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Rb Pathway

Retinoblastoma (Rb) is another essential tumor suppressor protein that regulates the
G1 checkpoint (Classon and Harlow 2002). Hypophosphorylated form of Rb
sequesters E2F transcription factor and arrest cells at the G1 checkpoint. Once Rb is
hyperphosphorylated by cyclin D and cdk4/6 complex, phosphorylated Rb releases
E2F, E2F induces the expression of cell cycle regulators, and then the cells enter
S phase. In contrast, p16/Ink4a cdk inhibitor binds to cdk4/6, prevents the complex
formation of cdk4/6 and cyclin D, and maintains Rb hypophosphorylation. Mutations
in Rb pathway have been frequently identified in many types of malignant tumors.
For example, mutations in Rb signaling pathway, including cdk4 amplification and
pl6/Ink4a deletion, was found in about 80% of GBM (Cancer Genome Atlas
Research Network 2008; Parsons et al. 2008; Schmidt et al. 1994).

Activation of Receptor Tyrosine Kinase Pathway

Signaling pathways (Ras/Raf/MAPK and PTEN/AKT pathways) of Receptor
Tyrosine Kinases (RTKs) including PDGFR, EGFR, FGFR, and IGFR, many of which
play a role for the maintenance of TSCs and amplifying precursors, are frequently
mutated in tumors (Schubbert et al. 2007). For instance, activation of RTK pathway
was found in about 90% of GBM (Cancer Genome Atlas Research Network 2008;
Parsons et al. 2008). In particularly, it has been shown that small GTP protein
Ras, one of essential oncogenes, and its negative regulator, typel Neurofibromas
gene (NF1), are mutated in many kinds of human cancers and that phosphatase
tensin homolog (PTEN), which inhibits function of phosphoinositol tri-phosphate
kinase (PI3K) that activates Akt, is frequently inactivated in malignant tumors
(Duerr et al. 1998).

Notch Signaling Pathway

Notch receptors are involved in a number of biological functions, including cell
proliferation, differentiation, survival, and tumorigenesis (Radtke and Raj 2003).
There are four known mammalian Notch receptors, Notch 1-4, and five ligands,
Delta-like-ligand (DI1) 1, 3, and 4, and Jagged | and 2 in mammals. Following the
activation, Notch is cleaved in its extracellular region by metalloproteases and in
its intracellular region by presenilins (PS), releasing the Notch intracellular
domain (NICD) from the plasma membrane. The NICD then translocates into the
nucleus, associates with the CSL transcription factor CBF1/RBP-Jk, and activates
a number of target genes, including the hairy and enhancer-of-split (Hes) genes
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Fig. 2.2 Notch, Wnt, Hh signaling pathways are involved in CSC maintenance. Notch (a), Wnt/
Frz (b), or Hh/Ptc/Smo (c) signaling pathway activates a number of genes, which regulate cell
proliferation and cell fates. The constitutive activation of any of these pathways leads to abnormal
development and tumorigenesis

(Fig. 2.2a). It has been shown that the inactivation of Notch signaling leads to
serious developmental defects: Jagged1, Notch1, Notch2, and PSland 2 knock-
out mice are all embryonically or perinatally lethal (Krebs et al. 2000; Swiatek et al.
1994; Xue et al. 1999). There is accumulating evidence that Notch activation not
only maintains the multipotentiality of NSCs but is also involved in tumorige-
nesis. Depletion of Notchl, DII1, orJaggedl by RNAi was shown to block prolife-
ration of glioma cells in vivo and in vitro (Purow et al. 2005). Together, these
findings suggest that Notch signaling is involved in tumorigenesis, as well as in
normal development.

Whnt Signaling Pathway

The Wat family of secreted proteins coordinates diverse developmental processes,
including cell proliferation and fate decisions (Logan and Nusse 2004; Moon et al.
2004; Reya and Clevers 2005). In mammals, there are 20 Wnt members, 10 Wnt
receptors (called Frizzled, Frz), and 5 soluble forms of Frz, which are natural inhibitors
of Wnt signaling. Once Frz is activated, B-catenin, which is a central player in
canonical Wnt signaling, accumulates in the nucleus and induces the expression of
Wnht target genes, including c-myc and cyclin DI, by associating with LEF/TCF
transcription factors (Fig. 2.2b). The noncanonical Wnt signaling pathway activates
calcium/calmodulin-dependent protein kinase and protein kinase C, although the
molecular details are still uncertain (Logan and Nusse 2004; Moon et al. 2004; Reya
and Clevers 2005).
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Whnt signaling is also crucial for CNS development. Wntl and 3a, Frz5 and 8,
and P-catenin, for example, are expressed in the ventricular and subventricular
zones (VZ/SVZ) in the developing brain (Chenn et al. 2000; Ikeya et al. 1999;
Lee et al. 2000). Inactivation of Wntl, Wnt3a, or B-catenin causes developmental
brain defects (McMahon and Bradley 1990; Reya and Clevers 2005). Moreover,
overexpression of a stabilized form of B-catenin in neural precursor cells caused
a hyperplasia of lateral ventricles (Chenn et al. 2000). Some factors in the Wnt
signaling pathway, including (-catenin and axinl (an inhibitor in the pathway), are
mutated in medulloblastomas (Dahmen et al. 2001; Zurawel et al. 1998). Thus
these findings suggest that hyper-activation of Wnt signaling may promote brain
tumorigenesis.

Hedgehog Signaling Pathway

Hh signaling is also involved in proliferation, development, and tumorigenesis
(Pasca di Magliano and Hebrok 2003; Ruiz i Altaba et al. 2002a, b). In mammals,
there are three Hh members, Sonic, Desert, and Indian, all of which are secreted
proteins. When Sonic Hh (Shh), for example, binds to the Patched! (Ptcl) trans-
membrane receptor, another transmembrane protein, Smoothened (Smo), which is
normally restrained by Ptc, is relieved and activates the zinc-finger transcription
factor Gli. Activated Gli accumulates in the nucleus and induces the expression
of target genes, including wnt, insulin-growth factor 2 (igf2), and pdgf receptor o
(Fig. 2.2¢). There are three Gli transcription factors in mammals. Glil and 2 func-
tion as activators of Shh signaling, whereas the cleaved form of either Gli2 or Gli3
antagonizes the Shh-Glil/2 signaling pathway. The Shh signaling pathway is essen-
tial for CNS development: Shh, Ptc, Gli2, or Gli3 knockout mice die before birth
with severe defects in the brain, although Glil knockout mice develop normally
(Ding et al. 1998; Matise et al. 1998; Palma and Ruiz i Altaba 2004; Park et al.
2000). Conditional inactivation of Smo blocks NSC proliferation in vivo and in vitro
(Machold et al. 2003). Together with the finding that Glis, Ptcl, and Smo are all
expressed in the VZ/SVZ, these observations suggest that Shh signaling may be
essential for the maintenance of NSCs.

Ectopic activation of Hh signaling in CNS is likely to lead to brain tumor forma-
tion (Pasca di Magliano and Hebrok 2003; Ruiz i Altaba et al. 2002a, b). For example,
Glil is highly activated in many brain cancers, including medulloblastoma, glio-
blastoma, and primitive neuroectodermal tumors, some of which also have muta-
tions in Ptc1 (Goodrich et al. 1997). It was shown that overexpression of Glil in the
developing tadpole CNS gives rise to brain tumors (Dahmane et al. 2001). Moreover,
cyclopamine, which is a specific inhibitor of Smo, blocks the growth of several
primary gliomas, medulloblastomas, and glioma cell lines (Berman et al. 2002;
Dahmane et al. 2001). Taken together, these findings suggest that Hh signaling plays
an important role in brain tumorigenesis.
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CSC Models

In Vivo Models

Using a combination of transgenic mice and a retrovirus system, some groups have
demonstrated that TSCs and differentiating cells form tumors in vivo. For instance,
Holland and his colleagues infected transgenic mice that expressed the avian leukosis
virus (ALV) receptor under the regulation of either a nestin enhancer or a gfap
promoter, with recombinant ALVs encoding oncogenic genes, such as platelet-
derived growth factor (PDGF) receptor beta, or activated Akt, or activated Ras, and
found GBM had developed in the brain (Dai et al. 2001; Uhrbom et al. 2002). De
Pinho and colleagues overexpressed a constitutively active form of epidermal
growth factor (EGF) receptor in either NSCs or astrocytes from Ink4a/Arf”" mice,
transplanted them into the brain, and found that the cells formed high-grade gliomas
(Bachoo et al. 2002). Thus, these findings suggest that NSCs and astrocytes are cells
of origin for brain tumors. However, since tumors would be, in theory, generated
from one transformed cell, these tumor models, in which many transformed cells
are generated or injected at the same time, may not provide an answer to whether
NSCs and astrocytes are bona fide cells of origin for malignant glioma.

In Vitro Models

It still remains controversial whether CSCs arise from TSCs, committed precursor
cells, or differentiated cells. In addition, the relationship between cell of origin for
CSCs and genetic alterations have not yet been elucidated, although a number of
oncogenes and tumor suppressor genes have been well characterized in tumori-
genesis. Using cell lineage markers and new methods including FACS, it is possible
to purify the cells. We can then overexpress oncogenes or knock down tumor-suppressor
genes in the cells, examine the relationship between cell of origin for tumors and
genetic alterations and find therapeutic targets (Fig. 2.3). Indeed, it has been demon-
strated that overexpression of exogenous oncogenes can induce hematopoietic stem/
progenitor cells to transform into leukemic stem cells (Cozzio et al. 2003; Huntly
et al. 2004; Krivtsov et al. 2006). We and others also succeeded in generating glioma
stem cells by overexpressing glioma-related oncogenes in neural lineage cells and
in finding therapeutic targets by comparing gene expression profile of induced CSC
models with that of human tumor spheres (Hide et al. 2009; Ligon et al. 2007). Thus
these data suggest that, using similar methods, we might generate any CSCs from
TSCs, amplifying precursor cells and/or differentiated cells, characterize them, and
identify targets for curable therapy.
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Fig. 2.3 Suategy for
identifying factors specific
to CSCs. Purified TSCs,
committed precursor cells,
and differentiated cells that
are transfected with various
types of oncogenes and/or
siRNA/shRNA for tumor
suppressor genes, transform
into CSCs that are capable
of self-renewal, positive

for TSC markers and show
malignancy. By comparing
gene expression profiles

of such induced CSCs with
that of human CSC-enriched
population (tumor spheres
and TSC marker-positive
cells), novel CSC markers
and therapeutic targets would
be identified
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A number of new stem cell markers and techniques have been utilized to identify

and purify CSCs during last several years. However, it is not yet known whether or

not such CSCs consist of homogenous population, as CD133~ and non-SP cells as
well as CD133* and SP cells contain tumorigenic cells. Therefore it is still essential
to establish experimental strategies, including the single cell analysis, to identify
bona fide CSCs and to characterize them, leading to the discovery of novel thera-

peutic targets and methods.
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(2002) since two such references exist in the list. Please retain
the appropriate one and check for the same throughout the text.

AU7

Please note that cross-reference “Fig. 2.3C” has been changed to
“Fig. 2.2¢” given in the sentence “Activated Gli...”

AUS8

References Blazek et al. (2007), Chenn and Walsh (2002).
Bredel and Zentner (2002), Hayflick (1965), Matsui et al.
(2004), Read et al. (2009), Suetsugu et al. (2006), and Yuan et
al. (2004) are not cited in the text. Please check.
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