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Myelodysplastic syndromes (MDS) and myelodysplastic/myelopro-
liferative neoplasms (MDS/MPN) are heterogeneous groups of
chronic myeloid neoplasms characterized by clonal hematopoi-
esis, varying degrees of cytopenia or myeloproliferative features
with evidence of myelodysplasia and a propensity to acute
myeloid leukemia (AML)." In recent years, a number of novel gene
mutations, involving TET2, ASXL1, DNMT3A, EZH2, IDH1/2, and
¢-CBL, have been identified in adult cases of chronic myeloid
neoplasms, which have contributed to our understanding of
disease pathogenesis.>”” However, these mutations are rare in
pediatric cases, with the exception of germline or somatic
¢-CBL mutations found in 10-15% of chronic myelomonocytic
leukemia (CMML) and juvenile myelomonocytic leukemia (JMML),®
highlighting the distinct pathogenesis of adult and pediatric
neoplasms.

Recently, we reported high frequencies of mutations, involving
the RNA splicing machinery, that are largely specific to myeloid
neoplasms, showing evidence of myeloid dysplasia in adult.’
Affecting a total of eight components of the RNA splicing
machinery (U2AF35, U2AF65, SF3A1, SF3B1, SRSF2, ZRSR2, SF1
and PRPF40B) commonly involved in the 3’ splice-site (3'SS)
recognition, these pathway mutations are now implicated in the
pathogenesis of myelodysplasia.'® To investigate the role of the
splicing-pathway mutations in the pathogenesis of pediatric
myeloid malignancies, we have examined 165 pediatric cases
with AML, MDS, chronic myeloid leukemia (CML) and JMML for

a U2AF35

\

S34F
S34Y

mutations in the four major splicing factors, U2AF35, ZRSR2, SRSF2,
and S5F3B1, commonly mutated in adult cases.

Bone marrow or peripheral blood tumor specimens were
obtained from 165 pediatric patients with various myeloid
malignancies, including de novo AML (n=93), MDS (n=28),
CML (n=17) and JMML (n=27), and the genomic DNA (gDNA)
was subjected to mutation analysis (Supplementary Table 1). The
status of the RAS pathway mutations for the current JMML series
has been reported previously (Supplementary Table 2).'%'2
Nineteen leukemia cell lines derived from AML (YNH-1, ML-1,
KASUMI-3, KG-1, HL60, inv-3, SN-1, NB4 and HEL), acute monocytic
leukemia (THP-1, SCC-3, J-111, CTS, P31/FUJ, MOLM-13, IMS/MI
and KOCL-48) and acute megakaryoblastic leukemia (CMS and
CMY) were also analyzed for mutations. Peripheral blood gDNA
from 60 healthy adult volunteers was used as controls. Informed
consent was obtained from the patients and/or their parents and
from the healthy volunteers. We previously showed that for
U2AF35, SRSF2 and SF3B1, most of the mutations in adult cases
were observed in exons 2 and 7, exon 1, and exons 14 and 15,
respectively.’® Therefore, we confirmed mutation screening to
these 'hot-spot’ exons. In contrast, all the coding exons were
examined for ZRSR2, because no mutational hot spots have been
detected. Briefly, the relevant exons were amplified using PCR and
mutations were examined by Sanger sequencing, as previously
described.”® The Fisher's exact test was used to evaluate the
statistical significance of frequencies of mutations for U2AF35,
SF3B1, ZRSR2 or SRSF2 in adult cases and pediatric cases. This
study was approved by the Ethics Committee of the University of
Tokyo (Approval number 948-7),

o
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Figure 1. Novel U2AF35and SRSF2 mutations detected in JMML cases. (a) Left panel: sequence chromatogram of a heterozygous mutation at
R156 in N-terminal zinc-finger motifs of U2AF35 detected in a JMML case (JMML 4) is shown. Mutated nucleotides are indicated by arrows.
Right panel: illustration of functional domains and mutations of U2AF35. Red arrow heads indicate hot-spot mutations at $34 and Q157
detected in the adult cases.'® Blue arrow head indicates the missense mutation at R156. (b) Left panel: sequence chromatogram of a 6-bp
in-frame deletion (c.518-523delAAGTCC) in SRSF2 detected in JMML 17 is shown. Mutated nucleotides are indicated by arrows. Right panel:
illustration of functional domains and mutations of SRSF2. Red arrow head indicates hot-spot mutation at P95 frequently detected in the adult
cases.'® Blue arrow head indicates a 6-bp in-frame deletion leading to deletion of $170 and K171.
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No mutations were identified in the 28 cases with pediatric
MDS, which included 13 cases with refractory anemia with excess
blasts, 5 with refractory cytopenia of childhood, 2 with Down
syndrome-related MDS, 2 with Fanconi anemia-related MDS,
2 with secondary MDS and 4 with unclassified MDS. Similarly,
no mutations were detected in 93 cases with de novo AML or in
17 with CML, as well as 19 leukemia-derived cell lines.
Our previous study in adult patients showed the frequency of
mutations in U2AF35, SF3B1, ZRSR2 or SRSF2 to be 60/155 cases with
MDS without increased ring sideroblasts and 8/151 de novo AML
patients, emphasizing the rarity of these mutations in pediatric MDS
(P<5.0x 107 and AML (P<0.02) compared with adult cases. We
found mutations in two JMML cases, JMML 4 and JMML 17. JMML 4
carried a heterozygous U2AF35 mutation (R156M), whereas JMML 17
had a 6-bp in-frame deletion (c.518-523delAAGTCC) in SRSF2 that
resulted in deletion of amino acids 5170 and K171 (Figure 1). Both
nucleotide changes found in U2AF35 and SRSF2 were neither
identified in the 60 healthy volunteers nor registered in the dbSNP
database (http://www.ncbi.nlm.nih.gov/projects/SNP/) or in the 1000
genomes project, indicating that they represent novel spliceosome
mutations in pediatric cases.

U2AF35 is the small subunit of the U2 auxiliary factor (U2AF),
which binds an AG dinucleotide at the 3'SS, and has an essential
role in BNA splicing.'®> With the exception of a single A26V
mutation found in a case of refractory cytopenia with multilinage
dysplasia, all the U2AF35 mutations reported in adult myeloid
malignancies involved one of the two hot spots within the two
zine-finger domains, 534 and Q157, which are highly conserved
across species, suggesting the gain-of-function mutations.’ In
JMML 4, the R156M U2AF35 mutation affects a conserved amino
acid adjacent to Q157, suggesting it may also be a gain-of-
function mutation, leading to aberrant pre-mRNA splicing possibly
in a dominant fashion.

SRSF2, better known as SC35, is a member of the serine/
arginine-rich (SR) family of proteins.'® SRSF2 binds to a splicing-
enhancer element in pre-mRNA and has a crucial role not only in
constitutive and alternative pre-mRNA splicing but also in
transcription elongation and genomic stability." All mutations
thus far identified in adult cases exclusively involved P95 within
the intervening sequence between the N-terminal RNA-binding
domain and the C-terminal RS domain.'® This region interacts with
other SR proteins, again suggesting that the P95 mutation may
result in gain-of-function.'® This proline residue is thought to
determine the relative orientation of the two flanking domains of
SRSF2, and a substitution at this position could compromise
critical interactions with other splicing factors necessary for RNA
splicing to take place. In contrast, the newly identified 6-bp
in-frame deletion in JMLL 17 results in two conserved amino acids,
5170 and K171, within the RS domain. Although it may affect
protein-protein interactions, the functional significance of this
deletion remains elusive.

JMML is a unique form of pediatric MDS/MPN characterized by
activation of the RAS/mitogen-activated protein kinase signaling
pathway; in 90% of cases, there are germ line and/or somatic
mutations of NF1, NRAS, KRAS, PTPN11 and CBL® Although
JMML shares some clinical and molecular features with CMML,
its spectrum of gene mutations suggests that it is a neoplasm
distinct from CMML.'® This was also confirmed by the current
results that the splicing-pathway mutations are rare in JMML,
whereas they are extremely frequent (~60%) in CMML.'®
Although the two JMML cases carrying the splicing-pathway
mutations had no known RAS-pathway mutations, both the
pathway mutations frequently coexisted in CMMLE

To summarize, no mutations of SF3B1, U2AF35, ZRSR2 or
SRSF2 are found in pediatric MDS and AML. In our study, except
for ZRSR2, mutations were examined focusing on the reported
hot spots in adult studies, raising a possibility that we may
have missed some mutations occurring in other regions. However,
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these hot spots represent evolutionally conserved amino
acids and have functional relevance, it is unlikely that the
distribution of hot spots in children significantly differs from adult
cases and as such, we could safely conclude that mutations of
SF3B1, U2AF35, ZRSR2 and SRSF2 are rare in myeloid neoplasms in
children. Finally, mutations of U2AF35 and SRSF2 may have some
role in the pathogenesis of JMML, afthough further evaluations
are required.
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Single-Nucleotide
Polymorphism Array Karyotyping in
Clinical Practice: Where, When, and How?

Aiko Sato-Otsubo, Masashi Sanada, and Seishi Ogawa

Single-nucleotide polymorphism array (SNP-A) karyotyping is a new technology that has enabled
genome-wide detection of genetic lesions in human cancers, including hematopoietic neoplasms.
Taking advantage of very large numbers of allele-specific probes synthesized on microarrays at high
density, copy number alterations as well as allelic imbalances can be sensitively detected in a
genome-wide manner at unprecedented resolutions. Most importantly, SNP-A karyotyping repre-
sents the only platform currently available for genome-scale detection of copy neutral loss of
heterozygosity (CN-LOH) or uniparental disomy (UPD), which is widely observed in cancer
genomes. Although not applicable to detection of balanced translocations, which are commonly
found in hematopoietic malignancies, SNP-A karyotyping technology complements and even
outperforms conventional metaphase karyotyping, potentially allowing for more accurate genetic
diagnosis of hematopoietic neoplasms in clinical practice. Here, we review the current status of

SNP-A karyotyping and its application to hematopoietic neoplasms.
Semin Oncol 39:13-25 © 2012 Elsevier Inc. All rights reserved.

GENETIC ABNORMALITIES IN
HEMATOLOGIC MALIGNANCIES

ince the discovery of the Philadelphia (Ph) chro-

mosome in chronic myelogenous leukemia (CML)

by Peter Nowell and David Hungerford in 1960,!
hundreds of different genetic alterations/abnormalities
have been identified and described in human cancers,
including not only hematologic malignancies but also
in a wide variety of solid cancers.? Human cancers
show a diversity of genetic alterations, ranging from
chromosome-scale lesions, such as translocations,
gains/amplifications, and losses of large chromosomal
segments, to small nucleotide substitutions, insertions,
and deletions. Now it has been well established that the

Cancer Genomics Project, Graduate School of Medicine, The University
of Tokyo, Tokyo, Japan.

This work was supported in part by the Core Research for Evolutional
Science and Technology, Japan Science and Technology Agency, a
Grant-in-Aid from the Ministry of Health, Labor and Welfare of Japan
and from the Ministry of Education, Culture, Sports, Science and
Technology.

Address correspondence to Seishi Ogawa, MD, PhD, Cancer Genomics
Project, Graduate School of Medicine, University of Tokyo, 7-3-1
Hongo, Bunkyo-ku, Tokyo 113-8655, Japan. E-mail: sogawa-tky @
umin.ac.jp

0270-9295/ - see front matter

© 2012 Elsevier Inc. All rights reserved.

doi:10.1053/j.seminoncol.2011.11.010

Seminars in Oncology, Vol 39, No 1, February 2012, pp 13-25

genetic alterations are central to the development of
cancers, determining their biological or clinical behav-
iors. In fact, some genetic lesions, such as recurrent
translocations, are highly specific to particular disease
types or closely linked to tumor histologies, while oth-
ers are commonly observed in a wide spectrum of
cancer types, indicating more general roles of these
genetic changes in carcinogenesis. Significantly, the
information about these genetic lesions not only con-
tributed to unmasking the underlying molecular patho-
genesis of cancers but also enabled the development of
novel diagnostics, therapeutics, and sensitive tumor
monitoring that target these specific lesions.?*

This has been best exemplified in hematologic can-
cers, in which underlying genetic changes have been
most extensively studied.“In particular, a number of
disease-specific chromosomal translocations found in
leukemias and lymphomas have been demonstrated to
be critical genetic markers in clinical practice.> While
several techniques have been developed to detect
these genetic changes with different sensitivities and
specificities for different purposes, probably the most
widely used in clinical settings is metaphase karyotyp-
ing. The metaphase karyotyping technique was first
developed during the 1960s and was soon introduced
in both the experimental and clinical hematology
fields. Since then, it has long been used as one of the
indispensable clinical tests and research tools with
which genetic alterations can be explored in a genome-

13
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wide fashion, although resolutions are limited. Never-
theless, recent advances in genomics and microarray
technologies have provided a new and, in a sense,
more powerful alternative: SNP-array (SNP-A)-based
analysis of cancer genomes or SNP-A karyotyping.10-12
Here, we will focus on this novel genetic approach to
hematologic oncology.

BASIC PRINCIPLES OF SNP-A-BASED COPY
NUMBER ANALYSIS OF CANCER GENOMES

SNP-As were originally developed for large-scale SNP
typing to enable genome-wide association studies
(GWAS), in which more than hundreds of thousands of
common SNPs across the entire genome are genotyped
for thousands of specimens.!®'¥ Currently, two SNP-A
platforms are commercially available, which achieve
highly paralleled genotyping of more than a million
SNPs relying on hybridization to, and/or extension
from, allele-specific oligonucleotide probes synthesized
in high-density on array matrix (Affymetrix, Santa Clara,
CA, GeneChip SNP Genotyping Arrays)!? or numerous
micro-beads (Illumina, San Diego, CA),'4 respectively.
While making tremendous contributions to the recent
achievements through a number of GWAS studies!>-17
both SNP-A technologies also have been applied with
excellent results to genome-wide copy number analysis
of cancer genomes.!8-!

For the purpose of genotyping, the relative intensi-
ties of the two kinds of SNP-specific signals at individ-
ual SNP loci are evaluated to discriminate three possi-
ble genotypes, such as A/A, A/B, and B/B (Figure la).
On the other hand, for copy number analysis, these
signals are compared across all SNP loci to calculate
genome-wide copy numbers, using “reference signal
values” for diploid DNA (SNP-A karyotyping)!®-1? (Fig-
ure 1b). Note that like other DNA-based analyses,
SNP-A karyotyping cannot determine cell ploidy pre-
cisely, which can only be enabled by cell-based analy-
sis?? (for more detail, see Ogawa et al*?). The basic idea
here is similar to array-based comparative genomic hy-
bridization (array CGH), in that the hybridization sig-
nals from tumor DNA are compared to normal diploid
signals at individual probe sites.?>?¢ However, in SNP-A
karyotyping, the comparisons are made between the
corresponding two SNP-specific probes, which makes
it possible to calculate allele-specific copy numbers
(AsCNs) (Figure 1b). The AsCN analysis is a unique
feature of SNP-A-based copy number analysis,?® en-
abling sensitive detection of copy neutral loss of
heterozygosity (CN-LOH) or uniparental disomies
(UPD), which cannot be detected by metaphase karyo-
typing or array CGH (see below).?® In addition, their
high resolutions of analysis to precisely point out ge-
netic targets with their positions, high-throughput sam-
ple processing with semi-automated experimental
procedures, and cell division-independent nature of
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Figure 1. Principles of genotyping and copy number de-
tection in SNP-A platforms. SNP arrays were originally de-
signed for large-scale SNP typing, in which relative intensity
of SNP-specific signals at each SNP site is compared to
discriminate among three possible genotypes (a). On the
other hand, SNP-specific signals can be used to calculate
allele-specific copy numbers (AsCNs) by comparing them
across the genomes in an allele-specific manner (SNP-A
karyotyping). (b) A typical result of SNP-A karyotyping gen-
erated by CNAG software, where AsCNs are shown below
the chromatogram (red and green lines), together with
total genomic copy number plots on the top panel. The
right end of the chromosome segment shows copy neutral
LOH or UPD, as indicated by dissociated AsCN graphs with
the normal total copy number (n = 2).

analysis, as well as computer-based detection of genetic
lesions, are also among the outstanding features of
SNP-A karyotyping platforms compared to conven-
tional metaphase karyotyping and array CGH.

THE TARGET GENETIC LESIONS

In principle, the targets of SNP-A karyotyping are
strictly limited to those genetic lesions that cause copy
number alterations, such as numerical abnormalities of
chromosomes and gains or losses of chromosomal seg-
ments. Balanced translocations, which are commonly
found in hematopoietic malignancies and would be
easily detected by metaphase karyotyping, such as t(8;
21)(q22;q22) and t(15;17)(q22;q21), are not accompa-
nied by copy number changes and therefore are out of
scope of the SNP-A karyotyping. Moreover, SNP-A
karyotyping does not provide any topological informa-
tion about the copy number abnormalities it detects.
For example, a high-level gene amplification is a very
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Figure 2. Detection of high-level amplifications and homozygous deletions in SNP-A karyotyping. (a) SNP-A karyotyping
sensitively detects focal gene (chromosome) amplifications involving KRAS locus in a MDS case. (b) Gene amplifications may
occur in situ as homogeneously staining regions (HSR), in episomal sites as double minutes (DMs), or at ectopic chromosomal
sites. However, SNP-A karyotyping does not provide topological information of the amplifications. (c) SNP-A analysis of an
unbalanced translocation between chromosomes 3 and 9 causing a FOXPT/PAXS5 fusion gene. The genomic positions of the
breakpoints are determined at high precision. (d) Output of SNP-A karyotyping showing a homozygous deletion at 1p21.3 in
a lymphoma specimen. The focal reduction found in total copy number plot (red arrows) is judged to represent a homozygous
deletion, based on the fact that the region shows a biallelic reduction of AsCNs, as indicated by arrowheads.

nice target of SNP-A karyotyping, but it does not deter-
mine where and how it occurs within the genome, or
whether it presents in a homogeneously stained region
(HSR) or double minutes (DM), or represents episomal
gene amplification (Figure 2a and b). On the other
hand, in SNP-A karyotyping copy number change
breakpoints can be precisely determined, relying on
the method’s high level of resolution (Figure 2a).

In terms of resolution, the SNP-A platforms far outper-
form metaphase karyotyping and typical bacterial artificial
chromosome (BAC) array-based CGH, although oligonu-
cleotide-based CGH arrays (Agilent, Santa Clara, CA) show
even better performance in this regard.?s On the currently

available SNP arrays, genomic copy numbers are mea-
sured at approximately 10° to >10° SNP loci (Affymetrix
GeneChip and Ilumina BeadChip). Generally, the behav-
jor of individual SNP-specific probes is not reliable
enough to allow for precise single-point determination of
copy number alterations at each SNP site, but the use of
large numbers of probes enables the detection of genetic
lesions less than 100k in size that would easily escape
detection by metaphase karyotyping or even by BAC array
CGH. SNP-A can detect the genes involved in the break-
points of the unbalanced copy number changes?*27 and
precisely determine the genetic targets of amplifications
and deletions!®20:28-30 (Figure 2¢).
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Figure 3. Detection of aUPD in SNP-A karyotyping. (a) aUPD or CN-LOH refers to the allelic status caused by loss of one of
the two parental alleles and duplication of the remaining allele. (b) In SNP-A karyotyping, aUPD is detected by significant
dissociation of AsCNs (red arrows) or by the reduction of the number of heterozygous SNP calls (blue arrow). (c) Sensitive
detection of aUPD using AsCN analysis was evaluated using intentionally mixed tumor and normal cells at the indicated tumor
proportions. The reduction of heterozygous SNP calles (green bars) in the aUPD(+) region is obscured with less than 40% of
tumor content, whereas the dissociation of AsCNs (green and red lines) clearly indicates the presence of aUPD even with. 20%
of tumor content. (d) AsCN-based detection of aUPD (orange) outperforms that relying on the reduced heterozygous SNP calls
(blue) in sensitivity. The gray line indicates numbers of heterozygous SNP calls within the target region with aUPD. (e) aUPD
is generated as a result of somatic recombination between sister chromatids or deletion of a chromosome segment and
duplication of the remaining allele, rendering a mutated allele homozygous. (e) Disappearance of heterozygous SNP calls are
also caused by inheritance of identical IBD alleles from parents. Reflecting multiple meiotic recombinations within the parents’

gametes, they usually appear as multiple segments with loss of heterozygous SNP calls intervened with heterozygous diploid
segments.
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Homozygous deletions are less common than simple
deletions in cancer genomes, but they provide an im-
portant clue to the identification of tumor-suppressor
genes, since the typical size of homozygous deletions is
less than 1 Mb. Taking advantage of their high resolu-
tion of analysis, the SNP-A platforms enable genome-
wide detection of these lesions and have contributed to
the discovery of novel tumor-suppressor genes.?>30
While in primary tumor specimens, the presence of
normal cells frequently prevents detection of homozy-
gous deletions by polymerase chain reaction (PCR),
such deletions could be detected as a biallelic reduc-
tion in ASCNs in SNP-A karyotyping even with low
tumor contents (Figure 2d).

DETECTION OF CN-LOH OR UPD

The other target of SNP-A karyotyping is CN-LOH.
CN-LOH has been the focus of recent attention in
cancer genetics, especially hematopoietic neoplasms.
It represents an abnormal allelic status, in which both
of the two existing alleles have a single parental origin,
and thus it is also called “uniparental” disomy (UPD)
(Figure 3a). In SNP-A karyotyping, UPD is detected as a
significant dissociation in AsCN plots, where higher
and lower copy number plots indicate the duplicated
and missing alleles, respectively (Figure 3b). When the
proportion of UPD-positive tumor components exceed
70% in the specimen, the frequency of heterozygous
SNP calls is significantly reduced, indicating the pres-
ence of LOH. However, detection of LOH relying on
heterozygous SNP calls is much less sensitive compared
to the AsCN-based detection; with less than 70% of
UPD-positive tumor cells, no significant reduction of
heterozygous SNP calls is observed (Figure 3c). Al-
though the size of the dissociation in ASCN plots varies
depending on the proportion of the tumor components
having UPD within the specimen, as few as 20% of
UPD-positive components can be detected by SNP-A
karyotyping® (Figure 3d). ‘

UPD may occur as an inborn error in congenital
disorders, including Beckwith-Wiedemann syndrome
(UPD in 11p), and Angelman syndrome and Prader-
Willi syndrome (UPD in 15q), where the consequent
abnormal imprinting status of the involved chromo-
somes is implicated in their pathogenesis.?'-3 How-
ever, recent studies using SNP-A karyotyping indicate
that UPD is more commonly found in cancers as an
acquired abnormality (acquired UPD [aUPD]).3¥ Several
mechanisms have been implicated in the generation of
aUPD during the development of cancer (Figure 3e).
For example, mis-segregation of a chromosome with
total or partial deletion of the other allele is thought to
be a common mechanism of aUPD among cancers,
especially those showing hyperploidy, leading to aUPD
of whole chromosomes or aUPD plus trisomy of the
surrounding chromosomal segments. On the other

hand, in many hematopoietic neoplasms aUPDs fre-
quently involve the telomere end of affected chro-
mosomal arms, suggesting that they are generated by
somatic recombinations between sister chromatids.
These aUPDs should be strictly discriminated from
identity-by-descent (IBD) alleles, which are not uni-
parental but inherited from both parents by varying
degrees of consanguinity between close kin. For ex-
ample, one sixteenth of the total genome is expected
to consist of IBD alleles in children born to marriage
between cousins. Thus, IBD alleles are more com-
mon in older individuals, reflecting higher frequen-
cies of consanguinity in the past. Usually, IBD alleles
tend to be found in the middle of diploid regions and
involve multiple chromosomal sites (Figure 3f).3536
Unfortunately, however, discrimination between
aUPD and IBD alleles is difficult in some cases, espe-
cially when they occur in mostly diploid genome and
involved chromosomal ends.

In cancer genetics, aUPD has been established as
one of the common mechanisms for biallelic inactiva-
tion of tumor-suppressor genes, by which the intact
allele is lost and replaced by the mutant allele.’” How-
ever, the precise incidence of aUPD among human
cancers has not been fully evaluated until recently,
when the genome-wide detection of this abnormality
has been enabled by the advent of the SNP-A karyotyp-
ing technology. aUPD has been shown to frequently
occur in human cancers, including hematopoietic neo-
plasms. aUPDs are found in 20% of acute myeloid
leukemia (AML), 30% of myelodysplastic syndromes
(MDS), and related disorders, and more than 80% of
malignant lymphomas.393538-45 Ag expected, these
UPDs are shown to be tightly associated with homozy-
gous mutations of known tumor-suppressor genes,
including TET2 in 4q, CDKN2A/B in 9p, TP53 in 17p,
NF1in 17q, Rb in 13q, CEBPA in 19q, and RUNX1 in
21q?8353740-4244 (Pigure 4a). Moreover, recent evi-
dence suggests that aUPD may accompany not only
loss-of-function alleles of tumor-suppressor genes but
also gain-of-function alleles of oncogenes. This was
first demonstrated for 9pUPD causing homozygous
JAK2 V617F mutations in polycythemia vera (PV), as
well as other myeloproliferative neoplasms (MPN),
and to a lesser extent in MDS.%-48 Thereafter, the
association between aUPDs and oncogenic muta-
tions was further confirmed for oncogenes in a vari-
ety of hematopoietic neoplasms.?54°-31 Common ex-
amples include homozygous mutations of ¢-MPL or
NRAS, ¢-CBL, and FLT3, which are caused by aUPDs
in 1p, 4q, 7q, 11q, and 13q, in a variety of myeloid
neoplasms, respectively (Figure 4b).

SENSITIVITY OF SNP-A KARYOTYPING

The sensitivity to detect particular genetic lesions in
SNP-A karyotyping depends on the size of genetic le-
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Figure 4. Recurrent aUPDs and their gene targets in
hematopoietic neoplasms. Recurrent aUPD found in hema-
topoietic neoplasms are frequently associated with loss-of-
function mutations of tumor-suppressor genes (a) or gain-
of-function oncogenic mutations (b).

sions and the tumor contents within the samples, and
also on the algorithm with which they are detected.
These computer-assisted algorithms, as well as other
bioinformatics tools for SNP-A karyotyping, are espe-
cially useful to detect complex genetic lesions objec-
tively and to summarize them for a large number of
specimens, facilitating identification of genetic targets.
A number of algorithms for computer-assisted detec-
tion/inference of genetic lesions in SNP-A karyotyping
have been developed, among which hidden Markov
model (HMM)-based algorithms and those using circu-
lar binary segmentation (CBS) are widely applied by
researchers.’2-5¢ Regardless of algorithms, to detect
copy number changes the size of the measured copy
number changes (A) needs to be significantly larger
than the mean size of measurement errors, eg, standard
deviation of measured copy numbers in diploid ge-
nome (SDUP). Because the relative intensity of probe-
specific signals to the background signals is substan-
tially weaker in Affymetrix GeneChip than in CGH
arrays, the mean log2 ratio of haploid to diploid signals
remains approximately 0.5 (Nsp250K arrays) rather
than achieves the theoretically expected value (~1.0)
obtained in CGH arrays. In addition, SNP-A tends to
show significantly higher SD¥P values than array CGH
systems. As a result, SNP array-based copy number
detection is more prone to loss of sensitivity with low
tumor cell components than CGH-based copy number
analysis. In typical SNP-A analyses, approximately 20%
to 30% of tumor contents are required for detection of
abnormalities in large chromosomal segments. In con-
trast, similar genetic lesions could be successfully cap-
tured even with less than 10% of tumor contents in

metaphase karyotyping and typical CGH arrays (BAC
array and Agilent 224K), although metaphase karyotyp-
ing depends on viable cells capable of cell division for
analysis.

The SDUP values or noises in SNP-A show substantial
variation depending on the experimental conditions
and the algorithms with which copy numbers are cal-
culated. In the Affymetrix platform, the genomic DNA
is digested with a proper restriction enzyme and the
adapterligated restriction fragments are subjected to
PCR amplification before hybridization. Because PCR
amplification assumes successful digestion of both ends
of the fragments, the difference in the mean length of
genomic DNA between test and reference DNA can
bias copy number calculation, especially at those SNP
sites on the longer DNA fragments. This causes a seri-
ous problem to analyze degraded DNA prepared from
formalinfixed paraffin-embedded (FFPE) samples, al-
though the problem is partly circumvented at the cost
of resolution by eliminating SNPs on long restriction
fragments (>500 bp) from the analysis.>> The subse-
quent PCR reactions also produce biases, because rel-
ative amplification efficiency among different DNA
fragments could be easily affected by subtle differences
in PCR conditions, including types of polymerase and
thermal cyclers.’?%¢ Thus, in order to obtain the best
results, it is very important to perform experiments as
uniformly as possible between test and reference sam-
ples. For example, it is recommended that whenever
possible, array experiments should be performed with
a set of normal DNA included for reference, especially
in those centers with less experience in SNP-A analysis,
although this leads to increased costs and reduced
throughput. Using a set of array data from normal DNA
as a common reference can reduce costs and increase
throughput but generally results in increased SDYP and
reduced resolution and sensitivity (Figure 5). SDYP val-
ues in typical experiments are between 0.15 and 0.20,
while they can be controlled to less than 0.10 in well-
performed experiments.

COPY NUMBER VARIATIONS AND
THE USE OF GERMLINE CONTROL

Copy number variations (CNVs) are a type of poly-
morphism widely found in our genomes, where the
number of particular genomic segments shows varia-
tions.57-32 Most CNVs are less than 1 Mb in length, but
some CNVs span genomic segments of more than sev-
eral megabases in length. While CNVs could be poten-
tial targets of SNP-A karyotyping, they may complicate
the discrimination between somatic and germline
events in cancer specimens, because difference in
CNVs between test and references from different indi-
viduals could be erroneously detected as somatic copy
number changes. Although using a germline DNA as a
reference could largely circumvent the false positive
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Figure 5. Effect of reference sets on detection of genetic
lesions. The same array data for a tumor sample was ana-
lyzed with a set of reference array data of simultaneously
processed normal diploid DNAs (a) or with a different array
data set of normal diploid DNAs generated from a different
set of experiments (b). The set of reference used for the
analysis substantially influenced the result. The analysis in a
shows a lower SD9P value than that in (b), enabling iden-
tification of a interstitial deletion (red arrows) that is not
clear in (b).

detection of CNVs as somatic copy number changes, it
does not completely avoid the problem. When a CNV is
located within a segment showing an allelic imbalance
and analyzed with a germline control, an apparent copy
number change may appear at that CNV locus, even
though it is not real (Figure 6).

CLINICAL APPLICATIONS

Until recently, application of SNP-A karyotyping has
been largely limited to exploratory research on cancer
genetics. However, given its excellent performance in
detecting genetic abnormalities in cancers, application
of SNP-A karyotyping to clinical hematology could be a
logical approach in an attempt to establish better man-
agement of cancer patients, although there remains a
number of issues to be answered before its use in
clinical settings. Clearly, SNP-A karyotyping does not
replace the conventional metaphase karyotyping or
other PCR-based detection of a variety of fusion genes,
because SNP-A karyotyping cannot detect balanced
translocations that are relevant to the management of a
variety of hematopoietic malignancies.

Give their primary use for GWAS studies, processing
a large number of specimens is an important pre-req-
uisite for the development of SNP-A platforms. With
simplified experimental protocols and semi-automa-
ted procedures, both SNP-A platforms achieve high-
throughput sample processing, in which dozens of
specimens can be analyzed within a few days in a single
set of SNP array systems. This is in contrast to conven-
tional metaphase karyotyping. Obtaining high-quality
metaphases may not always be possible and, as pre-
viously mentioned, absolutely requires cell culture
before analysis, precluding the analysis of archived
samples. Production of a large enough number of
karyograms for analysis is also time-consuming and
their interpretation requires some discipline.

On the other hand, metaphase karyotyping may re-
veal the presence of several tumor subpopulations with
different genomic profiles, as typically found in some
MDS or AML M6 patients with poor prognosis, where
individual metaphases show different karyotypes. DNA-
based analyses including SNP-A and CGH array measure
mean copy numbers among different subclones. They
could infer such complexities in some cases, but gen-
erally would fail to fully dissect such complex abnor-
malities within each tumor subpopulation, suggesting
the importance of combined used of metaphase karyo-
typing and array-based karyotyping technologies. Fea-
tures of different platforms for detection of genetic
alterations are summarized in Table 1. Apparently,
what is important is the judicious use of the appropri-
ate platforms according to the types of target genetic
lesions to be detected.

As long as the target genetic abnormalities are un-

I CNs in tumor cells
Real CNs in tum Somatic CN change

(LossinAllele 1)

2 L 2
Tolal CN  sosesesz=

101
Real CNs in the germline control .
Total CN 2 2 2
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1 copy in Allele 2
|
Apparent CNs 1(202) o5 (12) 1(212)
in SNP-A karyotyping ™= e
(tumor / germline) 0.25 (1/4)

Figure 6. False detection of copy number abnormality. In
most cases, CNVs are successfully discriminated from so-
matic changes using a germline control. However, in some
cases, the use of a germline control may lead to false
detection of CNVs as somatic changes. This occurs when
two parental alleles have different CNVs and that CNV site
is located in a segment showing copy number gain or loss.
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balanced changes shared by the main tumor popula-
tion, SNP-A karyotyping would be a good alternative to
conventional karyotyping or could even outperform
the latter, especially when no metaphases are obtained
in conventional karyotyping. SNP-A karyotyping reveals
comprehensive registries of genetic lesions, including
copy number gains and losses, as well as UPD, in
hematologic neoplasms (Figure 7). In hematopoietic
neoplasms, aUPDs are found in varying frequencies
depending on tumor types, ranging from approxi-
mately 20% in AML to nearly 80% in diffuse large B-cell
lymphoma. While some aUPDs are closely related to
particular gene mutations, the clinical significance of
other aUPDs remains to be elucidated.

AML AND ACUTE LYMPHOBLASTIC LEUKEMIA

In leukemias and lymphomas, a number of novel
genetic targets have been identified through SNP-A
karyotyping of acute lymphoblastic leukemia (ALL).
SNP-A karyotyping identified recurrent deletions/trans-
locations involving EBFI and PAX5 in childhood
ALL,202728 and frequent deletion of Jkaros in lymphoid
blastic crisis of CML, as well as Ph1™ ALL.?® Meanwhile,
the clinically relevant disease-specific translocations
are out of the scope of SNP-A karyotyping, which are
among common targets in metaphase karyotyping and
could be more sensitively detected by targeted ap-
proach, including interphase fluroesence in situ hybrid-
ization (FISH) and reverse transcriptase-PCR. This is a
major drawback of SNP-A karyotyping. However, the
excellent performance of SNP-A karyotyping in ge-
nome-wide detection of complex unbalanced lesions as
well as aUPD could compensate the drawback, and add
unique values to this platform in clinical setting.

MDS AND RELATED MYELOID NEOPLASMS

MDS, MDS/MPN, and secondary AML are among the
best targets of SNP-A karyotyping, in which the unbal-
anced genetic changes are predominant,*¢! and these
changes are directly incorporated into their prognostic
scores.6263 It was demonstrated that SNP-A karyotyping
showed a higher performance compared to metaphase
karyotyping,?># In our seties consisting of 222 cases with
MDS and related myeloid neoplasms, SNP-A karyotyping
captured all the genetic lesions found in metaphase karyo-
typing except for four balanced translocations. Moreover,
41 of the 91 cases with normal karyotypes by metaphase
cytogenetics showed one or more genetic lesions by
SNP-A karyotyping. Overall, SNP-A karyotyping revealed
approximately 1.5 times more genetic lesions, including
-7/7q- and complex Kkaryotypes indicating poor progno-
sis®>% (Figure 8). Assuming that the masked lesions in
metaphase karyotyping are also valid in evaluating the
International Prognostic Scoring System (IPSS) score,
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Figure 7. Genomic profiles of different hematopoietic neoplasms in SNP-A karyotyping. Genomic profiles revealed by SNP-A
karyotyping are shown for different hematopoietic neoplasms, including AML (N = 36), MDS (N = 294), MPN (N = 57), CML
(N = 51), B-precursor ALL (N = 507), T-cell ALL (N = 84), non-Hodgkin lymphoma (NHL) (N = 238), and CLL (N = 131).
Frequencies of copy number gains and losses, as well as aUPDs, across the genome are color-coded in each neoplasm type as
indicated. Each neoplasm type has a characteristic genomic profile of its own.

SNP-A karyotyping would be a more appropriate tool for
the management of MDS and related neoplasms.

In these myeloid neoplasms, aUPDs are found in about
one fourth to one third of the patients and, in some cases,
represent the only genetic lesions found by SNP-A karyo-
typing.># These aUPDs are preferentially involved in
particular chromosomal arms, such as 1p, 1q, 4q, 7q, 9p,
11p, 11q, 13q, 14q, 17p, and 21q. Importantly, recent

studies demonstrated that many of these aUPDs are tightly
associated with mutations of tumor-suppressor genes or
oncogenes (Table 2),35:4045.465064.65

MALIGNANT LYMPHOMAS

Malignant lymphomas consist of a diversity of differ-
ent histology types. This wide heterogeneity of lym-
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Figure 8. Numbers of genetic lesions in MDS and related myeloid neoplasms detected by SNP-A and metaphase karyotyping.
The numbers of genetic lesions detected in a cohort of MDS, MDS/MPN, and sSAML were compared between SNP-A (red bars)
and metaphase karyotyping (blue bars) in each chromosome. The comparison was made among the 173 cases, in which

successful metaphase karyotype data had been obtained.
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Table 2. aUPDs and Their Gene Targets in Hematologic Neoplasms

Chromosome Disease(s) Gene Target(s) References
1p13.1 MDS = -~ Nras Mutations 35,50
1p34 - MPN, RARSt " cMPL ~:Mutations 49,64,72
4q24 MDS, MPN TET2 Mutations 44
6923 MALT, DLBCL A20 Mutation or deletion 30
7935 MDS, MDS/MPN EZH2 Mutations 65
9p21 ALL CDKN2A Deletion 29
9p24 MPN JAK2 Mutations - 25,46
11p13 AML WT1 Mutations 51
11g23.3 MDS/MPN c-CBL Mutations 35,50
13g12 AML FLT3 ITD 51
13914.3 CLL miR-15a, miR-16-1 Deletion 69
17p13.1 AML, MDS TP53 Mutations 35,73
17911.2 IMML NF1 Mutations 74
19g13.1 AML CEBPA Mutations 51
219223 AML, MDS RUNX1 Mutations 35,51

Abbreviations: MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm; RARS, refractory anemia with ring sideroblasts and
thrombocytosis; MALT, mucosa-associated lymphoid tissue-derived lymphoma; DLBCL, diffuse large B-cell lymphoma; ALL, acute
lymphocytic leukemia; AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; JMML, juvenile myelomonocytic leukemia.

phomas has been confirmed by SNP-A karyotyping, in
terms of the distribution of their genetic abnormalities,
including copy number gains and losses, as well as
aUPD, conferring unique genomic profiles to each lym-
phoma subtype.3° For example, gains of both chromo-
somes 3 and 18, as well as focal deletions at the A20
locus, are a common feature of mucosa-associated lym-
phoid tissue (MALT)-derived lymphoma, while mantle
cell lymphomas show recurrent deletions in the seg-
ments of 1p, 10p, and 11q, and gains of 3q, 8q, and
18q.3% On the other hand, diffuse large B-cell lympho-
mas and follicular lymphoma show largely similar
genomic profiles, including gains/amplifications involv-
ing the c-rel locus, and gains of 1q and chromosomes 3,
7, 12, and 18, indicating a common genetic back-
ground in both subtypes. aUPD is found in about 80%
of follicular center-derived lymohomas and less fre-
quently found in MALT and mantle cell lympho-
mas.304566 In follicular center-derived lymphomas,
common targets of aUPD include 1p, 1q, 6p, 9p, 12q,
and 17q, whereas 6qUPD is characteristic to MALT-type
lymphoma 304366 Similar to aUPD in myeloid cancers,
discrete gene targets have been clarified for some
aUPDs in lymphomas, including HLA associated with
6pUPD, A20 with 6qUPD, and CDKN2 with 9pUPD,
although the genetic targets of common aUPDs in 1p,
12q, and 17q have not been elucidated.*

CHRONIC LYMPHOCYTIC
LEUKEMIA AND MULTIPLE MYELOMA

Chronic lymphocytic leukemia (CLL) and multiple
myeloma (MM) are also among good indications for

SNP-A karyotyping, because difficulty in obtaining
metaphases frequently prevents successful conven-
tional karyotyping. SNP-A analysis can sensitively de-
tect genetic lesions in more than 80% of CLL cases,
including frequent homozygous deletions involving the
miR15a/miR16-1 locus, as well as gains of chromo-
some 12 associated with poor prognosis.S-% Other
common genetic lesions in CLL detected by SNP-A
karyotyping include recurrent deletions in 5q, 6q, 11q,
and 17p, where the common deletion in 6q and 11q
contains AIMI1 and ATM, respectively. Because of a
high median age of CLL cases, aUPD should be carefully
discriminated from IBD alleles. After excluding sus-
pected IBD alleles, aUPD was relatively uncommon,
being found in four of 56 cases, which involved 11q,
13q, and 17p.%8

SNP-A karyotyping also can be applied to MM, but
frequent low tumor contents in myeloma specimens
may compromise the sensitivity of detecting genetic
lesions. To keep the sensitivity of SNP-A karyotyping,
enrichment of myeloma cells has been performed by
sorting CD138* fractions.” As for the copy number
changes, comparative results were obtained between
array CGH and SNP-A Kkaryotyping. Common genetic
changes detected by SNP-A karyotyping include gains
of 1q, 6p, and 11q and whole chromosomes 3, 5, 7, 9,
15, and 19, typically associated with hyperploidy, and
deletions in 1p, 8p, and 16q and whole chromosomes
13 and X.707! SNP-A karyotyping showed concordant
results with those from FISH experiments in most
cases, except for rare tetraploid samples, which were
erroneously analyzed as diploid in SNP-A karyotyping.
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aUPD is also common in MM with the median number
of regions showing aUPD being three.”

CONCLUSION

SNP-A karyotyping represents one of the recent
technological advances in the field of cancer genomics.
It has enabled high-throughput analysis of genetic le-
sions in human cancers in terms of copy number alter-
ations and allelic imbalances, unveiling a number of
novel genetic targets and mechanisms that are involved
in cancer development. Given such high performance
of SNP-A karyotyping, it could be potentially applicable
to bedside diagnosis and the clinical management of
patients. While there exist accumulating observations
that suggest diagnostic and/or prognostic values of
SNP-A karyotyping, they need to be confirmed through
more controlled studies. For example, when evaluating
those abnormalities whose clinical values have been
well established, SNP-A karyotyping would comple-
ment and even outperform metaphase karyotyping. On
the other hand, SNP-A karyotyping will identify large
numbers of novel genetic lesions whose clinical signif-
icance needs to be clarified before their clinical use,
which might not always feasible with realistic numbers
of cases due to higher heterogeneity these lesions
could reveal. Clearly, more works should be required
to establish the clinical values of SNP-A karyotyping
technologies.
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