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CT scan images of primary and recurrent hepatocellular carcinoma (HCC). Patient on the top with massive primary liver cancer

received about 5—6 mg SMANCS(SX)/5—6 mL Lipiodol(LP) (A). Subsequently, the patient received three injections of the drug i.a.
under normotensive state in 6 mon, then marked regression was obtained (— B). CT scans in (C) and (E) patients received i.a.
infusion of SX/LP under hypertension induced by intravenous infusion of AT-II. In about 1 mon, the size of tumors in both cases was
reduced to less than 10% of the original size (Fig. 10 C — D; E — F) (adapted from ref. 88)).

effects in healthy people and are active only in
hypertensive patients and more selectively at tumor
sites in this case. Data indicate that ACE inhibitors,
such as enalapril increased drug delivery about 2- to
3-fold (Fig. 13).99190) Professor Felix Kratz also
confirmed this effect in different tumor models with
different polymeric drugs (personal communication).

We likewise found that beraprost sodium, a
stable analogue (prolonged plasma t;/, 30 times) of
prostaglandin I, which administered orally, en-
hanced tumor-targeted drug delivery in mouse
tumors.™

7. Concluding remarks

Tumor vasculature is structurally unique and
different from normal vasculature. Tumor tissue also
shows highly up-regulated production of vascular
effectors. As a consequence extravasation of macro-
molecules into the interstitial space would occur. The
effectors affecting vascular permeability factors in-
cludes (brady)kinin, NO, prostaglandins, VEGF (or
vascular permeability factor), and CO (by HO-1) in

or near the most solid tumors. This enhanced
vascular permeability also commonly occurs in
inflamed tissue at the sites of infection that is
affected by many similar vascular mediators.

Once macromolecules extravasate from the
circulation or blood vessels into the tumor intersti-
tium, they remain in the tumor for a long time
without being cleared. This situation is in great
contrast to normal tissue, in which macromolecules
are cleared via the lymphatic system. Thus, pro-
longed retention of macromolecules—for more than
days to weeks—is a unique characteristic of the EPR
effect in tumor tissue. These features led to this
phenomenon being named the enhanced permeability
and retention (EPR) effect of macromolecules in solid
tumor.26)-32):35).36) The EPR effect is applicable to
biocompatible macromolecules with MW > 40 KDa.

However, the EPR effect occurs frequently
heterogeneously, which means that tumor selective
macromolecular drug delivery based on the EPR
effect may not procede homogeneously. Conse-
quently, drug delivery may be less efficient to
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Fig. 11. CT scan images of (A) and (C) show stomach cancer metastasized to the liver. They received SX/LP(SMANCS,/ Lipiodol) i.a.
under AT-II-induced hypertension, at about 150~160 mmHg. The notable reduction to about 10% of the original volume of tumor was
observed in 1-2 months (see B,D) (Adapted from ref. 88)). In the bottom three CT images showing a case of massive renal carcinoma.
SX/LP was administered via the renal artery under AT-Tl-induced hypertension. CT scans at left was taken at day 1, middle at day
350, and on lower right at day 750 showing remarkable regression. Also please note a metastatic tumor nodule at the inferior vena
cava (middle; large white arrow). This metastatic tumor (nodule) regressed to a small spot in the scan at day 750 (right). Dose of
SX/LP administration was 3—~4 mg in about 2ml at a time, and the patient received total of 14 times i.a. infusion in three years. This

patient is still alive after 9 years with good QOL.

metastatic liver cancers and to less vascularized
cancers, e.g., cancers of the pancreas and prostate,
rendering poor EPR effect. Therefore better ther-
apeutic outcomes for such cancers depends on further
augmentation of drug delivery to such tumors. We
thus developed measures to enhance the EPR effect.
One method involves raising the systemic blood
pressure, e.g., from 100 to 160mmHg by using
angiotensin II during arterial infusion of a macromo-
lecular drug, e.g., SMANCS/Lipiodol. This method
produced excellent clinical results even in advanced
and difficult-to-treat tumors such as metastatic liver
cancer, cholangiocarcinoma, and cancers of the
pancreas, and others.5%)

Another method is utilization of NO-releasing
agents such as NG for advanced and poor-EPR
tumors. Hypoxic tumor tissues and infarcted cardiac
tissue (as in angina pectoris) seem to possess similar
NO-related mechanisms. Topical application of NG
results the site-selective increase of NO concentra-
tion, which did facilitate an improved EPR ef-
fect®99) and clinical benefit.?)"%) Similarly, ACE
inhibitors can increase the local kinin concentration,
and thus enhanced EPR effect without any adverse
effects.?)1%) These methods of enhancing the EPR
effect will likely achieve better clinical outcomes for
cancer patients without any adverse effects and
warrant continuing development.
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Fig. 12. (A) Mechanism of NO generation and enhancement of the EPR effect by topical application of NO-releasing agent, nitroglycerin

(NG). NG will get into circulation in a few min, and NO,™ is liberated, and in the hypoxic tumor tissue NOy™ is reduced to nitric oxide
(NO) which induces the vascular permeability. Time course (B) and dose dependence (C) of NG-induced augmentation of EPR effect
in S-180 tumors were probed with Evans blue/albumin accumulation in tumor. Chemically induced rat tumor with (DMBA) and
other tumors (Meth A fibrosarcoma and colon 38 adenocarcinoma) also showed similar results (Adapted from ref. 89)).
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Fig. 13. Augmentation of EPR effect and macromolecular drug

delivery to tumor by using AT-II and ACE inhibitor enalapril.
The drug used here was monoclonal antibody A7 against human
colon cancer in athymic mice bearing SW-1116 tumor cells. IgG
was labeled with ‘21 (Adapted from ref. 99)).
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Scientifically Speaking

Styrene-co-maleic Acid (SMA) Telomeric Micelles
Encapsulated-Zinc Protoporphyrin (SMA-ZnPP) and
Other Drugs: Stability Study

Gahininath Y. Bharate,1:2 Hideaki Nakamura, Jun Fang1 Seiji Shinkai,2 and Hiroshi Maedal,2

A number of natural or synthetic polymers are used as micelle-
forming agents. Among them we developed styrene-maleic acid
copolymer (SMA) for this purpose. SMA has been used as a car
and flour polishing agent and for seizing in the paper industry.
Recently, it was approved as a food additive by the U.S. Food and
Drug Administration. Use of SMA for pharmaceutical purposes
was first started by Maeda’s group. Namely, SMA was conjugated
with neocarzinostatin (NCS) to make the macromolecular

anticancer drug SMANCS. 1,2

SMA is soluble in organic solvents as well as water. The
anhydride group is reactive toward primary amino groups and
forms a maleyl amide linkage. In the case of SMANCS, SMA
confers high lipophilicity so that SMANCS becomes
lymphotropic, a preferred character for the control of lymphatic
metastasis. SMA also confers an albumin-binding character.3,:4,5
A lipophilic nature had the advantage of forming an oily
formulation in a lipid contrast agent (Lipiodol®).4 This method
led to a new strategy for most tumor-targeting drug delivery
using SMANCS/Lipiodol that is administered into the tumor-
feeding artery with a catheter, yielding remarkable tumor
regression in the most difficult-to-treat cancers, such as primary
metastatic liver cancers and renal cancer.6

In the past several years, we found that SMA is one of the most
versatile micelle-forming agents in that the procedure is simple
with reasonable biocompatibility. Another unique aspect of SMA
micelles is their stability upon lyophilization and complete
recovery of the micelles by adding water, or stability in vivo. We
found that the micelles only undergo disruption under severe
conditions in alkaline or with detergents. More importantly, the
drug is released upon internalization into the cells.” Recently,
SMA micelles of photosensitizers such as Rose Bengal and
methylene blue were found to be reasonably stable, to exhibit the
enhanced permeability and retention (EPR) effect iz vivo, and to
be applicable for imaging (unpublished data).

Experimentals

In this newsletter, we present the stability of SMA micelles
containing ZnPP (SMA-ZnPP) and other low-molecular-
weight drug candidates. The SMA-ZnPP micelles were prepared
very simply by adjusting the pH to >8.0 and then precipitating
by acid, followed by dialysis.8 In this study, two types of SMA,

1 Research Institute for Drug Delivery Systems, Faculty of
Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Kumamoto,
8600082, Japan.

2 Department of Nanoscience and Applied Chemistry, Graduate
School of Engineering, Sojo University, Ikeda 4-22-1, Kumamoto,
8600082, Japan.
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maleylcarboxylated and partially butylated, were used. The
nanomicelles thus formed were characterized by UV absorption,
fluorescence spectroscopy, Fourier transform infrared
spectroscopy (FTIR), dynamic light scattering, zeta potential,
and Sephadex G-100 chromatography, as well as biological
evaluation.

Stability experiments were based on fluorescence spectroscopy of
SMA-ZnPP micelles under different conditions. A release study
of ZnPP from SMA micelles was performed by placing the
micelle solution (0.5 mg/mL) in dialysis tubes with cut-off
molecular mass of 10 kDa against 0.1 M phosphate buffered
saline ranging from pH 6.0 to 9.0 at 37°C under stirring.

Results and Discussion
The characterization of two types of SMA-ZnPP micelles is
summarized in Table 1.

Free ZnPP in dimethylsulfoxide (DMSO) or in alkaline solution
showed the strongest fluorescence in the 580-610 nm range
upon excitation at 420.0 nm. However, when SMA-ZnPP was
dissolved in aqueous solutions, it was quenched completely, and
it appears to exist as a
densely stacked form
(Figure 1). This
suggests that SMA-
ZnPP behaves as an
encapsulated micellar
structure, having mw—
interaction of the
stacked up state of the
tetrapyrrole ring,
which suppresses
fluorescence due to
energy transfer in
aqueous solution.
Similar phenomena
were observed for the
micellar drugs using
SMA containing doxorubicin and pirarubicin and other
fluorescent probes (e.g., Rose Bengal and methylene blue).

Figure 1. Schematic representation of
SMA-ZnPP micelle.

Using fluorescence spectroscopy, we investigated the stability of
SMA-ZnPP micelles at different pH (6.0~11.0). As shown in
Figure 2A and B, weak fluorescence was seen below pH 6.0,
which starts to emerge at higher pH, indicating the
disintegration of the micelle structure (Figure 2A). A similar
phenomenon is seen in the presence of a high concentration of

urea and detergent (sodium dodecyl sulfate [SDS]) (Figure 2C



Table 1. Characterization of SMA-ZnPP

Mean Mean Mw by Zeta

% Yield (based % ZnPP Particle Size Sephadex Potential

SMA Micelle on ZnPP) Loading (nm) G-100 (L, mV)a
Carboxy SMA-ZnPP 85 43.5 26.6 115 —46.85
Butyl SMA-ZnPP 92 34.3 29.3 128 =29:13

a Zeta potential was determined by Photal model ELSZ (Otsuka Electronics, Osaka, Japan) in 0.1 M phosphate buffer (pH 7.5).

and D), suggesting the disruption of micelle structure by
hydrogen bond breakage or by counter ions.

Adequate disintegration of the micelle drugs is an important
character, so as to provide the active ingredient access to the
molecular target in the cells. SMA micelles were found to
undergo disintegration in the presence of lecithin similar to
SDS.7 More importantly, we found SMA-ZnPP micelles were
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Figure 2. Fluorescence spectrums of free ZnPP and SMA-ZnPP were
recorded on F-4500 spectrofluorometer (Hitachi, Tokyo). (A) The fluorescence
spectra of free ZnPP in DMSO and SMA-ZnPP in different pHs; the
concentration of ZnPP and SMA-ZnPP was 1 M (ZnPP equivalent)
each. (B) Disintegration of SMA-ZnPP micelles is seen by abrupt increase of
Sfluorescence intensity (at 595 nm) at or above pH 10.5. Stability of the
SMA-ZnPP micelles in SDS (C) and Urea (D) is shown.

disintegrated upon endocytotic uptake, a similar result to
exposure to lecithin.” This means SMA micelles have ideal drug-
release properties, predominantly in the cell after cellular uptake.

'The inflection point for butyl SMA-ZnPP micelles was pH 10.5,
whereas carboxy SMA-ZnPP was pH 10.0, indicating that
butylated SMA was more stable than carboxy SMA. Moreover,
Sephadex G-100 chromatography of carboxy SMA-ZnPP
showed the apparent molecular size in an aqueous system was
about 115 kDa. However, in the presence of albumin, it exhibited
152 kDa, indicating that albumin could bind to SMA-ZnPP

micelles.

Zero-order release rate of free ZnPP from its SMA micelles was
observed in the pH range of 6.0-9.0 (data not shown). The
release rate was found to be a little higher at pH 9.0 (3.0%/day)
than at the lower pH 6.0 (2.25%/day).

Conclusion

SMA was found to have a versatile nanomicelle-forming
capacity. The micelles can be prepared simply, encapsulating
various agents, just by changing pH, consisting of primarily
SMA and the drug. All the SMA-drug micelles were proven to
be stable during lyophilization and showed a very slow drug-
release rate at a wide range of pH. More importantly, it exhibited
drug release upon internalization into the cells.”
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The enhanced permeability and retention (EPR) effect is a unique
pathophysiological phenomenon of solid tumors that sees biocom-
patible macromolecules (>40 kDa) accumulate selectively in the
tumor. Various factors have been implicated in this effect. Herein,
we report that heme oxygenase-1 (HO-1; also known as heat shock
protein 32) significantly increases vascular permeability and thus
macromolecular drug accumulation in tumors. Intradermal injec-
tion of recombinant HO-1 in mice, followed by i.v. administration
of a macromolecular Evans blue-albumin complex, resulted in
dose-dependent extravasation of Evans blue-albumin at the HO-1
injection site. Almost no extravasation was detected when inacti-
vated HO-1 or a carbon monoxide (CO) scavenger was injected
instead. Because HO-1 generates CO, these data imply that CO
plays a key role in vascular leakage. This is supported by results
obtained after intratumoral administration of a CO-releasing agent
(tricarbonyldichlororuthenium(li) dimer) in the same experimental
setting, specifically dose-dependent increases in vascular perme-
ability plus augmented tumor blood flow. In addition, induction of
HO-1 in tumors by the water-soluble macromolecular HO-1 inducer
pegylated hemin significantly increased tumor blood flow and
Evans blue-albumin accumulation in tumors. These findings sug-
gest that HO-1 and/or CO are important mediators of the EPR
effect. Thus, anticancer chemotherapy using macromolecular drugs
may be improved by combination with an HO-1 inducer, such as
pegylated hemin, via an enhanced EPR effect. (Cancer Sci 2012;
103: 535-541)

C onventional chemotherapy with small molecule drugs has
been used for many types of cancer for decades. However,
the therapeutic efficacy remains less than optimal, mostly
because of a lack of tumor selectivity, which results in severe
adverse side effects and prevents the use of high drug doses."
The development of tumor-targeted chemotherapy is critically
important for more successful treatment.

During investigations of targeting drugs to tumors, Matsum-
ura and Maeda® found that macromolecular agents larger than
40 kDa selectively accumulate and remain in tumor tissues for
long periods. This unique phenomenon in the blood vasculature
of solid tumor tissues is quite different from that in normal tis-
sues and was attributed to the unique anatomic and pathophysio-
logic characteristics of solid tumors. These features include:
(i) extensive angiogenesis and hence high vascular density;>"
(ii) extensive extravasation (vascular permeability) induced by
various vascular mediators, including bradykinin,”™” nitric
oxide (NO),(7'8) vascular endothelial growth factor (VEGF),<9"°)
prostaglandins produced via cyclo-oxygenases,” and matrix
metalloproteinases;”” (iii) defective vascular architecture, such
as the lack of a smooth muscle layer and large gaps between
vascular endothelial cells;"*'® and (iv) impaired lymphatic
clearance from the tumor interstitial space.”*"'® The increased
vascular permeability and defective vascular structure allow

doi: 10.1111/).1349-7006.2011.02178.x
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molecules larger than those subject to renal clearance (i.e.
240 kDa) to extravasate gradually, over a long time, into the
interstitial space in tumor tissues. Furthermore, the molecules
remain in the interstitial space without bein%_cleared because of
the impaired lymphatic system in tumors.*">~'® This phenome-
non was named the enhanced permeability and retention effect
(EPR effect) in solid tumors.

In previous studies, we have shown that this EPR effect can be
augmented and drug delivery improved two- to threefold®=>?,
One approach used angiotensin (Ang) II-induced hypertension,
during which tumor blood flow was increased selectively.!®17
The Angll-induced augmentation of the EPR effect was validated
not only in animal experiments, but also in the clinical setting
with difficult-to-treat tumors."*!® Another approach involved
using NO-generating agents such as nitroglycerin (NTG), which
significantly increased the accumulation of macromolecular
drugs in tumors.?”

In a completely different series of experiments, we have been
working on heme oxygenase-1 (HO-1), known as a key factor
for supporting rapid tumor growth, as an anticancer target.*'=%%
Heme oxygenase is a key enzyme in heme metabolism, with
products including biliverdin, carbon monoxide (CO), and free
iron (Fe*); biliverdin is subsequently converted to biliru-
bin.*>*® Numerous studies have demonstrated important physi-
ological roles of CO, comparable to those of NO, including
vascular dilatation, facilitation of vascular blood flow, and an-
tioxidative and antiapoptotic effects.”’” We thus hypothe-
sized that CO-generating HO-1 may serve as another factor
mediating the EPR effect and may be useful in augmenting
chemotherapeutic effects.

In the present study, we used recombinant HO-1 and a CO-
releasing agent to investigate the effects of HO-1 and CO on
vascular permeability. In addition, by using the water-soluble
macromolecular HO-1 inducer pegylated hemin (PEG-hemin),
we verified the CO- and HO-1-induced augmentation of the
EPR effect in a murine solid tumor model.

Materials and Methods

Materials. Tricarbonyldichlororuthenium(Il) dimer (CORM-
2), zinc protoporphyrin-IX (ZnPP), and hemin were purchased
from Sigma-Aldrich Chemical (St Louis, MO, USA). Other
chemicals of reagent grade were from Wako Pure Chemical
Industries (Osaka, Japan) and were used without further purifica-
tion.

Animals. Male ddY mice, 6 weeks old and weighing 30-
35 g, and male SD rat weighing 200-250 g were obtained from
Kyudo (Kumamoto, Japan). Mice were maintained under
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E-mail: hirmaeda@ph.sojo-u.ac.jp
5These authors contributed equally to this work.
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standard conditions (12-h dark-light cycle, 23 = 1°C). All

experiments were performed according to the guidelines of the

Laboratory Protocol of Animal Handling, Sojo Umver51ty

Preparation of ‘recombinant HO-1 protein. Total mRNA was
extracted from rat liver using the Takara RNA PCR Kit (AMV)
Ver. 3.0 (Takara Bio, Otsu, Japan), with HO-1 ¢cDNA being
amplified with HO-1 Cf (gatcageactagticatcecagacataacctag)
and HO-1 Cr (gttatgtctgggatgaactagtget) primers using KOD FX
polymerase (Takara). Rat HO-1 ¢DNA was then inserted into
the pET3c vector through the Ndel and BamH1 restriction
enzyme sites located at the 5" and 3’ ends, respectively.

Escherichia coli Rosetta-gami (DE3) bacteria harboring the
abovementioned pET3c¢ plasmid encoding rat HO-1 were cul-
tured in LB medium containing 50 pg /mL ampicillin and
20 pg/mL chloramphenicol. The HO-1 protein was induced by
addition of 10 pM isopropyl P-p-thiogalactopyranoside. After
6 h incubation at 37°C with shaking, the bacterial pellet was
sonicated (150 W, 20 min) in 50 mM Tris—-HCI buffer (pH 8.0)
with protease inhibitors (2 mM phenylmethylsulfonyl fluoride
and 10 pg/mL leupeptin) at 4°C. Then, rat HO-1 was partially
purified by using ammonium sulfate precipitation (30-60% frac-
tion), after which it was dialyzed against 10 mM potassium
phosphate buffer (pH 7.4). It was finally purified by using a
DEAE negative ion exchange column; 10 mM phosphate buffer
(pH 7.4) containing 250 mM KClI was used for gradient elution.
The purity of the rat HO-1 was demonstrated to be >90% using
SDS-PAGE with Coomassie brilliant blue staining.

Synthesis. of PEG-hemin. The synthesis, purification, dnd
characterization of PEG-hemin were as described previously.®

Determination of the effect of HO-1, HO-1 inhibitors, and CO
on vascular permeability in normal mouse skin. The ddY mice
were anesthetized with sodium pentobarbital (83 mg/kg, i.p.).
Test samples (50 pL each) were injected intradermally (i.d.) into
the dorsal skin of mice, followed immediately by i.v. injection
of 10 mg/kg Evans blue dye. Mice were killed 2 h after injec-
tion of Evans blue and the amount of extravasated dye in the
skin at the site of injection was quannﬁed after extraction with
formamide, as described previously. ® Similar experiments were
performed with an in vivo imaging system (NightOWL II; Bert-
hold Technologies, Bad Wildbad, Germany) using a macromo-
lecular fluorescent dye (i.e. rhodamine-conjugated bovine
albumin synthesized in our laboratory; Hideaki Nakamura, Jun
Fang, Haibo Qin, Gahininath Y Bharate, Hiroshi Maeda, unpub-
lished data, 2011) instead of Evans blue, with excitation and
emission at 540 and 600 nm, respectively.

Induction of HO-1 activity by PEG-hemin in sarcoma 180
tumors in mice. Mouse sarcoma S180 cells (2 x 106) were
injected s.c. into the dorsal skin of ddY mice. Approximately $—
10 days later, when tumor diameters measured 7-10 mm, PEG-
hemin (10 mg/kg hemin equivalent), which is a water-soluble
macromolecular HO-1 inducer, was injected iv. After 24 h,
mice were killed; both tumors and normal tissues (liver, muscle)
were removed and weighed, with microsomal fractions of each
tissue obtained by ultracentrifugation to be used for measure-
ment of HO-1 activity, as described previously.**"

Quantification of CO in $180 tumor-bearing mice after PEG-
hemin treatment. The PEG-hemin was administered to ddY
mice bearing S180 solid tumors as described above. Twenty-
four hours later, mice were killed and blood was collected, with
a 0.35-mL aliquot of the blood sample diluted with 3.65 mL of
0.01 M PBS (pH 7.2) and placed in a 10-mL glass test tube on
ice. The blood was then purged with nitrogen gas, after which
the NO donor 3-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-
methyl-1-propanamine {NOC-7; Dojin Chemical, Kumamoto,
Japan) was added to a final concentration of 1 mM. The test tube
was then sealed using paraffin. Under these conditions, exces-
sive NO generated would bind to hemoglobin, so CO would be
released instead. After 2 h incubation at room temperature,
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1 mL of the gas in the test tubes was used for CO quantification

by gas chromatography (TRIlyzer mBA-3000; TATYO"Instru-
ments, Osaka, Japan).

Effect of HO-1 on tumor vascular permeablhty (EPR effect) in
5180 tumor-bearing mice. To induce HO-1 in tumors, S180
tumor-bearing ddY -mice were injected with 10 mg/kg, iv.,
PEG-hemin. After 24 h, 10 mg/kg, i.v., Evans blue was injected.
Then, 24 h after injection of Evans biue the mice were killed,
both the tumors and normal tissues (liver, spleen, and kidney)
were removed, and the amount of extravasated dye in the tumors
and normal tissues was quantified as described previously.”

Measurement of tumor blood flow. A laser Doppler flowme-
ter (ALF21; Advance, Tokyo, Japan) was used to measure blood
flow in tumors and normal tissues (liver and muscle) in
10 mg/kg PEG-hemin-treated and control mice. In each mouse,
the flowmeter probe was inserted into non-necrotic tumor tissues
and blood flow was monitored for 5-10 min until it stabilized.

The effect of CO on tumor blood flow was investigated
using the same method, with the exception that mice received
intratumoral  (i.t.) injections of CORM-2 (25 nmol in
0.05 mL), and real-time changes in tumor blood flow before
and after CORM-2. administration were monitored. Measure-
ments were obtained in anesthetized (sodium pentobarbital)
mice, as described above.

Statistical analysis. All data are expressed  as the mean =+
SEM. The significance of differences was evaluated using
Student’s rtest, with significance set at P < 0.05.

Resuits

Enhanced vascular permeability in normal mouse skin
following HO-1 injection. It was evident that HO-1 induced
dose-dependent increases in vascular permeability in normal
dorsal mouse skin (Fig. 1). However, injection of heat-inacti-
vated (100°C, 5 min) HO-1 had a significantly reduced effect
(Figs 1,2), which suggests that the enzymatic activity of HO-1 is
necessary for it to enhance vascular permeability. Moreover, the
extravasation induced by HO-1 decreased. significantly when
HO-1 was mixed with BSA, a major bilirubin-binding and prob-
ably CO-binding protein in plasma (Fig. 1). The HO-1 inhibitor
ZnPP completed abolished this effect of HO-1 on vascular per-
meability, as assessed using an in vivo imaging system, as
described below (Fig. 2). In addition, ZnPP did not significantly
decrease the vascular permeability triggered by NO (see
Fig. S1); which is considered to occur via the activation of solu-
ble guanylate cyclase (sGC), suggesting the effect of ZnPP on
HO-1 induced vascular permeability, at the concentrations used
in the present study, is due mostly to inhibition of HO-I,
although ZnPP has also been reported to inhibit sGC mdepen-
dent of HO-1.9

More importantly, administration of the CO scavenger hemo-
globin completely abolished the enhanced vascular permeability
produced by HO-1 (Fig. 2). These data suggest that CO has an
essential role in HO-1-induced vascular permeability.

Effect of CO on vascular permeability. To validate the role of
CO in vascular permeability, the CO-releasing agent CORM-2
was used in the same vascular permeability study. As shown in
Figure 3, CORM-2, at picomolar levels, had significant, dose-
dependent effects on vascular permeability. No such effect was
observed when CORM-2 was decomposed by incubation at
room temperature for 24 h to completely liberate CO (Fig. 3).
Moreover, ZnPP had no effect on the CORM-2-derived CO-
induced increase in vascular permeability (Fig. S1).

Induction of HO-1 in tumor tissue by PEG-hemin. We devel-
oped PEG-hemm, a water-soluble pegylated HO-1 inducer, in
our laboratory. GO 1t behaves as a macromolecular micelle with
a molecular mass of 126 kDa, and so may accumulate selec-
tively in solid tumors based on the EPR effect. Accordingly, to
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Fig. 1. Effect of heme oxygenase-1 (HO-1) on vascular permeability of the dorsal skin in normal mice. Recombinant HO-1 protein and other
agents were administered i.d., followed by i.v. injection of Evans blue (10 mg/kg). The dye was allowed to extravasate for 2 h. (a)
Representative image showing the extravasation of blue dye caused by each agent. (b) Quantification of the extravasation of Evans blue from
the skin tissues. Alb, albumin. Data are the mean = SEM (n = 3-4). *P < 0.05, **P < 0.01.

(a) (b)%57
30 4
B HO-1 (40 ug) + £ %5
o &l Z0PP (0.25 nmoi) z
(saline) 2
8 209
¥ HO-1 40 4g) + E
Inactivated Hb (100 pg) 8
HO-1 (40 pg) § 151
3
HO-1 (40 g) + §
[

Hemin (1 nmol)

o

04 {
Saline -~ ZnPP Hb Hemin Inactivated
{eontrol) ————————— HO-1

+ HO-1

Fig. 2. Vascular permeability induced by heme oxygenase-1 (HO-1) and its inhibition in normal mice, as evaluated using an in vivo imaging
system. The HO-1 protein, with or without its inhibitor zinc protoporphyrin-1X (ZnPP) or the carbon monoxide scavenger hemoglobin (Hb), was
administered i.d., followed by i.v. injection of the macromolecular fluorescent dye rhodamine-conjugated bovine albumin (5 mg/kg rhodamine
equivalent). The dye was allowed to extravasate for 1 h. (a) Representative image showing authentic HO-1-induced vascular permeability.

(b) Quantification of data. Data are the mean £ SEM (n = 3-4). *P < 0.05, **P < 0.01.

investigate the role of HO-1 in the permeability of the tumor
vasculature, we used PEG-hemin to induce HO-1 in S180 solid
tumors. As expected, HO-1 activity in tumor tissues was
increased significantly after PEG-hemin treatment (Fig. 4a).

We further confirmed this finding by measuring CO
concentrations in the circulation, because we have found that
circulating levels of CO are positively related to tumor growth
and HO-1 activity in tumors (Jun Fang, Takaaki Akaike, Chiho
Taruki, Tomohiro Sawa, Hiroshi Maeda, unpublished observa-
tion, 2004). As expected, circulating levels of CO increased
significantly after PEG-hemin treatment, which paralleled the
increase in HO-1 activity (Fig. 4b).

Moreover, increases in HO activity were not found in normal
tissue (e.g. muscle) following injection of PEG-hemin (Fig. 4c).
It is known that many macromolecules accumulate in high levels
in the liver, primarily through the reticuloendothelial system,
and pegylation is widely used to avoid the capturing of macro-
molecules by the reticuloendothelial clearance system.®> Thus,
in the present study we measured the body distribution of PEG-
hemin in S180 tumor-bearing mice; high accumulation of PEG-
hemin was observed in tumors and the liver (Fig. S2). However,

Fang et al.

only non-significant increases in HO activity were observed in
the liver after PEG-hemin administration (Fig. 4d). This may be
probably due to the endogenous presence of a high HO content
in the liver and spleen, which are the major organs for heme
catabolism.

Involvement of HO-1 in enhanced vascular permeability in
$180 solid tumors. As shown in Figure 5, pretreatment with
PEG-hemin, injected i.v., produced significantly greater extrava-
sation of the Evans blue—albumin complex in tumor tissue, but
not in normal tissues. This provides clear evidence that the EPR
effect was enhanced in the tumor tissue by PEG-hemin.

Effect of HO-1 and CO on tumor blood flow. We hypothe-
sized that HO-1, in addition to augmenting tumor vascular
permeability (the EPR effect) as described above, may also
improve tumor blood flow, because CO has a vasodilator
effect similar to that of NO.®” Thus, we measured blood
flow in S180 solid tumors with and without HO-1 induction
by PEG-hemin. As anticipated, tumor blood flow increased
significantly, by four- to fivefold, 24 h after i.v. injection of
PEG-hemin compared with untreated controls (Fig. 6a). This
treatment had no effect on the blood flow of normal tissues
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(i.e. liver and muscle; data not shown). Furthermore, when
CORM-2 was injected directly into tumors, tumor blood flow
increased gradually for approximately 2 h, at which time it
had increased 1.5-2-fold of levels seen before CORM-2
injection (Fig. 6b).

Discussion

Targeted drug delivery is the key for successful anticancer
treatment. In contrast, the use of conventional anticancer
drugs results in severe adverse side effects, which prevents
the use of higher doses. Consequently, the therapeutic effects
of conventional low molecular weight anticancer drugs are
limited.

Because of these problems, so-called molecular target therapy
has recently come into focus. This type of therapy is designed to
target specific receptors or kinases associated with tumor
growth, progression, invasion, and metastasis. However, one
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was also determined. Data are the mean + SEM (n =4). *P < 0.05,

problem with molecular target therapy is related to the genetic
diversity of human solid tumors, in which target molecules may
have mutated.®***> Another possible problem is that multiple
genes may be involved in sophisticated networks that have mul-
tiple backup systems for the molecular pathways that are vital
for tumor cells. Thus, molecular target therapy, although highly
specific for targets, seems to be an approach that would not be
able to destroy most, or all, tumor cells.

The discovery of the EPR effect was a considerable break-
through, leading to a more universal tumor-targeting mechanism
at the tissue or vascular level. That is, EPR effect-based target-
ing depends on the unique anatomic and pathophysiologic fea-
tures of tumor vessels, which are common to most solid tumors.
Thus, EPR effect-based tumor targeting has wider applicability
and it is now becoming an increasingly promising paradigm for
anticancer drug development.'®3¢37

We have been seeking to augment the EPR effect even more
by using specific features involved in the effect. One example of
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our success was the application of Angll-induced hypertension,
which induced a two- to threefold augmentation of the EPR
effect without having any effect on the distribution of drug in
normal tissues,“("m‘%ﬁg) Another new approach was recently
developed with the NO-releasing agent NTG.“” In hypoxic
tumor tissue, NTG is selectively converted to nitrite (NO7),
which is then converted to NO in the tumor. This event is analo-
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gous to the hypoxic conditions in angina pectoris.*” Nitric
oxide generated from NTG then increases the delivery of macro-
molecular drugs to the tumor by two- to threefold, resulting in
an improved anticancer effect.*”

In addition, CO has been reported as an important endoge-
nous signaling molecule with various biological functions that
include regulation of vascular tonus, being involved in antia-
poptosis, having anti-inflammatory effects, and inducing angio-
genesis."*? Regarding the effect of CO on vasoregulation,
most data support a prodilatory role for CO; however, vasocon-
strictor effects of CO have also been reported via inhibition of
NO synthesis to antagonize NO-dependent vasodilation®" or
via the induction of a more oxidative stage of the vasculature
by CO.“? These results suggest the complexity of CO-induced
vasoregulation: CO is not necessarily a vasorelaxant and may
exhibit an opposite effect depending on the milien. Notwith-
standing, we clearly found that CO increased vascular perme-
ability and blood flow in the present study, suggesting a
vasodilatory role for CO in the experimental setting in the
present study.

The major source (i.e. >80%) of CO in biological systems
is HO-catalysed heme degradation.*” In the present study,
we found that HO-1 induced an increase in tumor blood flow
(Fig. 6a), which was probably the consequence of the vasore-
laxant effect of significantly increased CO levels from HO-1
induced by PEG-hemin, This is supported by the finding that
direct injection of CORM-2 into tumors significantly
increased tumor blood flow (Fig. 6b). In addition, although
circulating levels of CO increased after PEG-hemin treat-
ment, accompanying the increase in HO activity (CO produc-
tion) in tumors (Fig. 4b), there was no change in vascular
permeability (Fig. 5) and blood flow (data not shown) in nor-
mal tissues and organs. This is probably because of the cap-
ture of CO by hemoglobin and the autoregulatory function
(homeostasis) of normal blood vessels to maintain blood
volume.

Furthermore, CO was recently reported to induce VEGF
expression via p38 kinase-dependent activation of specificity
protein 1 (SP1) transcriptional factor,*”) which thus induces
angiogenesis. It is known that VEGF is an important vascular
permeability  factor,®!%**9  probably via  activation of
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Fig. 6. Changes in tumor blood flow after (a) pegylated hemin (PEG-hemin) and (b) CORM-2 treatment of tumor-bearing mice (control mice

were untreated). Mice were injected

with either PEG-hemin (10 mgskg, iv.) or the indicated concentrations of CORM-2 (intratumoral) and

tumor blood flow was measured using a laser Doppler flowmeter. Data are the mean = SEM (n = 4). *P < 0.05.
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endothelial NO synthase to generate NO.®” We thus believe
that VEGF may also be involved in the enhanced vascular
permeability induced by HO-1 and CO.

Regarding the vascular pathophysiology of tumors, it
should be noted that the role of HO-1 is not always same
as that of CO and will vary depending on the cell context
and tumor microenvironment.“**” For example, although
many studies have reported a proangiogenetic effect of
HO-1,%4*  Ferrando er al."?  described an  inhibitory
effect of HO-1 on angiogenesis in prostate cancer. The
mechanism underlying the proangiogenic effect of HO-1
under pathological conditions is not clear and, in tumors,
may depend on the type of tumor or other undefined factors.
However, in the present study we focused our efforts on
clarifying the role of the HO-1 product (CO) in increasing
tumor vascular permeability, and not on the effect of HO-1
per se on angiogenesis, which involves many pathophysio-
logic effectors.

In the present study, PEG-hemin induced the expression of
HO-1 in tumor cells by accumulating in tumor tissues, which
subsequently induced the generation of CO, resulting in
increased tumor vascular permeability and blood flow (Fig. 5).
On the basis of these findings, we should be able to improve
drug delivery to tumors.
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In conclusion, in the present study we found that CO is an
important mediator of the EPR effect. The CO-releasing agent
CORM-2 alone and selective induction of HO-1 expression in
tumor by PEG-hemin administered i.v. both significantly
improved tumor blood flow and extravasation of macromole-
cules into the tumor by enhancing the EPR effect. Thus, drug
delivery based on the EPR effect was augmented. Because of
HO induction, and hence CO generation, PEG-hemin used in
combination with chemotherapeutic drugs (especially macromo-
lecular drugs) may hold promise as a new anticancer therapy
and warrants further investigation.
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Abstract

Chronic granulomatous disease (CGD) causes impaired hydrogen peroxide (H,0O,) generation. Consequently, neutrophils in
patients with CGD fail to kill infecting pathogens. We expected that supplementation with H,0, would effectively restore
the bactericidal function of neutrophils in CGD. Here, we used polyethylene glycol-conjugated p-amino acid oxidase (PEG-
DAQ) as an H,0, source. The enzyme pao generates HyO, by using p-amino acid and oxygen as substrates. PEG-DAO plus
p-amino acid indeed exerted bacteriostatic activity against Staphylococcus aureus via H,0, in vitro. Furthermore, use of
PEG-DAO plus p-amino acids, which increased the amount of intracellular Hy0,, restored bactericidal activity of
neutrophils treated with diphenylene iodonium, in which nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
was defective. This restoration of bactericidal activity was mediated by myeloperoxidase, with concomitant production of
H,0, by PEG-DAO plus p-Ala. We also confirmed that PEG-DAO treatment restored bactericidal activity of congenitally
defective neutrophils from patients with CGD. These results indicate that PEG-DAO can supply additional H,O, for
defective NADPH oxidase of neutrophils from patients with CGD, and thus neutrophils regain bactericidal activity.

Keywords: PEG-DAO, chronic granulomatous disease, hydrogen peroxide, H,0, supplementation therapy
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accumulation in inflamed sites, as a result of the enhanced
permeability and retention (EPR) effect.*® Our previous
report showed that PEG-DAO exhibited selective cytotox-
icity against various cancer cells via production of H,O,
in vivo and in vitro.%”

We therefore anticipated that PEG-DAO would function
as an alternative supplier of H,O, for neutrophils in patients

Introduction

Chronic granulomatous disease (CGD) is a genetic disorder
characterized by chronic and recurrent pyogenic infections.
Patients with CGD have a defect in nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase that results in dys-
functional production of hydrogen peroxide (H,05)."* H,0,

plays a pivotal role in the antibacterial function of neutrophils,
mediated by myeloperoxidase (MPO), so the impaired H,O,
production means failure of bactericidal activity against
pathogenic organisms such as Staphylococcus aureus.>

D-Amino acid oxidase (DAO) is an enzyme containing
flavin adenine dinucleotide (FAD).* The biochemical func-
tion of DAO involves oxidative deamination of p-amino
acids, which yields the corresponding a-keto acids, a
process in which molecular oxygen is used as an electron
acceptor and H;O, is generated.5

We previously prepared polyethylene glycol (PEG)-
conjugated DAO (PEG-DAQO), with comparable enzyme
activity to native DAO.*” More importantly, PEG-DAO
had a longer circulation time in the blood, and preferential

ISSN: 1535-3702
Copyright © 2012 by the Society for Experimental Biology and Medicine

with CGD. In this study, we therefore investigated the effect
of PEG-DAO on bactericidal activity of neutrophils from
mice in which NADPH oxidase was inhibited, and from a
patient with CGD, and analyzed the mechanism of bacteri-
cidal activity, in addition to investigating MPO-inhibited
neutrophils.

Materials and methods

Materials

S. aureus strain ATCC25923 was used in these studies. ICR
mice were purchased from Japan SLC, Inc., Shizuoka,

Experimental Biology and Medicine 2012; 00: 1-6
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Japan. Trypticase soy (SCD) broth was purchased from
Nissui Seiyaku Co., Tokyo, Japan. Flavin adenine dinucleo-
tide was purchased from Sigma-Aldrich Chemical Co. (St
Louis, MO, USA). Trypticase soy agar, isopropyl-B-p-
thiogalactopyranoside, carbenicillin, Tween-20, ammonium
sulfate, casein sodium salt and other reagents were from
Wako Pure Chemical Industries, Ltd, Osaka, Japan. 4-
aminobenzoic acid hydrazide (4-ABH) was from Merck
KGaA, Frankfurt, Germany. Diphenylene iodonium (DPI)
was purchased from Tokyo Chemical Industry Co., Ltd,
Tokyo, Japan. Succinimide-activated PEG (MEC-50HS),
with an average molecular size of Mr 5000, was purchased
from Nippon Oil & Fat Co. (Tokyo, Japan).

Preparation of PEG-DAO

Recombinant porcine DAO was prepared as described pre-
viously.” Briefly, Escherichia coli BL21 (DE3) bacteria harbor-
ing the pET3c plasmid encoding porcine DAO were
cultured in LB medium containing 50 ug/mL carbenicillin,
and porcine DAO expression was achieved by adding
10 pmol/L  isopropyl-B-p-thiogalactopyranoside to the
medium with E. coli. After culture of the bacteria at 37°C
for 20 h, bacterial pellets were sonicated (150 W, 30 min) in
17 mmol/L pyrophosphate buffer (pH 8.2) at 59°C, and
porcine DAO was obtained by heat denaturation at 59°C
for three minutes, followed by ammonium sulfate precipi-
tation at 35% saturation, and then diethylaminoethyl cellu-
lose column chromatography (L =10cm x ¢ = 1.6 cm).
The purity of DAO (>90%) was determined by using
sodium dodecylsulfate polyacrylamide gel electrophoresis
after staining with Coomassie brilliant blue. Pegylation of
DAO was conducted as described previously.® In brief, to
the DAO solution (2.0 mg/mL protein in 50 mmol/L
sodium phosphate buffer, pH 7.4), succinimide-activated
PEG was added at a 3.5 mol/L excess of PEG/mol of free
amino groups in DAO and was allowed to react for one
hour at 4°C. The reaction mixture containing PEG-DAO
thus obtained was then purified to remove free PEG and
other low-molecular-weight reactants by ultrafiltration
with the YM-10 membrane (millipore) using 10 times the
volume of 10 mmol/L phosphate-buffered saline (PBS).
PEG-DAO was stored in PBS containing 0.1 mmol/L FAD
at 4°C. Approximately 30% of amino group on DAO was
reacted with PEG.

Bacteriostatic assay

S. aureus bacteria were cultured until the mid-log phase of
growth in SCD broth with reciprocal shaking at 37°C.
S. aureus bacteria were washed twice in saline and 1 x
10° CFU/mL of S. aureus were incubated with various con-
centrations of PEG-DAQO, p-Ala, and with or without cata-
lase in SCD broth at 37°C for five hours. The relative total
numbers of bacteria were measured at turbidity at 570 nm
and were correlated with the numbers of viable bacteria.

Preparation of neutrophils

Peritoneal neutrophils were elicited in 10-week-old female
ICR mice by intraperitoneal injection of 3 mL per mouse of
6% casein sodium salt dissolved in physiological saline. At
six hours after injection, neutrophils were harvested via per-
itoneal lavage with 5mL of PBS, pH 7.4. Contaminating
erythrocytes were removed by incubating in hypotonic
saline solution (0.2% NaCl) for 30 s to cause erythrocytes to
burst, after which isotonicity was restored via a rebalancing
solution (1.9% NaCl) followed by centrifugation.
Approximately 1 x 10° neutrophils were obtained from
10-week-old female ICR mice. The purity of the neutrophils
(>90%) was checked by using Giemsa staining and examin-
ation of cell morphology with a conventional microscope
(ECLIPSE TS100, Nikon). Human peripheral neutrophil was
collected from a patient with CGD and a healthy volunteer
using polymorphprep™ (Cosmo Bio) according to the
manufacturer’s instruction. Briefly, 5mL of human blood
sample was carefully layered on the top of 5mL of
Polymorphprep™, followed by centrifugation with a swing-
out rotor for 30 min at 450 x g. The neutrophil fraction was
collected and mixed with 0.45% NaCl, and then centrifuged
for 10 min at 400 x g. Neutrophil pellets were then resus-
pended in PBS (—) and used for further experiments.

Bactericidal activity of neutrophils and preparation of
CGDneutrophil mimics

Mouse peritoneal neutrophils were preincubated with
10 DPI or 10 umol/L 4-ABH at 37°C for 15 min. S. aureus,
which were cultured in SCD broth until the mid-log phase
growth, were treated with 10% pooled mouse serum for
effective neutrophilic endocytosis of S. aureus. Bacteria
were added to neutrophils at the bacteria-to-neutrophil
ratio of 10:1 (1 x 10° neutrophils/mL), and incubation pro-
ceeded at 37°C with reciprocal shaking at 0.5 Hz. After
30min of incubation, non-phagocytosed bacteria were
removed by swing-out centrifugation (at 110 x g, 4 min)
and neutrophils were washed three times with PBS (+) con-
taining 10 umol/L DPI. Phagocytosed bacteria were precipi-
tated with neutrophils, but non-phagocytosed bacteria were
retained in the supernatant. Neutrophils that ingested the
bacteria were incubated, at 37°C for 30 min with shaking,
with increasing concentrations of PEG-DAO (10, 50 and
100 mU/mL) in the presence of 10 mmol/L p-Ala and PBS
(+) containing 10 umol/L DPI. Samples were diluted with
0.2% Tween-20, incubated at room temperature for five
minutes to release phagocytosed bacteria, and vortexed vig-
orously, after which duplicate 100-uL aliquots were plated
on 15mL plates of SCD agar gel followed by overnight
culture at 37°C. The numbers of viable bacteria were
counted as described above.

Resulis
Bacteriostatic activity of PEG-DAO

We first examined the bacteriostatic activity of PEG-DAO
against S. aureus. In the presence of 10 mmol/L Dp-Ala,




