capecitabine is thought to depend upon the dThdPase activity of cells in tumor tissue, and a positive relationship between their antitumor effect and dThdPase activity has recently been reported [7]. Therefore, presumably, dThdPase values measured in human tumors can be utilized to optimize the efficacy of patients' treatment with 5'-dFUrd and capecitabine. To investigate that possibility, there have been many reports demonstrating dThdPase activity; however, dThdPase activity is dependent on the kind of gynecological cancer.

Analysis of dThdPase levels by high performance liquid chromatography (HPLC) has demonstrated that primary tumor tissues have higher dThdPase activity than adjacent normal tissue of the same organ [2,5,8-13]. Consequently, 5'-dFUrd is preferentially converted to 5-FU in primary tumor tissues after its administration [13]. Among gynecological tumors, however, the relationship between dThdPase activity in the tissues of uterine cervical, uterine endometrial, and ovarian cancers compared with those of adjacent normal tissues has not yet been established. In addition, there have been few reports on the histological localization of dThdPase in gynecological carcinoma tissues. Nevertheless, a report on immunohistochemical staining of uterine cervical carcinoma identified a correlation between survival and immunohistochemical localization of dThdPase [14]. The purpose of the present study is to clarify the relationship between the measured dThdPase activity and its immunohistochemical staining in gynecological cancers.

Material and Methods

Patients and samples

Between January 1993 and March 1994, 58 patients from 6 hospitals were enrolled into the present study (15 patients from Kinki University, Osaka; 13 patients from Hyogo Medical Center For Adults, Hyogo; 11 patients from Kurume University, Fukuoka; 9 patients from Jikei University, School of Medicine, Tokyo; 7 patients from Tohoku University, Miyagi; and 3 patients from Tokyo Metropolitan Komagome Hospital, Tokyo, Japan). The investigation was approved by the ethics review committees of all institutions, and all enrolled patients gave their informed consent that their tumor tissue, adjacent normal tissue, and lymph nodes could be used for analysis of dThdPase activity and immunohistochemical and histological examination. All specimens, which consisted of approximately lxlxl-cm samples of primary tumor tissue, adjacent normal tissue, and lymph nodes, were surgically resected and examined by the pathologists at the Department of Pathology, Jikei University School of Medicine. This pathology committee diagnosed histologically malignant tissue involvement in 45 of 58 patients, including 13 patients with uterine cervical carcinoma, 20 with endometrial carcinoma, and 12 with ovarian carcinoma. Histopathological diagnosis was carried out for both the tumor and adjacent normal tissues. Tissue from these 45 patients with malignancy were used for further analysis of dThdPase activity and immunohistochemical assay in the present study.

Reagents

5-FU was purchased from Kyowa Hakko Kogyo (Tokyo, Japan), and 5'-dFUrd was synthesized at F. Hoffmann-La Roche (Basel, Switzerland). Anti-dThdPase monoclonal antibody (mAb) 654-1 was provided by Nippon Roche Research Center (Kamakura, Japan). Antimacrophage-CD68 mAb Kp-1 and anti-macrophage-CD68 mAb PG-M1 were purchased from DAKO Co. Ltd. (Glostrup, Denmark) and

Vectastain Elite ABC Kit was purchased from Vector Laboratories, Inc. (Burlingame, CA, USA). Diaminobenzidine was purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan).

Assay of thymidine phosphorylase activity

Tissues were homogenized in 10 mM Tris-HCl buffer (pH 7.4) containing 15 mM NaCl, 1.5 mM MgCl, and 50 mM potassium phosphate. This solution was centrifuged at $105,000 \times g$ for 90 min. The supernatant was dialyzed overnight against 20 mM potassium phosphate buffer (pH 7.4) containing 1 mM mercaptoethanol, and then used as a source of crude dThdPase. The protein concentration was determined by the method of Lowry et al. [15]. All procedures were carried out at 4°C. The reaction mixture (120 µ1) for the enzyme activity assay contained 183 mM potassium phosphate buffer (pH 7.4), 10 mM 5'-dFUrd, and the crude enzyme from human tissue. The reaction was carried out at 37°C for 60 min and then terminated by adding 360 µl methanol. The precipitate was removed by centrifugation, and 100 μl supernatant was mixed with 20 μM 5-chlorouracil as the internal standard and applied to a HPLC column (ERC-ODS-1171). The 5-FU was eluted with 50 mM sodium phosphate buffer (pH 6.8) containing 5 mM 1-decanesulfonic acid:methanol (85:15, v/v) and measured with a UV monitor at 280 nm.

Immunohistochemistry

Tissues taken from the primary tumor lesion, adjacent normal tissue, and lymph nodes were used. Tumors included cancers of the uterine cervix, uterine endometrium, and ovary. Tissues were fixed with 10% formalin in saline for 24 to 72 h, dehydrated, and embedded in paraffin. Sections were cut at 4-µm thickness, placed on slides, deparaffinized in xylene, rehydrated, stained immunohistochemically by using an avidin-biotin conjugate (ABC) system with diaminobenzidine/ hydrogen peroxide as substrate, and counterstained with hematoxylin [16]. Slides were cleared and coverslipped for microscopic examination at 200× magnification. The sections were also incubated with primary mAbs [17] at dilutions of 1:4000 for anti-dThdPase, 1:200 for antimacrophage-CD68 clone Kp-1, and 1:1000 for anti-macrophage-CD68 clone PG-M1, which gave optimal intensity of specific staining with minimal nonspecific background reactivity [18]. The secondary or linking antibody was a biotinylated horse anti-mouse immunoglobulin (Vector Laboratories, Inc., Burlingame, CA). Immunohistochemical intensity was classified into four grades: (-), negative staining; (±), less than 10% positive cells; (+), from more than 10% to less than 50% positive cells; and (++), more than 50% positive cells. Both + and ++ staining were defined as positive, and both ± and - staining were defined as negative.

Statistical analysis

One and two-sample Wilcoxon tests were performed to detect differences in dThdPase activity between tumor and adjacent normal tissues. Logistic regressions were performed to detect correlations to dThdPase activity by factoring in the number of stained cells per field in addition to the intensity of immunohistochemical staining with anti-dThdPase mAb. All calculations were performed using Windows/SAS 6.12.

Results

dThdPase activity in gynecological tumor and normal tissues

Tumor samples obtained from the 45 patients enrolled in this study were analyzed for dThdPase activity, immunohistochemical staining, and histology for diagnosis of the tumor type. Additionally, 35 samples

Citation: Kotake Y. Sasaki T. Sasaki H, Akiyama M, Ochiai K, et al. (2011) Use of Localization and Activity of Thymidine Phosphorylase in Human Gynecological Tumors for Predicting Sensitivity to Pyrimidine Antimetabolite Therapy: An Observational Study. J Cytol Histol 2:121. doi:10.4172/2157-7099.1000121

Page 3 of 6

of normal tissue adjacent to the tumor were also analyzed for dThdPase activity. As shown in Table 1, dThdPase activity in tumor tissue was significantly higher than that in adjacent normal tissue in the 12 cases

of uterine cervical cancer (P = 0.001, P = 0.0002, Wilcoxon one- and two-sample tests, respectively), 19 cases of endometrial carcinoma (P = 0.0001, P = 0.0001), and 4 cases of ovarian cancer (P = 0.125, P = 0.025)

		dThdPase activ	ty ^{a)}	Immunohistoch	emistry ^{b)}	Histopathological	
	Case	Tumor	Normal	Epithelial	Stromal	diagnosis ^{c)}	
Organ	No.	tissue	tissue	cells	cells		
Jterine cervix	1	7.0	7.5		+	EC Ad Ca, HD	
	2	172.5	NOS ^{d)}	-	++	EC Ad Ca, PUD	
	3	180.0	6.7	++	+	Sq Ca	
	4	236.0	11.0	±	++	Sq Ca	
	5	241.0	14.2	++	++	Sq Ca	
	6	243.0	7.1	++		Sq Ca	
	7	260.6	168.2	++	+	Sq Ca	
	8	341.5	1.8	++	+	Sq Ca	
	9	343.0	31.0	+	+	Sq Ca	
	10	344.5	9.4	+	+	Sq Ca	
	11	410.5	17.7	+	±	EC Ad Ca, PUD	
	12	572.3	26.6	++	++	Sq Ca	
	13	602.5	13.4	++	++	Sq Ca	
Endometrium	1	15.1	43.9	-	+	EM Ad Ca	
	2	20.6	28.0	-	÷	EM Ad Ca	
	3	41.5	6.2	¥	+	EM Ad Ca	
	4	50.8	8.4	+	++	EM Ad Ca	
	5	56.8	7.5	±	±	EM Ad Ca	
	6	70.0	1.3		+	EM Ad Ca	
	7	81.6	11.1		+	EM Ad Ca	
	8	81.8	8.3	*	++	Serous Ca	
	9	111.2	73.2	+	++	EM Ad Ca	
	10	117.6	9.2	+	++	EM Ad Ca	
	11	120.0	NOS	+	+	EM Ad Ca	
	12	129.0	6.5	+	++	EM Ad Ca	
	13	135.0	5.1		++	EM Ad Ca	
	14	161.4	8.3	+	++	EM Ad Ca	
	15	187.0	24.4	+	++	EM Ad Ca	
	16	192.5	59.5	+	+	EM Ad Ca	
	17	200.0	10.6	++	++	EM Ad Ca	
	18	203.0	18.7	+	+	EM Ad Ca	
	19	229.0	28.6	+	++	Clear cell Ca	
	20	339.0	12.4	+	++	Serous Ca	
Ovary	1	11.5	NOS	-	+	Mucinous Ca	
	2	12.3	NOS		+	Endomet Ca	
	3	21.3	NOS	+	+	Clear cell Ca	
	4	42.5	11.6	+	-	Mucinous Ca	
	5	48.0	NOS	-	++	Serous cyst Ca	
	6	61.7	0.0	+	++	Mixed epithel Ca	
	7	73.0	NOS	+	+	Clear cell Ca	
	8	75.0	NOS	++	+	Clear cell Ca	
	9	101.0	14.8	+	14	Clear cell Ca	
	10	143.0	NOS	NOS	NOS	Serous cyst Ca	
	11	238.4	NOS	*	++	Serous cyst Ca	
	12	12852.5	19.3	++	++	Serous cyst Ca	

a) dThdPase activity is expressed as µg FU produced per mg protein per hour.

Table 1: Activity of a pyrimidine nucleoside phosphorylase, dThdPase, immunohistochemistry in gynecological tumors and adjacent normal tissue.

b) Immunohistochemistry is scored by the number of cells showing positive staining for anti-dThdPase mAb:
(-), negative staining; (±), weak and less than 10% positive cells; (+), 10% to 50% positive cells; (++), more than 50% positive cells.
c) EC Ad Ca, endocervical adenocarcinoma; HD, highly differentiated; EMOD, endometrioid carcinoma; PUD, poorly differentiated adenocarcinoma; Sq Ca, squamous cell carcinoma; EM Ad Ca, endometrial adenocarcinoma; Serous Ca, serous adenocarcinoma; Serous cyst Ca, serous cyst adenocarcinoma; Endomet Ca, endometrial adenocarcinoma; Clear cell Ca, clear cell carcinoma; Mucinous Ca, mucinous cyst adenocarcinoma; Mixed epithel Ca; mixed epithelial adenocarcinoma.

NOS, no specimen

for which normal tissue was available.

Immunohistochemistry with anti-dThdPase, anti-macrophage-CD68 clone Kp-1, and anti-macrophage-CD68 clone PG-M1 mAbs

We observed positive dThdPase immunostaining of epithelial cells in 76.9% of cervical tumors of the uterus (10/13 samples), 60.0% of endometrial tumors (12/20 samples), and 63.6% of ovarian tumors (7/11 samples), for a mean rate of 66.8% of gynecological cancers demonstrating dThdPase immunopositivity in epithelial cells. Interestingly, in stromal tissue, 84.6% of uterine cervical tumors (11/13), 90.0% of endometrial tumors (18/20), and 81.8% of ovarian tumors (9/11) were immunopositive for anti-dThdPase in interstitial cells (mainly macrophages). In immunohistochemical staining of normal epithelium and stromal tissue, weak reactivity to dThdPase was observed only in the nuclei of basal cells and the cytoplasm of superficial cells. In contrast, in the epithelium of uterine cervical carcinoma, immunoreactivity was present in both the primary carcinoma cells themselves and in the interstitial cells. In squamous cell carcinoma samples, both nuclei and cytoplasm were immunoreactive. The nucleus was stained in superficial carcinoma cells, while cytoplasmic staining was observed in both invasive and parabasal-layer cells (Figure 1). Cytoplasmic staining was often seen in the well-differentiated squamous cell carcinoma. In endocervical adenocarcinoma of the uterus, the highly differentiated type showed cytoplasmic staining of interstitial cells only (data not shown). In endometrial carcinoma, epithelial cells stained weakly with anti-dThdPase mAb (Figure 2). However, the staining was more intense in stromal cells than in epithelial tumor cells. Antimacrophage staining with CD68 and Kp-1 mAbs showed that anti-dThdPase staining in stromal cells was localized mainly to macrophages. In ovarian carcinoma, both serous and mucinous

adenocarcinomas showed negative staining of epithelial tumor cells with anti-dThdPase mAb; however, the staining was positive for epithelial cells of clear cell adenocarcinoma (Figure 1). Some of the interstitial cells surrounding carcinoma cells showed stronger staining than the carcinoma cells themselves. Morphologically, the interstitial cells stained with anti-dThdPase mAb appeared to be macrophages or histiocytes in all tumors (Figure 1). They were also immunopositive for anti-macrophage mAb PG-M1 and/or anti-CD68 mAb Kp-1 in endometrial carcinoma, as shown in Figure 2. In the lymph nodes, premature lymphocytes, macrophages, and histiocytes showed strong positive staining, but the lymphocytes themselves were not immunopositive (data not shown).

Correlation between dThdPase activity and intensity of immunohistochemical staining

Table 2 shows the results of logistic regression analysis of dThdPase activity and the intensity of immunohistochemical staining with anti-dThdPase mAb. A significant correlation was only observed in endometrial carconoma, but not in uterine cervical and ovarian carcinoma.

Discussion

Increased levels of dThdPase have been reported in many malignant tumors [5,9,12]. Although there have been a several reports that investigated the dThdPase activity in cervical, endometrial and ovarian carcinoma [19-21], it remains to be determined. In this study of gynecological malignant tumors, we found that uterine cervical, endometrial, and ovarian carcinoma also demonstrated higher dThdPase activity than adjacent normal tissue. Several studies of dThdPase expression in cancer have been performed, because this enzyme is thought to activate pyrimidine antimetabolites [6,22]; however, only

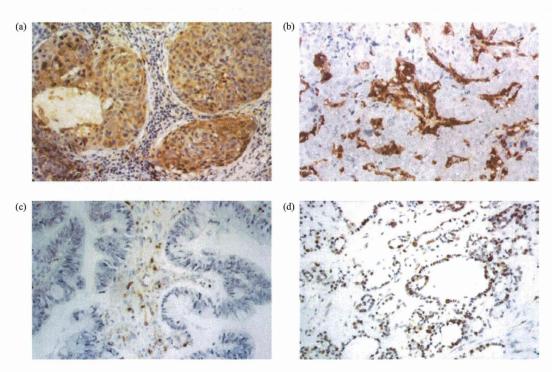
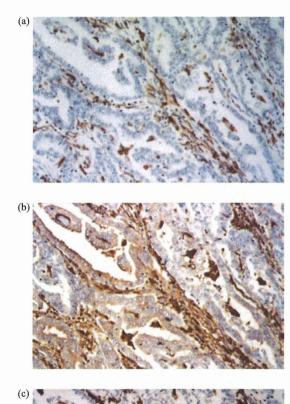



Figure 1: Immunohistochemical staining of squamous cell carcinoma with an anti-dThdPase mAb. (a) Uterine cervical carcinoma, (b) a serous papillary carcinoma of the ovary, (c) a mucinous adenocarcinoma of the ovary, and (d) a clear cell adenocarcinoma of the ovary.

a few reports have demonstrated the localization of dThdPase in tumor tissues [14,23,24]. In the present study, immunohistochemical staining with anti-dThdPase mAb revealed that dThdPase was strongly localized to epithelial tumor cells in squamous cell carcinoma of the uterine cervix. In endometrial carcinoma, dThdPase was found to be localized to epithelial tumor cells and, in stromal cells, mainly to macrophages. Serous and mucinous adenocarcinomas, both histologically serous types of ovarian cancer, showed no staining of carcinoma cells themselves. In contrast, in clear cell adenocarcinoma of the ovary, which constitutes less than 20% of ovarian cancer cases, dThdPase was localized to epithelial cells. Therefore, the relatively low dThdPase activity of ovarian cancer may be related to the absence of immunoreactivity in carcinoma cells.

Recently, some investigators have suggested that stromal dThdPase status may be a prognostic factor for survival [14,25,26], and some basic and clinical reports on dThdPase indicate that it is a predictive factor

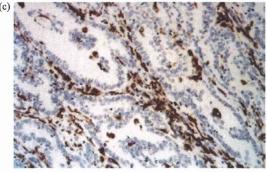


Figure 2: Immunohistochemical staining of an endometrial adenocarcinoma by the indirect method with ABC. (a) With anti-macrophage (PG-M1) mAb, (b) with anti-dThdPase mAb, and (c) with anti-CD68(Kp-1)mAb.

	P-value	Epithelial cells Odds ratio	(95% CI)	P-value	Stromal cells Odds ratio	(95% CI)
Uterine cervix	0.077	1.009	(0.999-1.019)	0.432	1.003	(0.996-1.010)
Endometrium	0.008	1.023	(1.006-1.041)	0.039	1.017	(1.001-1.034)
Ovary	0.185	1.005	(0.997-1.014)	0.308	1.011	(0.990-1.033)

Table 2: Results of logistic regression of dThdPase activity and intensity of immunohistochemical staining with anti-dThdPase mAb.

for 5'-dFUrd and capecitabine in the treatment of several carcinomas [25,27]. The results of logistic regression analyses of dThdPase activity and immunohistochemical staining intensity with antidThdPase mAb in the present study illustrate that dThdPase activity was well correlated with the intensity of staining in the epithelium in endometrial carcinoma and borderline in cervivcal carcinoma, but not with staining of stromal cells in cervical and ovarian carcinoma. Our resolution power was not sufficient to detect a correlation between dThdPase activity and stromal staining intensity. These results suggest that dThdPase activity reflects the intensity of immunohistochemical staining of epithelial tumor cells, as shown by their correlation, in endometrial carcinoma. The total immunohistochemical intensities did not significantly correlate with their enzymatic activities because of the lack of correlation between stromal cells and immunochemical staining in cervical carcinoma, and between both stromal and epithelial cells and immunochemical staining in ovarian carcinoma. Only a few reports that showed the good correlation between dThdPase activity and immunochemical staining in gynecologic cancer have been published [28,29], and it should be confirmed in other studies. In case of cervical carcinoma, since almost all squamous cell carcinomas showed very high dThdPase activity, the statistical correlation may have been obscured. The statistical correlation between dThdPase activity and intensity if immunohistochemistry was proven only for endometrial carcinomas, and that of uterine cervix was borderline. For ovarian carcinoma, data are sparse. dThdPase gene expression was proven to be significantly high in ovarian carcinoma [29] as shown in our study. Although good dThdPase activity and immunochemical staining were well correlated besed on the past reports [19], our study did not show the correlation. The number of cases may have been too small for sufficient statistical power.

Conclusion

We investigated the correlation between dThdPase activity and immunohistochemical staining in gynecological carcinoma and adjacent normal tissues. Our hypothesis is that the differential dThdPase activity between tumors and adjacent tissue will be predictive of response to treatment with pyrimidine antimetabolites. We show that gynecological carcinomas show increased dThdPase activity, and this activity correlates with dThdPase staining of tumor epithelial cells. Thus, dThdPase staining of biopsy specimens might be useful in predicting the outcome of therapy with pyrimidine metabolites.

Competing Interests

The authors declare that they have no competing interests.

References

 Cook AF, Holman MJ, Kramer MJ, Trown PW (1979) Fluorinated pyrimidine nucleosides. 3. Synthesis and antitumor activity of a series of 5'-deoxy-5-fluoro pyrimidine nucleosides. J Med Chem 22: 1330-1335.

- 2. Ishitsuka H. Miwa M. Takemoto K. Fukuoka K. Itoga A. et al. (1980) Role of uridine phosphorylase for antitumor activity of 5'-deoxy-5-fluorouridine. Gann
- Armstrong RD, Diasio RB (1980) Metabolism and biological activity of 5'-deoxy-5 fluorouridine, a novel fluoropyrimidine. Cancer Res 40: 3333-3338.
- Au JL, Rustum YM, Minowada J, Srivastava BI (1983) Differential selectivity of 5-fluorouracil and 5'-deoxy-5-fluorouridine in cultured human B lymphocytes and mouse I 1210 leukemia. Biochem Pharmacol 32: 541-546
- Kono A, Hara Y, Sugata S, Karube Y, Matsushima Y, et al. (1983) Activation of 5'-deoxy-5-fluorouridine by thymidine phosphorylase in human tumors. Chem Pharm Bull 31: 175-178.
- Miwa M, Cook A, Ishitsuka H (1986) Enzymatic cleavage of various fluorinated pyrimidine nucleosides to 5-fluorouracil and their antiproliferative activities in human and murine tumor cells. Chem Pharm Bull 34: 4225-4232.
- 7. Ishikawa T, Sekiguchi F, Fukase Y, Sawada N, Ishitsuka H (1998) Positive correlation between the efficacy of Capecitabine and Doxifluridine and the ratio of thymidine phosphorylase to dihydropyrimidine dehydrogenase activities in tumors in human cancer xenograft. Cancer Res 58: 685-690.
- Miwa M, Nishimura J, Kamiyama T, Ishitsuka H (1987) Conversion of 5'-deoxy-5-fluorouridine to 5-FU by pyrimidine nucleoside phosphorylase in normal and tumor tissues from rodents bearing tumors and cancer patients. Gan To Kagaku Ryoho 14: 2924-2929.
- Choong YS, Lee SP (1985) The degradation of 5'-deoxy-5-fluorouridine by pyrimidine nucleoside phosphorylase in normal and cancer tissues. Clin Chim Acta 149: 175-183.
- 10. Uehara N, Baba H, Nitta K, Kunimoto T, Takeuchi M, et al. (1985) The therapeutic effects of orally administered 5'-deoxy-5-fluorouridine, I-(2-tetrahydrofuryl)-5fluorouracil and 5-fluorouracil on experimental murine tumors. Jpn J Cancer Res 76: 1034-1041
- 11. Armstrong RD, Cadman E (1983) 5'-deoxy-5-fluorouridine selective toxicity for human tumor cells compared to human bone marrow. Cancer Res 43: 2525-
- 12. Suga S, Kimura K, Yokoyama Y, Isobe K, Yoshida Y, et al. (1982) Studies on the designing of chemotherapy for gastric cancer in man, based on the tumor tissue concentration of anticancer agents. Gastroenterol Jpn 17: 295-300.
- 13. Suzuki S, Hongu Y, Fukazawa H, Ichihara S, Shimizu H (1980) Tissue distribution of 5'-deoxy-5-fluorouridine and derived 5-fluorouracil in tumorbearing mice and rats. Gann 71: 238-245.
- 14. Sato S, Yajima A, Sasaki H, Mizutani K, Honjo H, et al. (2001) Prognostic value of thymidine phosphorylase immunostaining in patients with uterine cervical cancer treated concurrently with doxifluridine, radiotherapy and immunotherapy. Oncol Rep 8: 239-244.
- 15. Lowry OH, Rosebrough NJ, Fair AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193: 265-275.
- 16. Falini B, Taylor CR (1983) New developments in immunoperoxidase techniques and their application. Arch Pathol Lab Med 107: 105-117.
- 17. Nishida M, Hino A, Mori K, Matsumoto T, Yoshikubo T, et al. (1996) Preparation of anti-human thymidine phosphorylase monoclonal antibodies useful for detecting the enzyme levels in tumor tissues. Biol Pharma Bull 19: 1407-1411.
- 18. Taylor CR (1986) Immunomicroscopy: A diagnostic tool for the surgical pathologist, Vol 19. W. B. Saunders, Philadelphia.
- 19. Morimoto Y, Hasegawa K, Sawai T, Kishimoto Y, Akimoto T (2004) Significance of tissue thymidine phosphorylase and dihydropyrimidine dehydrogenase activities in ovarian cancer. Gan To Kagaku Ryoho 31: 2195-2198
- 20. Kobayashi Y, Wada Y, Ohara T, Suzuki N, Hasegawa K, et al. (2007) Enzymatic activities of uridine and thymidine phosphorylase in normal and cancerous uterine cervical tissues. Hum Cell 20: 107-110.
- 21, Sivridis E. Giatromanolaki A. Koukourakis Ml. Bicknell R. Harris AL, et al. (1999) Thymidine phosphorylase expression in endometrial carcinomas. Clin Exp Metastasis 17:445-450.

- 22. Veres Z, Szabolcs A, Szinai I, Denes G, Jeney A (1986) Enzymatic cleavage of 5-substituted-2'-deoxyuridines by pyrimidine nucleoside phosphorylases. Biochem Pharmacol 35: 1057-1059.
- 23. Takahashi Y, Bucana CD, Liu W, Yoneda J, Kitadai Y, et al. (1996) Plateletderived endothelial cell growth factor in human colon cancer angiogenesis: Role of infiltrating cells. J Natl Cancer Inst 88: 1146-1151.
- 24. Toi M, Hoshina S, Taniguchi T, Yamamoto Y, Ishitsuka H, et al. (1995) Expression of platelet-derived endothelial cell growth factor/thymidine phosphorylase in human breast cancer. Int J Cancer 64: 79-82.
- 25. Tominaga T, Toi M, Ohashi Y, Abe O (2002) Prognostic and predictive value of thymidine phosphorylase activity in early-stage breast cancer patients. Clin Breast Cancer 3: 55-64.
- 26. Koizumi W, Saigenji K, Nakamaru N, Okayasu I, Kurihara M (1999) Prediction of response to 5'-Deoxy-5-Fluorouridine (5'-DFUR) in patients with inoperable advanced gastric cancer by immunostaining of thymidine phosphorylase/ platelet-derived endothelial cell growth factor. Oncology 56: 215-222.
- 27. Ishikawa T, Sekiguchi F, Fukase Y, Sawada N, Ishitsuka H (1998) Positive correlation between the efficacy of capecitabine and doxifluridine and the ratio of thymidine phosphorylase to dihydropyrimidine dehydrogenase activities in tumors in human cancer xenografts. Cancer Res 58: 685-690.
- 28. Kamoi S, Kawamoto M, Ohta Y, Takahashi H, Araki T (1996) Immunohistochemistry and activities of thymidine phosphorylase in the tissue of uterine cervical and endometrial carcinomas. Gan To Kagaku Ryoho 23: 801-804
- 29. Hata K, Kamikawa T, Arao S Tashiro H, Katabuchi H, et al. (1999) Expression of the thymidine phosphorylase gene in epithelial ovarian cancer. Br J Cancer 79:1848-1854.

Submit your next manuscript and get advantages of OMICS Group submissions

Unique features:

- que features:

 User friendly/feasible website-transition of your paper 50 50 world's leading languages
- Digital articles to share and 🚳

Special features:

- 100 Open Access Journals 10,000 editorial team
- 21 days rapid review process
- Quality and quick editorial, review and publication a Indexing at PubMed (partial), Scopus, DOAJ, EBSCO
- ocessing Index Copernicus and Google Scholar etc
- Sharing Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at: http://www.omicsonline.org/submission

ORIGINAL ARTICLE

Cancellation of in vitro fertilization treatment cycles predicts treatment outcome in female infertility patients aged 40 years or older

Kouhei Sugimoto · Tomoko Hashimoto · Eri Takahashi · Yukiyo Saito · Takayuki Haino · Hiroshi Sasaki · Koji Kusuhara · Tadao Tanaka

Received: 17 December 2010/Accepted: 27 April 2011/Published online: 19 May 2011 © Japan Society for Reproductive Medicine 2011

Abstract

Purpose To investigate potential indicators of in vitro fertilization (IVF) treatment outcome for female infertility patients aged \geq 40 years based on the clinical course. Methods We retrospectively examined results of 111 female infertility patients aged ≥ 40 years undergoing IVF treatment. We investigated the relationship between treatment cycle cancellation and the final outcome of IVF treatment in female infertility patients aged \geq 40 years. Results A total of 44 pregnancies were achieved. Overall pregnancy rate per initiated treatment cycle was 12.1%, and 24 spontaneous abortions occurred (54.5%). No woman aged ≥ 45 years achieved pregnancy. No patients conceived after 10 treatment cycles while 42 (11.5%) oocyte pick-up cycles and 120 (33.0%) embryo transfer cycles were canceled. Investigation of correlation with treatment cycle cancellation revealed that patients who experienced embryo transfer cancellation had a high spontaneous abortion rate while only a few patients who experienced oocyte pick-up cancellation achieved pregnancy and even fewer achieved a successful outcome. Conclusions Our study suggests that, in addition to patient age and number of treatment cycles, cancellation of treatment cycle also provides another useful indicator for pregnancy outcome.

Keywords Cancellation · Embryo transfer · Female infertility patients aged 40 years or older · IVF · Oocyte pick up

Introduction

Many female infertility patients have conceived and achieved live births with assisted reproductive technology (ART); however, the outcomes of ART in patients aged ≥ 40 years are still unfavorable and the development of more effective treatment for these women is desired. In Japan in recent years, treatment cycles for female infertility patients aged ≥ 40 years are markedly increasing; it is not uncommon for female infertility patients to continue infertility treatment until the menopause. Some nations permit oocyte donation through legislation addressing assisted reproduction. In Israel, for example, national health insurance covers most infertility treatments, including in vitro fertilization and embryo transfer (IVF–ET), for the first two children. The age limit for performing IVF–ET with an infertile woman's own oocytes is 45 years [1].

In Japan, oocyte donation is not permitted according to the guidelines of the Japan Society of Obstetrics and Gynecology. Therefore, Japanese female infertility patients can only receive IVF–ET treatment using their own oocytes. Furthermore, Japanese women are traditionally expected to bear children [2, 3] with some Japanese infertility patients continuing to undergo infertility treatment because of parental pressure rather than their own desire [3]. Such social and traditional backgrounds concerning reproduction produce considerable stress for Japanese female infertility patients aged \geq 40 years. The outcome of infertility treatment should be explained to such patients beforehand. With regard to factors influencing the outcome of IVF–ET, Tsafrir

K. Sugimoto · T. Hashimoto · E. Takahashi · Y. Saito · T. Haino · H. Sasaki · T. Tanaka (☒)
Department of Obstetrics and Gynecology,
The Jikei University School of Medicine,
3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan e-mail: tanaka3520@jikei.ac.jp

K. Kusuhara Kusuhara Ladies Clinic, Tokyo, Japan

et al. [1] noted in their retrospective analysis of 1,217 IVF cycles in women aged \geq 40 years that none of 10 patients treated after 45 years of age delivered successfully. Klimpstein et al. [4] reported that the highest cycle day 3 follicle stimulating hormone (CD3 FSH) level in a 43-year-old woman achieving pregnancy was 18.0 mIU/mL and the highest CD3 FSH in a 40-year-old woman delivering a live child was 15.4 mIU/mL in their review of 2,705 cycles. Age and CD3 FSH level may thus provide useful indicators for treatment cut-off; however, an indicator for treatment cut-off based on the clinical course would be a more useful and more readily identified parameter for Japanese female infertility patients aged \geq 40 years. The purpose of the present study was to summarize our experience regarding infertility treatment for these women and to determine an indicator for treatment cut-off based on the clinical course.

Materials and methods

The study included patient data from all infertile women aged \geq 40 years at the time of IVF-ET treatment from 2004 to 2008 at Jikei University Hospital, Fuji Central Hospital and Kusuhara Ladies Clinic in Japan. A total of 111 women underwent 364 initiated cycles. Age distribution at the time of IVF-ET treatment is presented in Table 1. The protocol for ovarian stimulation was determined based on ovarian reserves, estimated by either CD3 FSH or previous ovarian response. The long, desensitization protocol using gonadotropin-releasing hormone (GnRH) agonist was conducted in patients estimated to have good ovarian reserve. The short protocol using a GnRH antagonist was conducted in patients estimated to have poor ovarian reserve. The clomiphene citrate or natural protocol was applied to the women in whom zero or one follicle developed in a previous long protocol, short protocol, or GnRH antagonist protocol.

Conventional IVF or intracytoplasmic sperm injection (ICSI) was performed depending on sperm condition or fertilization results in previous treatment cycles. Embryo transfer was performed on day 3. Cryopreserved-thawed embryo transfer was performed in cycles with a high

risk of ovarian hyperstimulation syndrome or suboptimal endometrium.

Women were tested for urinary human chronic gonadotropin (HCG) about 14 days after embryo transfer. If this pregnancy test was positive, a clinical pregnancy was diagnosed based on the presence of an intrauterine gestational sac on transvaginal ultrasound. When pregnancy was diagnosed, luteal support was continued until 8 weeks' gestation.

Initial analysis included the results of all 364 initiated treatment cycles regarding rates of pregnancy, spontaneous abortion, and cancellation. Subsequent analyses comprised comparisons of: (1) outcome by age; (2) outcome by number of treatment cycles; and (3) the relationship of outcomes with cancellation cycles and patient background to cancellation cycles, respectively.

Statistical analysis

Student's t test was applied for continuous variables, and the chi-squared (χ^2) test was used for binary variables. A P value <0.05 was considered statistically significant.

Results

Demographic data (Table 2)

During the study period, 364 treatment cycles including oocyte pick-up cancellation cycles and embryo transfer cancellation cycles were initiated in 111 female infertility patients aged \geq 40 years. A total of 42 (11.5%) oocyte pick-up cycles were canceled primarily because of poor ovarian response, while 120 (33.0%) embryo transfer cycles were canceled because of non-retrieval of an oocyte, no fertilized ovum, or nonviable embryo quality. A total of 44 pregnancies were achieved. Overall pregnancy rate per initiated treatment cycles was 12.1%. Pregnancy rate per treatment cycle, excluding oocyte pick-up or embryo transfer cancellation, was 21.8%; 24 of 44 cycles in which a pregnancy was achieved terminated in a spontaneous abortion (54.5%). The cause of infertility was examined in

Table 1 Age distribution of 364 IVF cycles in 111 patients

Age (years)	Total no. of cycles	Group A (18 patients 141 cycles)	Group B (93 patients 223 cycles)	Group C (57 patients 261 cycles)	Group D (54 patients 103 cycles)
40	89	16	73	62	27
41	77	18	59	49	28
42	60	23	37	39	21
43	50	25	25	38	12
44	52	34	18	41	11
45-	36	25	11	32	4

Multiple Factors

Table 2 Outcome of 364 IVF cycles in 111 patients aged ≥ 40 years

Parameter	
No. of pregnant patients	33
No. of pregnancy cycle	44
No. of spontaneous abortion cycles	24
Pregnancy rate per initiated cycle (%)	12.1
Delivery rate per initiated cycle (%)	5.5
Spontaneous abortion rate (%)	54.5
No. of oocyte pick-up cancellation cycles	42
Cancellation rate of oocyte pick-up per initiated cycle (%)	11.5
No. of oocyte embryo transfer cancellation cycles	120
Cancellation rate of embryo transfer per initiated cycles (%)	33.0

all 111 patients. As shown in Fig. 1, the majority of cases were determined to be unexplained infertility (55%). The clomiphene citrate protocol was most frequently used in controlled ovarian hyperstimulation (Fig. 2). There were no significant differences in the pregnancy rates between the five protocols.

Outcome of IVF treatment cycles according to age (Table 3)

Pregnancy rates averaged 12.9% between 40 and 44 years of age but dropped to 0% at \geq 45 years. Rates of spontaneous abortion and cancellations for oocyte pick-up and embryo transfer increased considerably at \geq 44 years.

Outcome of IVF treatment cycles according to cycle number (Table 4)

No patients conceived after ≥ 10 treatment cycles. Spontaneous abortion rates increased considerably after six treatment cycles. Combined cancellation rates for oocyte pick-up and embryo transfer increased to > 40% at ≥ 4 treatment cycles.

Relationship between outcome of IVF treatment cycles and cancellation of treatment cycle

Treatment cycles of patients aged \geq 40 are often cancelled at oocyte pick-up or embryo transfer; such cancellations indicate an unfavorable outcome. We examined the relationship between cancellation of oocyte pick-up or embryo transfer and outcome of ART in the present patients. Initially, patients were classified into two groups according to whether they experienced oocyte pick-up cancellation. A total of 18 patients (141 cycles) who had oocyte pick-up canceled, primarily because of poor follicular response, were assigned to Group A. Group B comprised 93 patients (223 cycles) without oocyte pick-up cancellation. Clinical

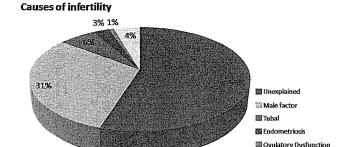


Fig. 1 The majority of cases were determined to be unexplained infertility (55%)

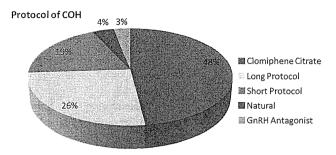


Fig. 2 The clomiphene citrate protocol was most frequently used in controlled ovarian hyperstimulation

Table 3 Outcome of 364 IVF cycles in 111 patients aged \geq 40 years stratified by age

Age	40	41	42	43	44	45+
No. of treatment cycles	89	77	60	50	52	36
No. of oocyte cancellation cycles	7	5	8	3	11	8
No. of embryo transfer cancellation cycles	25	22	15	19	21	18
Cancellation rate (%) (OPU $+$ ET)	36	35.1	38.3	44	61.5	72.2
No. of pregnancy cycle (%)	11	16	7	4	6	0
Pregnancy rate per initiated cycle (%)	12.4	20.8	11.7	8	11.5	0
Delivery rate per initiated cycle (%)	5.6	9.1	8.3	4	1.9	0
No. of spontaneous abortion cycles	6	9	2	2	5	-
Spontaneous abortion rate (%)	54.5	56.3	28.6	50	83.3	

background (present age, age at marriage, age at onset of infertility treatment, duration of infertility, duration of infertility treatment prior to IVF, and cause of infertility) and ovarian reserves (CD3 FSH, human menopausal gonadotropin (hMG) ampoules (i.e., 75 IU), and number of oocytes retrieved) were compared. No significant differences were observed between the two groups with regard to clinical background (Table 5); however, Group A had significantly higher CD3 FSH and significantly lower oocyte retrieval (Table 6). These results indicate that the

Table 4 Outcome of 364 IVF cycles in 111 patients aged ≥ 40 years stratified by treatment cycle number

Treatment cycle number	1	2	3	4	5	6	7	8	9	10+
No. of treatment cycles	78	57	47	35	27	17	14	12	10	67
No. of oocyte cancellation cycles	4	5	3	6	7	2	1	3	1	10
No. of embryo transfer cancellation cycles	19	17	12	10	8	7	5	2	4	36
Cancellation rate (%) (OPU + ET)	29.5	38.6	31.9	44.7	55.6	52.9	42.9	41.7	50	68.7
No. of pregnancy cycle (%)	18	7	3	2	3	3	3	4	1	0
Pregnancy rate per initiated cycle (%)	23.1	12.3	6.4	5.7	11.1	17.6	21.4	33.3	10	0
Delivery rate per initiated cycle (%)	10.3	8.8	2.1	5.7	7.4	0	7.1	8.3	0	0
No. of spontaneous abortion cycles	10	2	2	0	1	3	2	3	1	0
Spontaneous abortion rate (%)	55.6	28.6	66.7	0	33.3	100	66.7	75	100	_

Table 5 Patient background differences regarding the cancellation of oocyte pick-up

	Group A $(n = 18)$	Group B $(n = 93)$	
Age (years)	42.5 ± 0.5	41.3 ± 0.2	n.s.
Age of marriage (years)	35.1 ± 1.4	34.5 ± 0.2	n.s.
Age at onset of infertility treatment (years)	39.5 ± 0.5	39 ± 0.3	n.s.
Duration of infertility (months)	23.3 ± 6.1	27.5 ± 3.5	n.s.
Duration of infertility treatment prior to IVF (months)	14.1 ± 2.7	12.1 ± 1.3	n.s.
CD3 FSH (mIU/ml)	16.5 ± 1.0	10.2 ± 0.4	P < 0.001*
Ampoules (i.e., 75 IU) of gonadotropin	14.6 ± 1.4	30.0 ± 1.0	P < 0.001*
No. of oocytes retrieved	1.9 ± 0.2	4.3 ± 0.2	P < 0.001*
Cumulative pregnancy rate per patient (%)	16.7	44.1	P = 0.06**
Pregnancy rate per initiated cycle (%) (without oocyte pick-up cancellation cycles)	3	18.4	P < 0.001**
Spontaneous abortion rate (%)	100	51.2	n.s.

^{*} Student t test was used for statistical analysis

ovarian reserves of group A were significantly less than that of Group B. On the other hand, Group A had significantly lower hMG ampoules. This result depends on the fact that Group A contained a higher rate of the clomiphene citrate, or natural protocol cycles compared with that of Group B.

The cumulative pregnancy rate per patient for Group A was significantly lower than that of Group B (16.7 vs. 44.1%). The pregnancy rate per treatment cycle in which embryo transfer was conducted was significantly lower for Group A than Group B (3 vs. 18.4%). Moreover, all three pregnancies in Group A terminated in spontaneous abortion.

Subsequently, patients were classified into two groups according to whether they experienced embryo transfer cancellation (Table 6). A total of 57 patients (261 cycles) experiencing embryo transfer cancellation, mainly because of fertilization failure or lack of viable embryo, were assigned to Group C. Group D comprised 54 patients (103)

cycles) without embryo transfer cancellation. The clinical backgrounds (present age, age at marriage, age at onset of infertility treatment, infertility duration, duration between onset of infertility treatment and onset of ART, and cause of infertility) and ovarian reserves (CD3 FSH, hMG ampoules, and number of oocytes retrieved) were compared. No significant differences were observed between the two groups with regard to clinical background; however, Group C had significantly higher CD3 FSH and hMG ampoules and significantly lower oocyte retrieval. These results revealed that the ovarian reserves of Group C were significantly lower than that of Group D. There was no significant difference between Groups C and D in the cumulative pregnancy rate per patient (40.4% vs. 38.9%) or in the pregnancy rate per treatment cycles in which embryo transfer was performed (22.8% vs. 20.8%); however, the spontaneous abortion rate of Group C (73.9%) was significantly higher than that of Group D (33.3%).

^{**} The chi-squared test was used for statistical analysis

Table 6 Patient background differences in cancellation of embryo transfer

	Group C $(n = 57)$ Group D $(n = 54)$			
Age (years)	41.9 ± 0.3	41.3 ± 0.2	n.s.	
Age of marriage (years)	34.1 ± 0.8	35.2 ± 0.5	n.s.	
Age at onset of infertility treatment (years)	38.8 ± 0.6	39.4 ± 0.3	n.s.	
Duration of infertility (months)	28.7 ± 5.0	24.8 ± 3.5	n.s.	
Duration of infertility treatment prior to IVF (months)	12.7 ± 1.8	12.1 ± 1.5	n.s.	
CD3 FSH (mIU/ml)	14.2 ± 0.6	8.7 ± 0.4	P < 0.01*	
Ampoules (i.e., 75 IU) of gonadotropin	21.2 ± 1.2	31.1 ± 1.3	P < 0.001*	
No. of oocytes retrieved	2.8 ± 0.2	5.4 ± 0.4	P < 0.001*	
Cumulative pregnancy rate per patient (%)	40.4	38.9	n.s.	
Pregnancy rate per initiated cycle (%) (without embryo transfer cancellation cycles)	22.8	20.8	n.s.	
Spontaneous abortion rate (%)	73.9	33.3	P < 0.05**	

^{*} Student t test was used for statistical analysis

Discussion

In 2007, approximately 600 IVF institutions were registered with the Japan Society of Obstetrics and Gynecology and 160,000 treatment cycles (including conventional IVF fresh embryo transfer and ICSI, fresh embryo transfer or cryopreserved-thawed embryo transfer) were performed in Japan. The present status of ART reflects the high desirability of pregnancy in Japan which is due not only to the wishes of the patient but also family pressure as many Japanese still believe that motherhood is a wife's duty [2, 3]. Perhaps due to the historical background, the continuation of infertility treatment by Japanese female infertility patients may represent a sense of social duty as well as personal desire.

Oocyte donation is not permitted in Japan so infertile women must undergo treatment with their own oocytes; some women continue treatment until the menopause. In the present study, we summarized the treatment of female infertile patients aged \geq 40 years and examined individual data to determine a cut-off point for infertility treatment.

Aggregate rates of pregnancy and delivery per initiated treatment cycle were 12.1% and 5.5%, respectively. In infertile women aged \geq 40 years, Klipstein et al. [4] reported a pregnancy rate per initiated treatment cycle of 17.3% in 2,705 initiated IVF treatment cycles, Las et al. [5] described a rate of 11.3% in 1,087 cycles, and Tsafrir et al. [1] described a rate of 7.3% in 1,217 cycles; all results were \leq 20%.

In the present study no pregnancies were achieved in women aged \geq 45 at the time of treatment cycle onset. Klipstein et al. [4] reported that no pregnancies were achieved in women aged \geq 46 and they concluded that pregnancies at \geq 44 years of age are rare. Lass et al. [5]

reported no pregnancies achieved in women aged \geq 45 years at the time of treatment cycle onset, while Tsafrir et al. [1] recommended that women aged \geq 44 years should not undergo IVF. The cut-off age for IVF treatment appears to be approximately 45 years.

In the present study, the highest treatment cycle in which a pregnancy was achieved was cycle 9; however, this pregnancy miscarried at 7 weeks' gestation. The highest treatment cycle in which an infant was delivered was cycle 8. Martin-Johnston et al. [6] reported that the likelihood of a successful outcome declines with each additional treatment cycle. They concluded that the most notable decrease in clinical pregnancy rates occurred after the third treatment cycle, and patients who fail to conceive after three IVF cycles should be counseled to consider other options. The correlation between treatment cycle number and treatment outcome should be evaluated further in Japan and the cut-off age should be determined excluding treatment options such as oocyte donation.

The percentage of initiated cycles for patients aged \geq 45 years at treatment cycle onset was 9.9% (36 cycles). Furthermore, the percentage of non-cancelled cycles after 10 treatment cycles was 18.4% (67 cycles). These findings indicate that parameters for treatment cutoff are not well established.

Treatment cancellations for oocyte pick-up or embryo transfer often occur in women over 40 years of age undergoing IVF procedures. In the present study, 42 (11.5%) oocyte pick-up cycles and 120 (33.0%) embryo transfer cycles were canceled. Only a few studies have examined the correlation between cancellation of IVF treatment cycle and outcome. Using logistic regression analysis, Peñarrubia et al. [7] demonstrated that the history of an IVF/ICSI cancelled cycle due to poor follicular response in a standard

^{**} The chi-squared test was used for statistical analysis

stimulation protocol is a better predictor of cancellation in subsequent treatment cycles than age or CD3 FSH. Our study found that in treatment cycles in which embryo transfer was conducted, the pregnancy rate for the 18 patients who experienced oocyte pick-up cancellation was only 3% (3 treatment cycles, 3 patients); furthermore, none of these pregnancies resulted in a live birth. Conversely, 23 of 57 patients who experienced embryo transfer cancellation became pregnant. For treatment cycles in which embryo transfer was performed, the pregnancy rate per treatment cycle was 22.8%; this percentage was not significantly different than that of patients who did not experience embryo transfer cancellation. However, the spontaneous abortion rate of the 23 patients who experienced embryo transfer cancellation was 73.9%, which was significantly higher than that of patients who did not experience canceled cycles (33.3%). The ovarian reserves of patients who experienced oocyte pick-up cancellation and embryo transfer cancellation were significantly lower than those of patients who did not experience either cancellation. The pregnancy rate per treatment cycle of patients who did not experience oocyte pick-up cancellation or embryo transfer cancellation was 21.3%; furthermore, the spontaneous abortion rate was

Lower ovarian reserves correlated with a poorer outcome for IVF treatment in women aged \geq 40 years. Moreover, patients who experience embryo transfer cancellation have a higher spontaneous abortion rate if they achieve a pregnancy. In addition, few women who experience oocyte pick-up cancellation achieve a pregnancy, and fewer deliver a viable infant.

Klipstein et al. [4] reported that CD3 FSH values correlate with pregnancy, live birth, and pregnancy loss rates. Additionally, in their review of 2,705 cycles, they reported that the highest CD3 FSH level in a woman achieving a pregnancy was 18.0 mIU/mL, and that the highest CD3 FSH in a woman delivering a live child was 15.4 mIU/mL. The present study found that the highest CD3 FSH level in a woman achieving a pregnancy was 22.2 mIU/mL, and that the highest level in a woman delivering a live child was 17.6 mIU/mL. Therefore, IVF treatment may not be efficacious for women ≥ 40 years whose CD3 FSH is > 20 mIU/mL. As CD3 FSH values fluctuate in each cycle,

anti-Müllerian hormone may be a useful marker of ovarian reserves in women \geq 40 years; thus, it would be of value regarding the decision of infertility treatment cut-off.

We evaluated potential indicators for treatment cut-off for women \geq 40 years: age, number of treatment cycles, and cancellation of treatment cycle. The present findings suggest that cancellation of treatment cycles is as useful an indicator as age or the number of treatment cycle. However, further research is necessary with larger patient populations encompassing more parameters. Once established, realistic cut-off criteria for infertility treatment should be disseminated to Japanese society to help prevent social and family pressure. Moreover, consideration should be given to how, when and by whom counseling should be given regarding ending infertility treatment.

Acknowledgments The authors are thankful to Dr. Hiroshi Hayashi for providing some advices to our study.

References

- Tsafrir A, Simon A, Reubinoff B, Lewin A, Laufer N. Retrospective analysis of 1217 IVF cycles in women aged 40 years and older. Reprod Biomed Online. 2007;14:348–55.
- Matsubayashi H, Hosaka T, Izumi S, Suzuki T, Makino T. Emotional distress of infertile women in Japan. Hum Reprod. 2001;16:966-9.
- 3. Matsubayashi H, Hosaka T, Izumi S, Suzuki T, Kondo A, Makino T. Increased depression and anxiety in infertile Japanese women resulting from lack of husband's support and feeling of stress. Gen Hosp Psychiatry. 2004;26:398–404.
- Klipstein S, Reagan M, Ryley DA, Goldman MB, Alper MM, Reindollar RH. One last chance for pregnancy: a review of 2,705 in vitro fertilization cycles initiated in women age 40 years and above. Fertil Steril. 2005;84:435–45.
- Lass A, Croucher C, Duffy S, Dawson K, Margara R, Winston RML. One thousand initiated cycles of in vitro fertilization in women > 40 years of age. Fertil Steril. 1998;70:1030–4.
- Martin-Johnston MK, Uhler ML, Grotjan HE, Lifchez AS, Nani JM, Beltsos AN. Lower chance of pregnancy with repeated cycles with in vitro fertilization. J Reprod Med. 2009;54:67–72.
- Peñarrubia J, Fabregues F, Manau D, Creus M, Carmona F, Casamitjana R, et al. Previous cycle cancellation due to poor follicular development as a predictor of ovarian response in cycles stimulated with gonadotrophin-releasing hormone agonist-gonadotrophin treatment. Hum Reprod. 2005;20:622–8.

Diagnostic value of endometrial cytology A group study by the Japanese Society of Clinical Cytology (投稿中)

The corresponding author's contact information:

Academic degree: MD.

Position: Chair Person, Department of Obstetrics and Gynecology, JA Suzuka General

Hospital

Corresponding author's name: Kenji Yanoh

Mailing address: 1275-53 Yasuzuka-Yamanohana, Suzuka, Mie 513-8630, JAPAN

Phone number: +81-59-382-1311 Fax number: +81-59-384-1033

E-mail dress: kyanou@sch.miekosei.or.jp

The authors and their institutions:

Kenji Yanoh¹, Yasuo Hirai², Atsuhiko Sakamoto³, Daisuke Aoki⁴, Takuya Moriya⁵, Masamichi Hiura⁶, Takaharu Yamawaki⁷, Keiko Shimizu⁸, Hiroki Nakayama⁹, Hiroshi Sasaki¹⁰, Tsutomu Tabata¹¹, Masatsugu Ueda¹², Yasuhiro Udagawa¹³, Yoshiaki Norimatsu¹⁴.

1) Department of Gynecology, Suzuka General Hospital

²⁾ Department of Gynecology, Cancer Institute Hospital Ariake

³⁾ Department of Pathology, Kyorin University

4) Department of Obstetrics and Gynecology, School of Medicine, Keio University

5) Department of Pathology, Kawasaki Medical University

6) Department of Gynecologic Oncology and Division of Operation, National Hospital Organization Shikoku Cancer Center

7) Department of Gynecology, Yamada Red Cross Hospital

⁸⁾ Department of pathology, Saiseikai Noe Hospital, Imperial Gift Foundation Inc., Osaka

9) Department of Gynecology, Kanagawa Cancer Center

¹⁰⁾ Department of Obstetrics and Gynecology, Jikei University Kashiwa Hospital

¹¹⁾ Department of Gynecology, Mie University School of Medicine

Department of Gynecology, Osaka Cancer Prevention and Detection Center

¹³⁾ Department of Obstetrics and Gynecology, Fujita Health University

¹⁴⁾ Department of Medical Technology, Faculty of Health Sciences, Ehime Prefectural University of Health Sciences

Abstract

Objective: To evaluate the sensitivity and specificity of endometrial cytology using a descriptive reporting format for endometrial cytological diagnosis.

Study design: 10,152 consecutive endometrial scrapings obtained in 13 different Japanese hospitals were analyzed. Cytological results were classified as 'Negative for malignancy', 'Atypical endometrial cells (ATEC)', "Endometrial hyperplasia", 'Atypical endometrial hyperplasia', or 'Malignant tumor'. ATEC was subclassified as 'ATEC, of undetermined significance (ATEC-US)' and 'ATEC, cannot exclude atypical endometrial hyperplasia or more (ATEC-A)". Cytological results were compared with the histological diagnosis as a gold standard. When the cytological result was 'negative for malignancy' and there was no subsequent histological examination, the case was considered a true negative when the endometrium was assessed as normal on transvaginal ultrasonography and there was no abnormal uterine bleeding. Results: After excluding 1,083 cases in which histology was not performed, 557 cases of 'unsatisfactory specimen' and 76 cases of ATEC-US, in the remaining 8,436 cases, the sensitivity and specificity, positive predictive value and negative predictive value for detecting atypical endometrial hyperplasia or malignant tumors were 79.0% and 99.7%, 92.9%, 98.9%, respectively. Conclusion: The current diagnostic standards for endometrial cytology in Japan were established. Specificity is satisfactory for excluding cancer or pre-cancerous diseases.

Key Words

endometrial cytology / descriptive reporting format / sensitivity / specificity / group study

Introduction

In Japan, endometrial cytology is one of commonest clinical examination methods for evaluating the health of endometrial mucosa. This method is usually applied for the initial pathological evaluation, and often for endometrial cancer screening tests, together to endocervical cytology; however, up to now, its precise sensitivity and specificity have not been evaluated. Usually, conventional smears are used in a screening setting, and liquid-based preparations are limited to experimental usage. For reporting endometrial cytology, three categories, 'Negative', 'Suspicious', and 'Positive' are usually applied. While 'Positive' is used when a sample is assessed cytologically as malignant, and 'Negative' as benign, the definition of 'Suspicious' is ambiguous. "Suspicious" is usually applied when a sample is assessed as endometrial hyperplasia with or without cellular atypia; however, since it indicates a pathological condition that is neither entirely benign nor entirely malignant, it has no clinical usefulness and just serves to categorize the sample in the reporting process. We felt that this terminology could be adapted to the spectrum of conditions showing some degree of cytological atypia of the endometrial mucosa. To overcome the problems caused by a clinically unsatisfactory 'suspicious' report, we had previously proposed the concept of an endometrial reporting format [1]. In this study, we developed a new descriptive reporting format for endometrial cytology for actual clinical usage, which enabled a study group to evaluate sensitivity and specificity of endometrial cytology in Japan on behalf of the Japanese Society of Clinical Cytology. The goal of this study was to establish the feasibility of endometrial cytology in Japan.

Materials and Methods

During the 2-year period ending March 2009, 13 hospitals applied the descriptive reporting format for endometrial cytological diagnosis (table 1). Each specimen entering the study was first tested for adequacy and then classified as follows. For evaluating endometrial cytology, five new categories were set, namely: (1) Negative for malignancy, (2) Atypical endometrial cells (ATEC), (3) Endometrial hyperplasia, (4) Atypical endometrial hyperplasia, (5) Malignant tumor. ATEC includes 'Atypical cells, of undetermined significance (ATEC-US)' and 'Atypical endometrial cells, cannot exclude atypical endometrial hyperplasia or more (ATEC-A)'. ATEC-US is selected when atypical endometrial cells are observed, but their significance cannot be determined for some reasons; inflammatory-, metaplastic-, iatrogenic-, or any other changes possibly causing cytomorphological alterations. ATEC-A is selected when the possibility of atypical endometrial hyperplasia or malignant tumor is not excluded mainly because of the limited number of atypical cells in the absence of inflammation, metaplastic changes or iatrogenic influences. While a more detailed cytological diagnosis can be selected for cases of 'Negative for malignancy', 'Endometrial

hyperplasia', 'Atypical endometrial hyperplasia', or 'Malignant tumor' with endometrial cytology, for cases evaluated as ATEC, either an ATEC-US or ATEC-A has to be selected without exception. When the cytological result is 'Negative for malignancy', subsequent endometrial histological evaluation is not necessarily required; however, in cases of irregular endometrial ultrasonographic findings or accompanying abnormal uterine bleeding, endometrial biopsy or curettage must be considered even in 'Negative for malignancy'. Because ATEC-US is expected to contain a spectrum of changes going from benign endometrium to neoplastic changes, it is difficult to decide a triage method immediately. In this study, endometrial biopsy or repeat endometrial cytological assessment after two or three months is required for ATEC-US. On the contrary, histological estimation is necessary in cases of ATEC-A. When the cytological result is other than 'Negative for malignancy' or 'ATEC-US', endometrial biopsy or curettage is required to confirm the endometrial diagnosis.

All the endometrial cytologies were performed for clinical usage or as cancer diagnostic tests. Because transvaginal ultrasonography is usually performed with endometrial cytology in Japan, data on the endometrial appearance were also registered as normal or irregularly shaped, thickened. Endometrial biopsy is sometimes performed together with endometrial cytology because of an irregular-shaped endometrium recognized with transvaginal ultrasonography, or because of abnormal uterine bleeding. Histological examination was considered to be necessary when cytological report was 'endometrial hyperplasia', 'atypical endometrial hyperplasia', 'malignant tumor', and 'ATEC-A'. When there was a history of abnormal uterine bleeding and/or irregular-shaped endometrial mucosa was recognized on ultrasound examination, histological examination was also performed. For these reasons, in this study, the gold standard for endometrial cytological results was the histological diagnosis, which was performed simultaneously, or within three months of endometrial cytology; however when the cytological result was "negative for malignancy" and there was no subsequent histological examination, the case was considered a true negative when the endometrium was assessed as normal on transvaginal ultrasonography and there was no abnormal uterine bleeding. In order to calculate the diagnostic accuracy, histological lesions comprising atypical endometrial hyperplasia, endometrial adenocarcinoma in situ (EIC), atypical polypoid adenomyoma (APA) were considered in the same group with endometrial adenocarcinomas for the purposes of this study. So, all the cases with cytological result as 'Atypical endometrial hyperplasia', 'Malignant tumor', or 'ATEC-A' and histological lesions in the spectrum: atypical endometrial hyperplasia, EIC, APA, and malignant tumors were considered as true positive (TP). All cases with cytological report of 'Negative for malignancy' and normal ultrasound findings of the mucosa without bleeding, with or without histological lesions in the spectrum; benign endometrium and complex endometrial hyperplasia-, or with cytological report of 'endometrial hyperplasia' and with histological lesions in the spectrum; benign

endometrium - complex endometrial hyperplasia, were considered as true negatives (TN). Consequently, all the cases with cytological results as 'Aypical endometrial hyperplasia', 'Malignant tumor', or 'ATEC-A', and histological diagnosis in the range benign endometrium — complex hyperplasia were considered false positive (FP). All cases with cytological results as 'Negative for malignancy' or 'Endometrial hyperplasia' and with histological diagnosis in the spectrum; atypical endometrial hyperplasia, EIC, APA, or malignant tumors were considered False negatives (FN).

Results

In this study, five types of cell samplers were used for endometrial cytology (table 2), all of which are commonly used in Japan. All specimens were prepared with a conventional method, and no liquid-based cytology preparation method was used. 557 cases (5.5%) were judged as 'Unsatisfactory specimen' (table 3). The most frequent reason for 'Unsatisfactory' was 'Scant cellularity' (61.8%), followed by 'Lack or insufficient clinical information' (27.1%). Although subsequent histological evaluation should have been performed, 1083 cases (10.7%) were lacking histology and were excluded from this study. Cases evaluated as ATEC-US are not immediately sent for histological evaluation, and so these 76 cases (0.7%) were also excluded, after which, 8,436 cases were made available for this study. The cytological results and the corresponding pathological diagnoses are shown in Tables 4 and 6. This study included 465 cases with normal endometrium, 70 with benign reactive changes, 45 with endometrial polyp, 20 with simple endometrial hyperplasia, 30 with complex endometrial hyperplasia, 44 with atypical endometrial hyperplasia, 11 with atypical polypoid adenomyoma (APA), and 360 with a malignant tumor. In addition, 7,391 cases did not undergo histological examination and were considered as benign endometrium because of the clinical features mentioned previously. The overall performance of endometrial cytology in Japan is shown in Table 7. For detecting atypical endometrial hyperplasia or malignant tumors, since 'ATEC-A' was considered as cytologically positive, the overall sensitivity and specificity were 79.0% and 99.7%, respectively. The overall sensitivity and specificity of the cytological examination vs. one condition of the spectrum: complex hyperplasia, ATEC-A, atypical endometrial hyperplasia, and malignant tumors, were 84.5% and 99.3%, respectively. The positive predictive value (PPV) and negative predictive value (NPV) of endometrial cytology are also shown in Table 7. When the reports of 'Malignant tumor', 'Atypical endometrial hyperplasia' and 'ATEC-A' interpretations were considered cytologically positive, the PPV and NPV were 92.9% and 98.9%, respectively. When 'Malignant tumor', 'Atypical endometrial hyperplasia', 'ATEC-A' and 'Complex hyperplasia' interpretations were considered cytologically positive, PPV and NPV were 87.4% and 99.1%, respectively.

Discussion

In this study, we devised a new and original reporting format for endometrial cytology which enables the calculation of the specificity and sensitivity as a group study. This format is an experimental one, and only for study group usage. This reporting scheme is not authorized by the government nor any society. However, because numerous meetings have been kept for the improvement of endometrial cytology without producing a consensus document, it is our opinion that the reporting format used in this study group seems to become a useful tool.

The most important reason for unsatisfactory specimens, proved to be scant cellularity and a lack of or insufficient clinical information. The features of uterine endometrial glands and stromal cells usually change markedly according to the menstrual period. Several drugs, such as estrogen, progesterone, gonadotropin-releasing hormone antagonist, or tamoxifen, are well recognized to be related with endometrial glands and stromal cellular changes. For these reasons, in uterine endometrial cytology, clinical information plays a more important role than uterine cervical cytology. In this study group, common criteria for specimen adequacy were not set and were decided by individual hospitals and facilities. In a previous paper, we proposed criteria for specimen adequacy [1]; however, at present, though each hospital and facility made an effort to improve the diagnostic accuracy of endometrial cytology with several preparation devices, no consensus on universal criteria for specimen adequacy was established; the problem of criteria for specimen adequacy therefore remains. In the future, when acceptable criteria for assessing endometrial cytology are established, it will be necessary to decide rigid criteria for specimen adequacy.

For evaluating sensitivity and specificity, the cytological diagnosis was usually compared with the histological diagnosis as a gold standard. In this study, when the cytological finding was 'Negative for malignancy' and there was no histological examination, cases in which the endometrium was assessed as normal on transvaginal ultrasonography and did not show any abnormal uterine bleeding were also defined as true negatives. In Japan, endometrial cytology is routinely performed as an endometrial cancer screening test accompanied with endocervical cytology. As a result, a large number of endometrial cytology tests in our study were included in the 'Negative for malignancy' group, with normal transvaginal ultrasonography findings and without endometrial histological assessments. Large prospective studies have shown that an endometrial thickness ≤ 4 mm on transvaginal ultrasound in postmenopausal women with bleeding has a risk of malignancy of 1 in 917 [2]. In women of childbearing age, there are no definite criteria for endometrial thickness for detecting abnormality. Whether our definition is appropriate or not is open to discussion.

As for uterine cervical cytology, Pitman et al. reported that reducing or eliminating the

ASCUS diagnosis appears to decrease the sensitivity of the Pap smear significantly and appears to be no better than chance at predicting a diagnosis of SIL on biopsy, including HSIL [3]. Because it is speculated that the problem for cytological diagnosis exists also in endometrial cytology, ATEC category, which does not represent a single biologic entity, has recently been adopted as a descriptive reporting format for endometrial cytology. This terminology is parallel to 'Atypical squamous cells (ASC)'or 'Atypical glandular cells (AGC)' in the Bethesda System 2001 [4]. In the Bethesda System, the usage of the term 'atypical cells' is limited to those cases in which the cytologic findings are of undetermined significance. 'Atypia' is not permitted to use as a diagnosis for otherwise defined inflammatory, preneoplastic, or neoplastic cellular changes in the Bethesda System. In the endometrium, inflammatory change, iatrogenic effects, or dysfunctional effects of hormones may cause some kind of cellular changes which makes it difficult to distinguish neoplastic change from non-neoplastic change. For this reason, 'ATEC' is allowed when significance of cytological picture is not determined for some reasons; inflammatory changes, metaplastic changes, iatrogenic effects, or any other changes with some cytomorphological impact. ATEC includes two categories, namely, 'Atypical endometrial cells, of undetermined significance (ATEC-US)' and 'Atypical endometrial cells, cannot exclude atypical endometrial hyperplasia or more (ATEC-A)'. While rigid triage methods for 'ASC' or 'AGC' exist, there is no evidence of triage methods for 'ATEC'. As for 'ATEC-A', endometrial biopsy or curettage is considered to be necessary because with this cytological result an atypical endometrial hyperplasia or adenocarcinoma cannot be excluded. On the contrary, because the clinical importance of ATEC-US was unclear, we cannot propose an appropriate triage method. At present, repeated endometrial cytology after two or three months or endometrial biopsy is recommended.

In this study, all cases of 'ATEC-A' were assessed histologically, and 24 cases of 'ATEC-A' (68.6%) were diagnosed as atypical endometrial hyperplasia, APA, or malignant tumor with simultaneous or subsequent histological tests. In contrast, on 32 (42.1%) of ATEC-US cases, histological evaluation were not done. As for the remaining 44 cases, histological diagnosis spread among benign to malignant (table 6). Thus far, 'ATEC-US' dose not play an important role for cytological diagnosis. Hereafter, evidence for ATEC should be established and the necessity for ATEC-US and ATEC-A discussed.

Up to now, there has been no clinical data from the study group concerning the sensitivity or specificity of endometrial cytology; these data have only been reported by a single facility. Tsuda et al. compared transvaginal ultrasonography (TVS) and endometrial cytology for endometrial cancer by screening 600 postmenopausal women. Their reported sensitivity and specificity were 78.9% and 95.4%, respectively. Because the sensitivity and specificity of TVS were 97.4% and 75.7%, they concluded that TVS

was more useful to identify patients who required further diagnostic investigation, including endometrial histology [5]. Buccoliero et al. studied 917 patients who were scheduled for hysterectomy with the liquid-based cytology method. All the women proceeded sequentially through hysteroscopy, endometrial cytology and endometrial biopsy. According to their study, cytology provided more sufficient information than biopsy; sensitivity and specificity were 96% and 98%, respectively, PPV was 86%, and NPV was 99% [6]. In addition, several studies have mentioned the sensitivity and specificity of endometrial cytology [7-9]. In these studies, cytological 'positive' was also determined respectively for the first time. Comparing these data, the specificity of our data seems to be sufficient, while sensitivity is insufficient for clinical usage. There is no consensus on the criteria for endometrial cytological evaluation. In particular, benign reactive changes, such as endometrial gland and stromal breakdown, and endometrial hyperplasia are thought to be difficult for cytological assessment; therefore, some cases tend to be overestimated. This seems to be a most important reason for the low sensitivity and high specificity in this study. The importance of recognizing the architecture of the cell cluster well as a cellular feature of endometrial cytology has been emphasized [10-13]. When using cytoarchitectural criteria practically, sufficient diagnostic accuracy has been achieved [1,14]. In the future, further attempts must be made to improve sensitivity without decreasing specificity.

Conflict of Interest Disclosure

There are no financial disclosures, nor conflicts of interest.

References

- 1) Yanoh K, Norimatsu Y, Hirai Y, Takeshima N, Kamimori A, Nakamura Y, Shimizu K, Kobayashi TK, Murata T, Shiraishi T: New diagnostic reporting format for endometrial cytology based on cytoarchitectural criteria. Cytopathology 2009;20:388-394.
- 2) Goldstein SR: The role of transvaginal ultrasound or endometrial biopsy in the evaluation of the menopausal endometrium. Am J Obstet Gynecol 2009;201:5-11.
- 3) Pitman MB, Cibas ES, Powers CN, Renshaw AA, Frable WJ: Reducing or eliminating use of the category of atypical squamous cells of undetermined significance decreases the diagnostic accuracy of the Papanicolaou smear. Cancer 2002;96:128-134.
- 4) Solomon D, Davey D, Kurman R, Moriarty A, O'Connor D, Prey M, Raab S, Sherman M, Wilbur D, Wright T Jr, Young N: The 2001 Bethesda System: Terminology for reporting results of cervical cytology. JAMA 2002;287:2114-2119.
- 5) Tsuda H, Kawabata M, Yamamoto K, Inoue T, Umesaki N: Prospective study to

- compare endometrial cytology and transvaginal ultrasonography for identification of endometrial malignancies. Gynecol Oncol 1997;65:383-386
- 6) Buccoliero AM, Gheri CF, Castiglione F, Gabbini F, Barbetti A, Fambrini M, Bargelli G, Pappalardo S, Taddei A, Boddi V, Scarselli GF, Marchinni M, Taddei GL: Liquid-based endometrial cytology: cyto-histological correlation in a population of 917 women. Cytopathology 2007;18:241-249.
- 7) Kipp BR, Medeiros F, Campion MB, Distad TJ, Peterson LM, Keeney GL, Halling KC, Clayton AC: Direct uterine sampling with the Tao brush sampler using a liquid-based preparation method for the detection of endometrial cancer and atypical hyperplasia. Cancer 2008;114:228-235.
- 8) Zhou J, Tomashefski J, Khiyami A: Diagnostic value of the Thin-Layer, liquid-based Pap test in endometrial cancer: A retrospective study with emphasis on cytomorphologic features. Acta Cytol 2007;51:735-741.
- 9) Maksem JA, Meiers I, Robboy SJ: A primer of endometrial cytology with histological correlation. Diagn Cytopathol 2007;35:817-844.
- 10) Norimatsu Y, Shimizu K, Kobayashi TK, Moriya T, Tsukayama C, Miyake Y, Ohno E: Cellular features of endometrial hyperplasia and well differentiated adenocarcinoma using the endocyte sampler. Cancer 2006;108:77-85.
- 11) Shimizu K, Norimatsu Y, Kobayashi TK, Ogura S, Miyake Y, Ohno E, Sakurai T, Moriya T, Sakurai M: Endometrial glandular and stromal breakdown, part 1: Cytomorphological appearance. Diagn Cytopathol 2006;34:609-613.
- 12) Norimatsu Y, Shimizu K, Kobayashi TK, Moriya T, Kaku T, Tsugayama C, Miyake Y, Ohno E: Endometrial glandular and stromal breakdown, part 2: Cytomorphology of papillary metaplastic changes. Diagn Cytopathol 2006;34:665-669.
- 13) Norimatsu Y, Yuminamochi T, Shigematsu Y, Yanoh K, Ikemoto R, Masuno M, Murakami M, Kobayashi TK: Endometrial glandular and stromal breakdown, part 3: Cytomorphology of "Condensed cluster of stromal cells". Diagn Cytopathol 2009;37:891-896.
- 14) Kobayashi H, Otsuki Y, Simizu S, Yamada M, Mukai R, Sawaki Y, Nakayama S, Torii Y: Cytological criteria of endometrial lesions with emphasis on stromal and epithelial cell clusters: result of 8 years of experience with intrauterine sampling. Cytopathology 2008;19:19-27.