill HTLV-l-infected cells
in vitro, and mainly recognize HTLV-1 Tax."®*” The HTLV-1
envelope is also a popular target, especially for CD4" CTLs.®
Other viral anti%ens, includin% Polymerase,(”) ROF (p12) and
TOF (p30/p13),“” and HBZ,“*" have also been shown to be
targets of CTLs. Elimination of CD8" cells among PBMCs from
HAM/TSP patients induces HTLV-1 expression during subse-
quent cell culture,*? clearly indicating that CD8" HTLV-1-
specific CTLs contribute to the control of HTLV-I-infected
cells.

A series of animal model experiments indicated that
HTLV-1-specific T-cell responses limit the expansion of HTLV-
1-infected cells in vivo. Oral HTLV-1 infection induced insuffi-
ciency of HTLV-1-specific T-cell responses in rats, and the
HTLV-1 proviral loads were inversely correlated with HTLV-1-
specific T-cell responses.?”” Re-immunization of these rats with
mitomycin C-treated HTLV-1-infected cells restored HTLV-1-
specific T-cell responses and reduced the proviral loads“®
(Fig. 1). In another rat model of HTLV-1-induced tumors, the
otherwise fatal HTLV-1-infected lymphomas in T-cell-deficient
rats were eradicated by transfer of T-cells from syngeneic rats
that had been vaccinated with a Tax-encoding DNA or Peptides
corresponding to a major epitope for Tax-specific CTLs.***>

Recent clinical reports have indicated that HTLV-1-carrying
recipients after liver transplantation develo‘Ped ATL under the
administration of immunosuppressants.“®*” In contrast, Tax-
specific CTL responses were strongly activated in some ATL
patients who obtained complete remission after HSCT, but were
not observed in the same patients before transplantation.®
These findings suggest that HTLV-1-specific T-cells, including
Tax-specific CTLs, play important roles in antitumor surveil-
lance against HTLV-1 leukemogenesis.

Insufficient HTLV-1-specific T-cell responses as a potential risk
for ATL. Most HTLV-1-infected individuals are asymptomatic,
and only about 5% develop ATL and <1% develop
HAM/TSP.®*? The epidemiological risk factors for ATL
include vertical transmission and increases in the number of
abnormal lymphocytes or HTLV-1 proviral loads.®>%>" HTLV-
1 proviral loads are also elevated in HAM/TSP patients.>”

Immunological studies have suggested that insufficiency in
host T-cell responses against HTLV-1 might be another risk fac-
tor for ATL.“? A small-scale survey measuring Tax protein-
specific IFN-y production revealed a wide variety in the
strengths of HTLV-1-specific T-cell responses among HTLV-1
carriers.°® The combinations of HTLV-1-specific T-cell
responses and proviral loads categorize HTLV-1 carriers into
the following four groups: (i) low proviral loads with HTLV-1-
specific T-cell responses; (ii) elevated proviral loads with
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Fig. 1. Recovery of human T-cell leukemia virus type 1 (HTLV-1)-
specific T-cell responses and reduction of proviral loads by re-
immunization. Eight rats orally infected with HTLV-1 were divided
into two groups. (A) One group was left untreated (Infect. alone) and
the other was subcutaneously immunized with mitomycin C-treated
HTLV-1-infected syngeneic rat T-cells (Infect. + Imm.) at 4 weeks.
Spleen T-cells were harvested at 7 weeks after infection. (B,C) T-cells
from the re-immunized rats (Infect. + Imm.) show elevated levels of
Tax-specific T-cell proliferative responses (B) and lower proviral loads
(C), compared with untreated rats (Infect. alone).“®

HTLV-1-specific T-cell responses; (iii) low proviral loads with
low T-cell responses; and (iv) elevated proviral loads with low
T-cell responses (Fig. 2).

Regarding these groups, ATL patients exhibit elevated provi-
ral loads with low T-cell responses, while many, but not all,
HAM/TSP patients show elevated proviral loads with high
HTLV-1-specific T-cell responses. ACs are found in all four cat-
egories. It is noteworthy that small subgroups of ACs and smol-
dering ATL patients share a common feature with ATL patients.
This indicates that the insufficiency of HTLV-1-specific T-cell
responses is not merely the result of malignancy but is an under-
lying problem before the stage without apparent lymphoprolifer-
ation. Further follow-up studies are required to clarify whether
the extent of the combination of elevated proviral loads with
low T-cell responses could be a diagnostic indicator for risk of
ATL.

Dissociation between proviral loads and T-cell responses.
Although HTLV-1-specific T-cells have the potential to
control infected cells, there are no clear correlations between
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Fig. 2. Diversities in Tax-specific T-cell responses and dissociation
with proviral loads in human T-cell leukemia virus type 1 (HTLV-1)-
infected individuals. (A) Diversity in CD8" T-cell functions in two
representative HTLV-1-infected individuals at the asymptomatic stage.
Abundant amounts of HTLV-1 p19 were produced in PBMC cultures
with or without CD8" T-cells in subject 1, but only after CD8" T-cell
depletion in subject 2.5 (B) A general image for the categories of
HTLV-1-infected individuals at various stages according to the
combinations of HTLV-1-specific T-cell responses (x-axis) and proviral
loads (y-axis) is shown schematically. AC, asymptomatic carriers; ATL,
adult T-cell leukemia; HAM/TSP, HTLV-1-associated myelopathy/
tropical spastic paraparesis; HSCT, hematopoietic stem cell trans-
plantation.

proviral loads and HTLV-1-specific T-cell responses among
HTLV-1-infected individuals. This is not surprising because
both the proviral loads and T-cell responses are high in
HAM/TSP patients. The proviral loads may be negatively corre-
lated with T-cell responses only within an individual but not
among individuals. Several other reports have indicated various
findings concerning this issue. For example, a study measuring
IFN-y-producing CD8" HTLV-1-specific CTLs indicated a posi-
tive correlation with proviral loads in HAM/TSP patients but
not in ACs,®® while a study evaluating CD8" CTL function by
ex vivo clearance of infected cells showed negative correlations
with low proviral loads within an AC or a HAM/TSP group,*?
and another study indicated an association of higher frequency
of tetramer-binding Tax-specific CTLs with low proviral loads
in ACs.*” Such inconsistent results suggest the presence of cer-
tain other determinants of proviral loads in addition to HTLV-1-
specific CTLs.

The HTLV-1 proviral loads reflect the number of infected
cells in the peripheral blood. Expansion of HTLV-I-infected
cells in vivo occurs through both de novo infection and prolifera-
tion of infected cells.®* The number of CD4* FoxP3" cells,>”
the frequency of iNKT cells,"® or MHC-I favorable for
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HBZ-specific T-cell responses" have been suggested to influ-
ence HTLV-1 proviral loads.

In HTLV-1-infected rats, however, the proviral loads are
inversely correlated with HTLV-1-specific T-cell responses.*"
One reason for the discrepancy between humans and rats may
be the genetic heterogeneity in humans. It appears that, under
the homogeneous genetic background in the experimental rat
system, the influence of insufficient HTLV-1-specific T-cell
responses may appear more clearly than in humans, allowing
de novo infection and proliferation of HTLV-1-infected cells
in vivo. The dissociation of proviral loads and HTLV-1-specific
T-cell responses in humans suggests that additional determinants
of proviral loads may vary genetically among individuals. As
described in the next section, we suppose that innate immunity
could be a candidate for this effect.

Control of HTLV-1 by innate immunity

Status of HTLV-1 expression in vivo. Since HTLV-1-specific
antibodies and T-cells are maintained in HTLV-1-infected indi-
viduals, viral expression must occur somewhere in vivo. This
notion is further supported by the emergence of Tax-specific
CTL responses in HTLV-1-uninfected donor-derived hemato-
poietic systems reconstituted in recipient ATL patients after
HSCT.“®5" However, HTLV-1 mRNA but not viral proteins
are detectable in PBMCs freshly isolated from HTLV-1-infected
individuals. The levels of HTLV-1 mRNA are higher in
HAM/TSP patients than in ACs,®® but viral proteins are still
undetectable. Only a few reports have indicated HTLV-1 protein
expression in situ.

HTLV-1 expression in ATL cells immediately after isolation
from the peripheral blood is very low, and becomes significantly
induced after culture for some hours in vitro.©®®®V This phenom-
enon is observed in about one half of ATL patients regardless of
the disease severity.®® Viral induction after in vitro culture does
not occur in the other one half of ATL patients, probably
because of genetic and epigenetic changes in the viral gen-
ome.®*% Rapid induction of viral expression after in vitro
culture has also been observed in PBMCs from HAM/TSP
patients and ACs,®® indicating that there must be a common
mechanism for transiently suppressing HTLV-1 expression
in vivo regardless of the diseases.

Suppression of HTLV-1 expression by type-l IFN responses.
Recently, we found that type-I IFN responses are involved in
the suppression of HTLV-1 expression.®* When HTLV-
I-infected T-cell line cells were co-cultured with stromal cells
such as epithelial cells and fibroblasts, HTLV-1 mRNA and
proteins were markedly decreased in HTLV-1-infected cells.
Similarly, induction of HTLV-1 expression in cultures of pri-
mary ATL cells was also suppressed by co-culture with stromal
cells. Type-I IFNs were involved in the stromal cell-mediated
suppression of HTLV-1 expression, because it was partly neu-
tralized by anti-IFN-o/B receptor antibodies. Since efficient
HTLV-1 expression is dependent on transactivation of its own
LTR by Tax protein,**®” limitation of this protein below a
certain level will lead to the maintenance of HTLV-1 expression
at low levels. Stromal cells reduced viral expression via type-I
IFNs, but did not reduce cell growth and even supported it by
unknown mechanisms. 3¢

It has been reported that plasmacytoid dendritic cells (pDCs),
a major Producer of type-I IFNs, are susceptible to HTLV-1
infection.®’® In ATL patients, pDCs are decreased in number
and also lack the ability to produce IFN-0.®” A recent report
indicated that pDCs generate t7y1.))e-I IFNs mainly through TLR7
recognition of HTLV-1 RNA.7" The precise mechanisms of the
HTLV-1-mediated IFN responses remain to be clarified.

In addition to recombinant IFN-oo and IFN-f, recombinant
IFN-y was also capable of reducing HTLV-1 expression to
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lesser extents in HTLV-1-infected cell lines.**”? Participation
of type-II IFN-producing cells other than stromal cells in
HTLV-1 suppression in vivo is also conceivable.

Potential involvement of type-l IFNs in HTLV-1 suppression
in vivo. In in vitro experiments, co-cultured stromal cells sup-
pressed viral expression in HTLV-1-infected cells. Interestingly,
when infected cells were re-isolated from the co-cultures, viral
expression was restored to the original level over the following
48 h (Fig. 3).%% This observation shows a striking similarity to
the rapid induction of HTLV-1 expression in freshly isolated
ATL cells after culture in vitro.

Involvement of type-I IFN responses in the suppression of
HTLV-1 expression in vivo was confirmed using interferon reg-
ulatory factor-7-KO mice, which are deficient in most type-I
IFN responses. Viral expression in HTLV-1-infected cells was
significantly suppressed when the infected cells were intraperito-
neally injected into WT mice but not into interferon regulatory
factor-7-KO mice.®®

It is speculated that the levels of viral expression in HTLV-1-
infected lymphocytes may differ among various tissues depend-
ing upon the strength of IFN responses. Thus far, there is little
information regarding HTLV-1 expression in various tissues. In
transgenic mice with an HTLV-1 LTR-driven construct of the
pX gene, expression of the transgene was only observed in lim-

(A)

©
HTLV-1-
infected

ited organs includin% the central nervous system, eyes, salivary
glands and joints. 7% 1t is intriguing that all of these tissues are
involved in human inflammatory diseases related to HTLV-1
infection. Such coincidences suggest the involvement of HTLV-
1 gene expression in the pathogenesis of these inflammatory
diseases.

Double control of HTLV-1 by innate and acquire immunity

Relationship between acquired and innate immune control in
HTLV-1 infection. At the primary infection, type-I IFNs gener-
ally play a critical role in limiting viral replication, and have
positive effects on antigen presentation by activating DCs, induc-
ing type-II IFN, and upregulating MHC-1, which subsequently
augments T-cell responses.””* However, the role of type-I IFNs
in the chronic phase of viral infection may not always be posi-
tive. In HIV-1 infection, type-I IFNs may be a progressive factor
for the disease by accelerating T-cell exhaustion."”

Suppression of HTLV-1 expression by type-I IFNs may
reduce the efficacy of T-cell-mediated surveillance against
HTLV-1-infected cells, because T-cells require viral proteins for
recognition. On the contrary, if the IFN-mediated suppressive
system is insufficient, HTLV-1-specific T-cell responses will be
activated in response to viral antigens.
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Fig. 3. Reversible suppression of human T-cell
leukemia virus type 1 (HTLV-1) expression by innate
immunity. (A) When IL-2-dependent HTLV-1-
infected cells are co-cultured with 293T cells,
intracellular HTLV-1 Gag proteins in the infected
cells are decreased within 48 h (left panel). When
the infected cells are re-isolated and further
cultured on their own, Gag expression is recovered
within 48 h (right panel).®® (B) Scheme of the
presumed status of HTLV-1-infected cells in vivo.
Viral expression (indicated as pink) would be
suppressed in tissues with strong IFN responses
(left) and increased in tissues with weak IFN
responses (right). CTL function, if any, is only
effective upon viral expression, resulting in an
infected cell reservoir without viral expression (left)
and a T-cell surveillance system with low efficiency
(right).
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Fig. 4. Hypothetical relationships among the host immunity, status of human T-cell leukemia virus type 1 (HTLV-1)-infected cells and symptoms.
HTLV-1-infected cells are controlled by at least two systems: type-I IFNs (innate immunity) and HTLV-1-specific T-cells (acquired immunity). The
former suppress viral expression and the latter kill infected cells. An increase in viral expression would accelerate inflammation, increase the
number of infected cells through de novo infection and activate HTLV-1-specific T-cells that determine an equilibrium level of proviral load
within an individual. Viral expression may be a positive, but not absolute, factor for cell proliferation. When the viral expression is well
controlled, the viral pathogenesis will proceed slowly, and may not be apparent until infected cell clones with a malignant phenotype finally
emerge from the enlarged infected cell reservoir. Without proper T-cell responses, the emergence of such clones may occur earlier, because they

would have more chance to survive.

The relationship between innate and acquired immunity may
also differ among tissues. In tissues with strong IFN responses,
viral expression in the infected cells would be suppressed and
CTLs would ignore these cells. However, in tissues with weak
IFN responses, infected cells would express viral antigens to be
recognized by CTLs (Fig. 3). These presumptions can explain
the status of HTLV-1-infected cells in vivo, which comprises a
large reservoir of infected cells without viral expression and a
low-efficiency surveillance system by CTLs that can only work
on limited occasions.

Potential relationship between disease manifestation and
innate and acquired host immunity in HTLV-1 infection.
Although suppression of HTLV-1 expression may partly inter-
fere with the efficacy of T-cell immunity, it may contribute to a
slowing down of the Tax-mediated pathogenesis, tumorigenesis
and inflammation (Fig. 4). In a rat model, shRNA-mediated
suppression of Tax in HTLV-1-transformed cells rendered
these cells resistant to Tax-specific CTLs but also reduced
their ability for tumorigenesis in vivo.”® Continuous suppres-
sion of HTLV-1 expression in humans may have a similar
decelerating effect against Tax-mediated tumorigenesis. This
might be a reason why it takes so long for ATL to develop. So
long as the viral expression is well controlled, the viral patho-
genesis may not be apparent until malignant cell clones finally
come through the process of clonal evolution in the infected cell
reservoir. Without proper T-cell responses, the emergence of
such clones may occur earlier, because they would have more
chance to survive.

HAM/TSP patients show elevated levels of viral expression
for an unknown reason. Increased levels of inflammatory cyto-
kines could be either a cause or a result of this phenomenon. The
involvement of HTLV-1 proviral integration sites in transcription
units in elevated viral expression has also been suggested.””” An
experimental rat model of HAM/TSP using a certain WKAH
strain exhibits increased Tax mRNA expression in the spinal
cord without T-cell infiltration,”® suggesting that viral expres-
sion is a primary event while T-cell responses are not. Further
studies revealed that this particular rat strain contains mutations

674

in the promoter region of the IL-12 receptor, which potentially
lead to reduced IFN-y production in the spinal cord.””® The asso-
ciations of genetic factors related to the IFN system with
HAM/TSP patients have remained obscure. Very recently, a
gene expression profiling study indicated that expression of
suppressor of cytokine signaling 1 (SOCS1) is upregulated in
HAM/TSP patients and ACs, and is positively correlated with
high HTLV-1 mRNA loads.”®

Conclusions

HTLV-1 is controlled by both acquired and innate immunity.
HTLV-1-specific T-cells contribute to antitumor surveillance,
and type-I IFNs contribute to silencing viral expression. The
presence of the double control systems with partial conflicts
would explain some of the puzzles in HTLV-1 infection, such as
the transient suppression of viral expression in vivo, apparently
reciprocal occurrence of ATL and HAM/TSP, inconsistent cor-
relations of proviral loads with T-cell responses, and a long
incubation period.

Insufficient T-cell responses are regarded as a risk factor for
ATL, and vaccines that augment HTLV-1-specific T-cell
responses would be beneficial in reducing the risk in a subpopu-
lation of HTLV-1 -carriers exhibiting insufficient T-cell
responses and elevated proviral loads.

Innate immune responses in HTLV-1 infection should be fur-
ther investigated, because they could be another important deter-
minant of disease manifestation and represent therapeutic
targets in HTLV-1-related diseases.
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Adult T-cell leukemia/lymphoma (ATLL) is
the neoplasm caused by human T-cell
leukemia virus type 1 (HTLV-1). We per-
formed oligo-array comparative genomic
hybridization (CGH) against paired
samples comprising peripheral blood
(PB) and lymph node (LN) samples from
13 patients with acute ATLL. We found
that the genome profiles of the PB fre-
quently differed from those of the LN
samples. The results showed that 9 of

13 cases investigated had a log2 ratio
imbalance among chromosomes, and that
chromosome imbalances were more fre-
quent in LN samples. Detailed analysis
revealed that the imbalances were likely
caused by the presence of multiple
subclones in the LN samples. Five of
13 cases showed homozygous loss re-
gions in PB samples, which were not
found in the LN samples, indicating that
tumors in the PB were derived from LN

subclones in most cases. Southern blot
analysis of TCRy showed that these mul-
tiple subclones originated from a com-
mon clone. We concluded that in many
ATLL cases, multiple subclones in the
LNs originate from a common clone, and
that a selected subclone among the LN
subclones appears in the PB. (Blood.
2011;117(20):5473-5478)

Introduction

Adult T-cell leukemia/lymphoma (ATLL) is the neoplasm caused
by human T-cell leukemia virus type 1 (HTLV-1). The disease is
associated with poor prognosis due to drug resistance, the occur-
rence of opportunistic infections, a large tumor burden with
multi-organ failure, and hypercalcemia. Shimoyama et al! classi-
fied ATLL into 4 subtypes: smoldering, chronic, lymphoma, and
acute. It is also known that HTLV-1 infection alone does not
facilitate the progress of infected CD4* T cells to fully malignant
ATLL cells. Therefore, the search for genes involved in ATLL
development and for the specific genes involved in each ATLL type
has been actively pursued, albeit with limited success. ATLL-
specific chromosomal abnormalities have yet to be found; however,
a frequent abnormality found in ATLL is 14q11, which has also
been found in other types of T-cell malignancies.>® HTLV-1
provirus integration sites have also been extensively sought, and
the sites identified were found to be randomly located. Investiga-
tions relying on G-band and fluorescence in situ hybridization
analyses have not been fruitful in providing a detailed delineation
of the genomic aberrations involved.* The use of high-resolution,
array-based comparative genomic hybridization (CGH) for compre-
hensive chromosome analysis should prove useful in the search for
genomic aberrations. We showed previously that acute and lym-
phoma ATLL types possess distinct genomic profiles, as deter-
mined by bacterial artificial chromosome array CGH.5 It should be
noted, however, that when lymphoma-type ATLL progresses to
manifest more than 2% flower cells in the peripheral blood (PB), it
is then classified as the acute type. We set out to analyze the

genomic aberrations of acute-type ATLL with paired PB and lymph
node (LN) samples in more detail by oligo-array CGH.

An important factor in the diagnosis of ATLL is the identifica-
tion of monoclonal integration of HTLV-1. It has been reported that
the same HTLV-1-infected clone was detected over several years in
a chronic-type ATLL patient.5” These types of HTLV-1-infected
CD4* T lymphocytes are believed to accumulate various changes
during an extensive latency period of over 50 years.® Alterations in
genomic copy number represent one example of the type of
accumulated genomic changes that can occur. In the present study,
we performed high-resolution oligo-array CGH (Agilent Technolo-
gies) using a 44 000-probe set against paired samples obtained
from the PB and LNs of 13 patients with acute-type ATLL.

Methods

ATLL patients and cell lines

We conducted a survey of genomic profiles by examination of PB and LN
samples taken from 13 patients with acute-type ATLL. Paired samples were
collected from each patient within 14 days of diagnosis. The PB and LN
samples, together with clinical data, were obtained from 13 patients under a
protocol approved by the institutional review board of the Aichi Cancer
Center. Informed consent was provided according to the Declaration of
Helsinki. Patients were diagnosed from those hospitalized between 1988
and 2010 at Imamura-Bunin Hospital and Nagasaki University School of
Medicine. The diagnosis of ATLL was based on clinical features, hemato-
logic characteristics, immunophenotype, and the presence of serum anti-
bodies to ATLL-associated antigens. The median age of the patients was
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