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Table 2. Selected relationships between the 47 putative master regulators and the 5 functional categories with published
evidence.

mode of action (E=M) evidence

regulator function -logye(g-value)

FOSL1 migration 9.82 29 2 42 3 41 [25]

EPAS1 adhesion 5.90 26 1 10 0 16 [271

FOXF1 metastasis 6.10 24 0 9 0 8 [31]

CEBPD metastasis 4.88 17 2 10 0 9 [31]

HIF1A adhesion 3.84 10 0 ‘25 3 10 27

migration 5.00 18 3 25 4 21 [42)

SNAI2 migration 3.45 36 2 25 14 25 [25]

invasion 445 9 3 18 6 21 [44]

TCF7L2 migration 4.52 19 10 18 1 27 {481

=

metastasis 239 5 0 5 3 9 [50]

invasion 2.69 9 2 5 2 12 [50]

migration 5.10 7 10 16 5 16 [53]

migration 3.31 19 2 7 7 14 [25]

ETV1 invasion 2.50 13 1 13 5 7 [56]

MAFB metastasis 4.41 9 0 3 8 6 [31]

RUNX1 adhesion 6.27 15 5 16 12 14 [58]
YAP1 migration 3.30 7 2 20 0 9 [60]
The labels “Af", "Al”, “Ift”, and “1{}", and “— " indicate the number of the five modulator modes of action for the relationship between a regulator and its target included

in the functional gene set: “the activation of a regulator on the expressions of its target genes with the functional category was increased by the modulator”, “inhibition
increased”, “activation decreased”, “inhibition decreased”, and “the modulator mode of action is not determined”, respectively.
doi:10.1371/journal.pone.0020804.t002
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increased. These results suggested that reduced expression of
miR-141 disrupts the negative feedback loop between miR-141
and ZEB1 (Figures 6a and 6b), which would allow ZEBI to
decrease the expression of E-cadherin, as illustrated in Figure 6¢.
It should be noted that these results cannot be predicted by
traditional graphical models which infer a static gene network
structure.

Identification of relationships between regulators and
epithelial-mesenchymal transition-related functional
gene sets

The EMT-dependent relationships between downstream target
genes for each regulator and previously curated functional gene
sets in each sample were analyzed by applying gene set analysis
(see Methods for details) to the constructed gene networks for 762

a i si KLF5-#1

Mock TGF-B

si KLF5-#1

E-cadherin
Vimentin
a-tubulin

Figure 7. Induction of EMT by KLF5 knockdown in A549 NSCLC
cell line. (a) Phase contrast images of A549 cells 72 hours after sSiRNA
transfection, showing a fibroblast-like morphology in siKLF5 treated
cells. TGF-f treatment serves as a positive control for EMT induction in
A549 cells. (b) Representative immunofluorescence staining images,
showing reduced E-cadherin expression in siKLF5-treated A549 cells. (c)
Western blot analysis of E-cadherin and vimentin, showing EMT-related
changes in their expression in A549 cells treated with two differenct
siRNAs.

doi:10.1371/journal.pone.0020804.g007
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cancer cell lines. We tested five curated gene sets included in
Ingenuity Knowledge Base (IKB; http://www.ingenuity.com).
These gene sets were related with adhesion, migration, invasion, and
metastasis which were hallmarks of EMT [5], and EMT itself. By
using gene set analysis, the statistical significances (g-values) for the
enrichments of downstream genes for the 1732 regulators on the
five functional gene sets were calculated in each of the 762 cell
lines. These results can be downloaded from the supporting web
site (File S4; http://bonsai.hgc.jp/ ~ shima/NetworkProfiler).

To search for regulators that strongly affected the five EMT-
related functional gene sets, the change in the enrichment score
during the EMT and their integral g-value were calculated. The
result was summarized by a regulator function matrix (Table S7).
We focused on 45 regulators with the integral g-values less than
1071 as putative master regulators that strongly enhanced the
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Figure 8. miR-100-induced changes in biologic characteristics
in A549 NSCLC cell line. (a) Quantitative reai-time RT-PCR analysis of
miR-100 in six NSCLC cell lines, showing low miR-100 expression in
A549, NCI-H727 and NCI-H1437. (b) Motility assay showing increased
migration in miR-100-transfected A549 cells. Error bars indicate SE in
three independent experiments (*, p <0.05). NC#2, negative control. (c)
Western blot analysis of E-cadherin, vimentin and o-tubulin, showing
lack of noticeable changes in miR-100-transfected A549 cells (d)
Representative phase contrast microscopic images showing negligible
changes in miR-100-trasfected A549 cells.
doi:10.1371/journal.pone.0020804.9008
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functional gene sets related with the EMT. Interestingly, among
the 45 regulators, 17 regulators were downstream targets of
transforming growth factor -1 (TGFB1), a master switch of EMT
[24], with published evidence (Table S8). This result suggests that
these regulators have crucial roles in TGFBI1-induced EMT.

As a control, we tested how well the NetworkProfiler analysis
identified known relationships between regulators and functional
gene sets in the Ingenuity Knowledge Base. The known functional
relationships of the 45 putative master regulators are shown in
Table 2. For example, FOSLI increases the migration of MDA-
MB-436 celis [25] and the invasion of A549 cells [26]. SMAD3
increases the adhesion [34], the metastasis [35], and the migration
[36] of cells, respectively. Similarly, HIF1A increases the adhesion
of undifferentiated trophoblast stem cells [27], the metastasis of
LM2 cells [41], the migration of HUVEC cells [42], and the
invasion of Achn cells [43], respectively.

Although some of the 47 putative master regulators have not
been reported to enhance the EMT-related functions in IKB,
some predictions were supported by other resent works which
were not included in IKB. For example, the prediction of
NetworkProfiler suggested that PTRF regulates gene sets related
with migration (g-value =2.45x 1078 and with metastasis (g-
value =2.03 x 107%) during the EMT. Consistent with the in
silico result, PTRF expression inhibits migration and correlates
with metastasis in PC3 prostate cancer cells [61]. Similarly,
NetworkProfiler predicted that miR-146 contributes to migra-
tion (g-value = 3.27 x 102 and invasion (g-value = 1.01 x 104
during the EMT. This in silico result is comparable with the in
witro result that miR-146 inhibits invasion and migration, and
acts as a metastasis suppressor [62]. In addition, some
predictions between miRNAs and functions seem reasonable
based on the known functions of the miRNA host genes. For
example, the prediction of NetworkProfiler provided the
hypothesis that miR-143 and miR-145 promotes metastasis (g-
value=7.17x10"* and 3.15x107% and migration (g-
value=1.37x107% and 6.10x10~%), respectively. miR-143
and miR-145 cooperatively target a network of transcription
factors, such as KLF4, to control smooth muscle phenotype
switching {63]. Since KLF4 increases the migration of cells [29)]
and induces EMT [10], these miRNAs might be related with
EMT-related functions or control EMT by targeting KLF4.
Again, it should be noted that these relationships between
regulators and functions cannot be predicted from one gene
network constructed by traditional graphical models, and only
the results of multiple network comparison between epithelial-
like and mesenchymal-like cells based on NetworkProfiler
enables us to support the recent biological knowledge and new
hypotheses about unknown relationships.

Comparison between in silico predictions and in vitro
results

To wvalidate the performance of NetworkProfiler, i silico
predictions obtained by NetworkProfiler were evaluated experi-
mentally. We first conducted i witro experiments of a new
candidate regulator of E-cadherin listed in Table 1, KLF5, to
investigate whether KLF5 affects E-cadherin expression and
induces morphologic changes characteristic of EMT using A549
lung adenocarcinoma cell line, which is well known to exhibit
EMT in response to TGF-f [64]. KLF5 knockdown markedly
altered a cobblestone epithelial morphology of A549 cells and
induced a more fibroblast-like morphology with reduced cell-cell
contact, which was similar to that seen in TGF-f-treated A549
cells (Figure 7a and Figure S1). Immunofluorescence analysis
showed significant reduction of E-cadherin expression in A549
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cells knocked down for KLF5 (Figure 7b), which was also
confirmed by western blot analysis (Figure 7c¢). Conversely,
vimentin expression was shown to be modestly increased by
siKLF) treatment (Figure 7c). Consistent with the i vitro results,
the prediction of NetworkProfiler suggested that KLF5 affects E-
cadherin expression as well as Vimentin expression during the
EMT, since the changes in the regulatory effects from KLF5 to E-
cadherin and Vimentin were much larger compared with the
other regulators (12.42 and 16.57, respectively) which was ranked
15-th and 10-th among the 1732 regulators (Table S9). The result
of gene set analysis (Table S7) also suggested that KLF5 affects
EMT (q-value = 1.60 x 10~24). Thus, we consequently found that
wm siheo predictions obtained by NetworkProfiler was confirmed
with the results of & vitro experiments; KLF5, a newly identified
candidate regulator of EMT, was shown to affect expressions of E-
cadherin and Vimentin as well as morphologic characteristics
related to EMT as a repressor of EMT.

We also conducted in witro experiments to validate functional
involvement of a novel candidate EMT-related microRNA, miR-
100 whose expression was increased in 762 cancer cell lines during
the EMT (Figure S2). miR-100 was found to be expressed at a low
level in A549, NCI-H727 and NCI-H1439 NSCLC cell lines,
which had low EMT-related modulator values among the 762 cell
lines panel (Figure 8a). miR-100 was transiently introduced into
A549 cells, resulting in a significant increase of cell migration
activity (Figure 8b). However, overexpression of miR-100 did not
affect expressions of an epithelial marker, E-cadherin, and a
mesenchymal marker, vimentin (Figure 8¢), and also did not
influence cell morphology (Figure 8d). However, overexpression of
miR-100 significantly increased cell migration without noticeably
affecting morphology in NCI-H727 and NCI-H1437 cells (Figure
S3). Consistent with the i wvitro results, the prediction of
NetworkProfiler suggested that miR-100 enhances migration (g-
value = 1.42 x 10%) but does not affect EMT itself (g-value = 0.24)
from gene set analysis (Table S7). It also suggested that miR-100
does not affect the expressions of E-cadherin and Vimentin during
the EMT, since E-cadherin and Vimentin were not target genes of
miR-100 in all the 762 cell line-specific gene networks related with
the EMT(Files S1, S2, and S3) and the changes in the regulatory
effects from miR-100 to E-cadherin and Vimentin were much
smaller compared with the other regulators (0 and 1.72,
respectively), which were ranked 371-th and 151-th among the
1732 regulators (Table S9). Thus, we conclude that several
hypotheses of miR-100 functions provided by NetworkProfiler are
consistent with the results of i vitro experiments; NetworkProfiler
has the potential to uncover novel biological mechanisms.

Discussion

We developed a novel algorithm called NetworkProfiler to infer
patient-specific, modulator-dependent gene regulatory networks
from gene expression data. Unlike traditional methods that infer a
static network for a specific state of a cell or an averaged network for
many patients, NetworkProfiler can be used to construct patient-
specific gene networks for specific diseases, such as cancer.
Subsequently, information about the regulatory effects of individual
genes and functional gene sets can be extracted from these networks.
In order to show the performance of NetworkProfiler, we applied
NetworkProfiler to microarray gene expression data from 762
cancer cell lines to identify the system changes that were related to
the EMT. As a result, we identified 25 EMT-dependent regulators
of E-cadherin. Although some of these regulators have been
reported in the literature, others may be novel master regulators of
E-cadherin that induce the EMT. Moreover, in comparison to the
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traditional SEM approach, the performance of NetworkProfiler was
superior for identifying regulators of E-cadherin during the EMT.
We also showed that NetworkProfiler can reveal regulatory changes
of E-cadherin during the EMT. In particular, our results suggested
that decreased expression of miR-141 disrupts the negative feedback
loop between miR-141 and ZEBI, which would allow ZEBI to
decrease the expression of E-cadherin.

Furthermore, we also identified putative relationships between
regulators and EMT-dependent functional gene sets, some of
which had published evidence. Based on the significance of the
enrichment of downstream target genes for the regulator on the 5
functional gene sets, we identified 45 putative master regulators for
the EMT. We found that 17 regulators were downstream targets of
TGFBI that is a master switch of the EMT. We then showed that
NetworkProfiler can not only predict the relationships between
these regulators and functions that were supported by many
published evidence, but also produce new hypotheses that some of
them might enhance EMT-related functions or induce EMT.

Finally, it is of note that we were able to validate the i sifico
predictions obtained by NetworkProfiler in our i vitro experiments.
KLF5, a newly identified candidate regulator of EMT, was
experimentally shown to affect E-cadherin expression as well as
morphologic characteristics related to EMT, validating the
NetworkProfiler-based prediction that KLF5 is a negative regulator
of EMT. We also conducted in witro experiments of another
regulator, miR-100, for which NetworkProfiler predicted its
association with some EMT-associated functions. As a result, we
found that the predicted miR-100 functions conformed to the results
of in vitro experiments. Thus, we conclude that the effectiveness of
the proposed method was validated not only from published
literature but also from new i vitro validation experiments.

We anticipate several possible applications and extensions of
NetworkProfiler. In this study, we only focused on the system
changes that are associated with the EMT. NetworkProfiler also
could be used to infer system changes and reconstruct modulator-
dependent gene networks for other well-defined modulators, such
as drug sensitivity and prognosis risk. Currently, a significant
limitation of NetworkProfiler is that the modulator must be one-
dimensional. However, cancer development is a multivariate
process. It may be possible to use multivariate kernel functions in
NetworkProfiler to overcome this limitation.

During the past decade, cancer therapy has become increasingly
personalized [2,3]. Unlike the traditional “one-size-fits-all”
approach to cancer therapy, patient-specific cancer therapy
reduces the side effects of chemotherapy and predicts the odds
of cancer recurrence more accurately by tailoring cancer
treatment to specific genetic defects in the tumors of individual
patients. However, this goal is not an easy task since cancer is an
extremely complex and heterogencous disease. We believe that
NetworkProfiler will help elucidate the systems biology of cancer
and facilitate personalized chemotherapy.

Materials and Methods

Cell lines and reagents

Human non-small cell lung cancer (NSCLC) cell lines, A549, NCI-
H1437 and NCI-H727, were purchased from American Tissue
Culture Collection, while other NSCLC cell lines, Calul, Calu6 and
SK-MES], were generously provided by Dr. L. J. Old (Memorial
Sloan-Kettering Cancer Center). Cells were maintained in RPMI
1640 supplemented with 10% fetal bovine serum. The anti-E-
cadherin antibody was purchased from BD Transduction Labora-
tories, anti-vimentin from Santa Cruz Biotechnology, anti-a-tublin
from Sigma Aldrich, and anti-mouse IgG from Cell Signaling
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Technology. The Alexa-conjugated anti-mouse IgG was purchased
from Molecular Probes. siRINAs against KLF5 (siKLF5 #1 and #2)
and a negative control (siNC) were purchased from Sigma Genosys.
Pre-miR has-miR-100 and negative control #2 were purchased from
Ambion. Human TGF-f was purchased from R&D Systems, Inc.

Immunostaining, western blot analysis and in vitro
motility assay

2% 10* cells in 6-well plates were transiently transfected with either
20 nM siRNA or 10 nM Pre-miR molecules using Lipofectamine
RNAIMAX (Invitrogen), as previously described [65]. Immunoflu-
orescence staining was carried out after fixation with 3.7%
formaldehyde and postfixing with 0.1% Triton X-100 each for
10 min at RT. Photographs were taken 72 hr after transfection. Cells
were harvested 48 hr after transfection for western blot analysis. In
vitro motility assay based on Transwell-chamber culture systems was
performed, as previously described [66].

Quantitative real-time reverse transcription (RT)-PCR
analysis

Quantitative real-time RT-PCR analysis of KLF5 was per-
formed using Power SYBR Green (Applied Biosystems) and the
following PCR primers:

5'-CCCTTGCACATACACAATGC-3' and 5'-GGATGGA-
GGTGGGGTTAAAT-3'. Quantitative real-time RT-PCR anal-
ysis of miR-100 and RNU44 was performed using TagMan
probes and 7500 Fast Real-Time PCR system (Applied Biosys-
tems), essentially as previously described [67].

NetworkProfiler

NetworkProfiler employed a varying-coefficient structural
equation model (SEM) to represent the modulator-dependent
conditional independence between gene transcripts. Let there be q
possible regulators, Ry, ... ,R,, that may control the transcription
of the k-th target gene T} when the modulator M =m. Then the
varying-coefficient structural equation model for Ty is

g
Ti="> Bulm) Rj+ex,
=0

where B (m) is the coefficient function that represents the effect of
Rj on Ty, Ry=1, and g is a noise term. If T} = Ry, then the term
B (m)-R; can be omitted from the model, i.e., By (m) =0 for all m.
By estimating the parameters f3;;(1), we obtain the transcriptional
regulatory gene network at M =m.

We used a kernel-based method to estimate these parameters.
Let there be n sets of gene expression profiles. Then, the SEM for
the a-th sample can be rewritten as

g
tok = E Biko Toj + as0=1, ... 1,
j=0

where fok, 7oj, and m, are the values of the k-th target gene, the /-
th regulator, and the modulator for the a-th sample, respectively;
ror =1, and B, = B (my). For n samples, we obtain # modulator-
dependent gene regulatory networks, ie., the regulatory effects of
Ry (=1,...,9) on Ty (k=1,...,p) are determined by
Bm, ... ,qun, where Bjka is the estimate of B,

We assumed that the values of the coecfficients are almost
constant for the neighborhood samples of the o-th sample with
respect to the modulator /m, that is, B, ~ ¢ for the i-th sample that
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satisfies |m; —m,| < o for some constant ¢ and small 8. Then, we
estimated the parameters By, for fixed « by minimizing a
regularized kernel-based weighted residual sum of squares

1 A
LBk - - - Boal i) = 5 D {te— D Buary} Kms—mohi)
i=1 j=1

N Vi

o

ko D Wik | B + 22 Z Bieas (1)
j=1
where K(m; —mylhy) is a Gaussian kernel function defined by

K(m;—myh) = exp{ - %(mi—mm)Z},

and Ay, and vy, are hyperparameters that control the L; (lasso
[68]) and L (ridge [69]) penalties, respectively. In addition, wj, is
an importance weight for By, and Ay is the bandwidth of the
Gaussian kernel. The kernel function K(m; —myl|hy) defines the
neighborhood around the a-th sample in terms of M; a large value
of K(m;—mgy|hi) means that the i-th sample is in the
neighborhood of the o-th sample. By fixing Ara, Yty Wike, and
hi, we obtain the estimates

{Bikes - - - By} = argrlglin Li(Bikos - - - sBaiea)-

ke

This parameter estimation method is a weighted version of the
elastic net [22]. The L; penalty zeroes some coefficients [68],
which produces a sparse network structure. In contrast, the L,
penalty stabilizes the solution by a grouping effect that promotes
the collective inclusion or exclusion of highly correlated variables
in the model [22]. The importance weights Wi, allow tuning
parameters to take on different values for different coefficients f,.
For example, if wjk, has a large value, then an estimator fi,, tends
to be zero. In contrast, if wj, has a small value that is nearly equal
to zero, Bjktx tends to be non-zero. These weights create a sparser
network structure than the lasso and elastic net methods. The
parameters f3;, were estimated by using a recursive procedure,
and the weights wy, were updated by Wik = 1/(ﬁ]k“+§) [70]
where ﬁjka is the estimate from the previous step and =107
avoid dividing by zero. Then, the modulator-dependent netwqus
for n samples can be derived from the estimates of fy,
(j=1,...,9, k=1,...,p,and a=1,...,n).

For convenience of subsequent explanations, we introduce the
following notations:

K1a(hi) ik
tkoc(hk) =

,and

Kna(Pic) Lk
K1a(h) 11 Kialhi) r1g

R, (hi)= : : ,
1 (ic) Tt

where K, (hy) =/ K(m; —my|hy).

’me(hk)'rnq
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In these expressions, #4, () and Ry (M) were normalized so that
the means and variances for #y,(/x) and each column of R,(A;)
were 0 and 1, respectively. As a result, the intercept fy;, was not
included in the loss function (1). For fixed /y, the loss function (1)
can be minimized by using a kernel-based weighted version of the
recursive elastic net [70]. The tuning parameters Ak, and y;, were
selected by minimizing a modified version of the bias-corrected
weighted Akaike information criterion (AIC) [71]:

21, (i )(Af o+ 1)

mWAICc, = = R
. o) — Af g — 2

(na (i) + 1)- log (2n7,) +

where ny(hi)= >, kw(hi), and 6‘,2(“ is estimated by

L1 A

b= D) ke i) — ReChi) B 15
with By=utes - - Byea)- In addition, dfy, is the unbiased
estimate of the degrees of freedom given by

dfa = tr [(ROuY RCu) + i) ™ RO R(1))

where I is the identify matrix and R(hy) is the submatrix of R(hy),
which has columns that correspond to the nonzero coefficients,
respectively.

The NetworkProfiler algorithm is shown below:

Algorithm: NetworkProfiler.

Iiwpe < 1 (j=1,...,9)

2: iter « 1

3 for y,, =

4: repeat

5: Calculate Brall,r] and mWAICc,[Lr] corresponding to
Ao = Aie[1] (1 L.

6: zr[iter] - min{mWAICcka(l,r); I=1,...,L}

7: I"—arg min/{mWAICc,(,r);/=1,...,L}

8: if z,[iter| —z,[iter — 1] >0 then

9: Exit loop

10: else

11: z*[r]«ziter]

12: ﬁka[] “ ﬁjca[l r]

13: ija“‘l/(lﬂjka(r)|+é) j=1,....9)

14: iter «iter +1

15: end if

16: untill iter reaches to M.

17: end for

18: r*«arg min, {z*[r];r=1,...,G} _

19: Return the coefficient vector f, = i, [r*].

The results from NetworkProfiler, which are the estimates of ¢
coefficients By, (f=1,...,q) for the k-th target gene of the a-th
patient, depend on the values of Ax. We used cross-validation to
select an optimal value of /i and estimate ¢ xn coefficients,
Bikts - - - sBgin by minimizing the cross-validation error:

=ylr] (r=1,

.,G) do

CVi= Z(tak- ,(k;‘) ro)’, @)
aeS

where S is a randomly selected set of samples and ,31 koo s

B
. sﬁqka
are estimated from the remaining samples by minimizing:
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The algorithm in NetworkProfiler for minimizing this loss
function (3) is shown below:

Algorithm: Conditional
validation.

1: for hy=h; (I=1,...,H) do

optimization with cross-

: b —argminy, {CVi[hy|;1=1,... H}
:forazl,;..,ndo .
- 9: Caleulate B, [h}], - - - Bgialf] with NetworkProfiler.
10: end for
_11: Return a
ﬂkl(hltl s aﬁkn(hlt)'
Subsequently, the modulator-dependent gene networks for n
samples are determined from the coefficient vectors B (), - -
Brn(hie) (k=1,...,p) by applying the above algorithm for all
k=1,...,p. The computational cost of this algorithm rapidly
increases as the number of samples and genes increase. Thus, for
computers that only have a single central processing unit (CPU), this
algorithm is only practical for medium-sized networks with up to
several genes. However, since this algorithm can be executed in
parallel for every k; it can be run on a stand-alone workstation with
multi-core CPUs and computer clusters. Figure S4 represents the
histogram of computational times based on 12 core CPUs (Intel
Xeon Processor E5450 (# of cores = 4, clock speed = 3.0GHz) x 3)
for calculating 762 cancer cell line-specific gene networks from
13,508 x 762 gene expression data through 100,000 iterations
when 100 target genes were randomly selected among 13,508 genes
and the number of regulators was not restricted, i.e., 1732 regulators
were used. The average computational time was about 9 days. In
this situation, we can find putative master regulators of the focused
target genes related with a modulator of interest. Of course, for
calculating gene networks of 762 samples for a large number of
target genes, a supercomputer is required. In this study, we used the
Super Computer System at the Human Genome Center, Institute
of Medical Science, University of Tokyo, Japan, to analyze 762 gene
networks with 13,508 target genes.

2: for all o such that aeS do

3: Calculate 3(1;:) [, - ,Bg;:)[hd with NetworkProfiler.
4: end for

5: Calculate CV[h].

6: end for

7

8

sequence of - the coefficient vectors

Signature-based hidden modulator extraction

When the modulator was a variable that is difficult to observe,
we used a signature-based hidden modulator extraction algorithm
to estimate the value of the modulator for each sample. This
algorithm takes seed genes that are related to the modulator and
computes the underlying latent variable of the modulator by using
principal components and extraction of expression modules (EEM)
[7]. Let M be a gene set that is related to the modulator and let
Xwm be an nx |M| matrix of n expression levels of M. Then, a
linear model, which is a special case of the single factor model
[72], relates M, a subset of M, to an underlying latent variable U
as follows:

@ PLoS ONE | www.plosone.org

Network Profiling Analysis

AXj—:O(oj-i-a]jU—i-slj,jGM*EM, (4)
where Xj is the expression level of the j-th gene in M*, ay; is the y-
intercept, ay; is a coefficient, and &’; is a noise term. We assumed
that other genes that do not include M* ({Xj;j gM*}) are
independent of U.

The values of U for n samples, w; (i=1, ... ,n), can be estimated
by the following procedure:

Algorithm: signature-based hidden modulator
extraction.

1: For a given set M, find a subset M* based on the expression
coherence with the EEM algorithm [7].

2: Given M, singular value decomposition of the data matrix
X\ estimates u; by the largest principal component.

3: Return the values u; (i=1,...,n).
In the first step, we estimate M". In the second step, we assume
that the noise terms & have Gaussian distributions with equal
variances. As a result, the singular value decomposition generates
maximum likelihood estimates of u; for the single factor model

[72].

Regulatory effect

To identify upstream regulators that had strong effects on the
expression of a target gene of interest in the constructed
modulator-dependent gene networks, we defined a measure,
called the regulatory effect, of the effect of the j-th regulator on
the k-th target gene in the a-th sample as

ik
REjkO(: Z ﬁ? )(ma)'raj,
Ie”jka

(5)

where T, is the set of all possible paths from R; to T, and

iiy“’k)(mm) is the product of the estimated coefficients on the /-th
path that includes 7j,. For example, given all the possible paths
from R; to T, in the a-th sample (Figure S5), the set 124 is

e ={Ri~»T2,Ri >R3> T2,Ri >R3> Ry~ T2}, (6)

and the regulatory effect RE1y, is

RE 15, = (Bios + BisaBrau + Bl3a'B34a‘B42a)‘raj- (7

In our analysis, the length of the paths from R; to Tk is restricted
to either 1 or 2.

To determine how the modulator affects the regulatory effect
REi, we also defined the change in the regulatory effect of the j-
th regulator on the k-th target as

RECy=max{REq;a=1,...,n} — min{RE,;a=l,...,n}. (8)

In addition to this definition, it is also possible to use percentiles
instead of max and min to achieve more robust results. However,
in our analysis, we used max and min to increase the power of the
method. It should be noted that the change in the regulatory effect
REC;; does not explain the mode of action for the modulator with
respect to the regulator-target relationship. File S5 (http://
bonsai.hgc.jp/ ~shima/NetworkProfiler) is provided to determine
the modulator mode of action by statistical test.
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Gene set analysis of downstream genes for a regulator

To identify regulators that enhanced the functions of their
targets, we calculated the statistical significance of the enrichment
of targets for a given regulator in each sample. To test the
enrichment, we use the degree of independence between the two
properties:

Aj, :gene is in the list of targets for the j-th regulator in the
o —th sample

B, :geneis a member of the u-th priori set
Testing the association between the properties A, and B,
corresponds to Fisher’s exact test. The p-value calculated by this
test, Pjyy, indicates the probability of observing at least the same
amount of enrichment when downstream genes are randomly
selected out of all genes. Thus, a very small p-value gives strong
evidence for an association between A and B, for the j-th
regulator in the a-th sample. To correct for multiple hypotheses
testing, Benjamini-Hochberg (BH)-corrected p-values (g-values)
[73], Qjuq» were calculated.

To determine how the modulator affects the functions of
downstream genes for a regulator, we defined the enrichment
score, ES;,, as a change in the statistical significance of the
enrichment of targets for the j-th regulator on the u-th function:

ESj, = log (max{Q,; 2=1,...,n}/ min{Q,,;a=1,...,n}). (9)

Thus, a very large ES;, indicates that the modulator causes a
significant change of the enrichment of the targets for the j-th
regulator on the #-th function.

To identify putative master regulators that control more
functional gene sets than other regulators, we also calculated the
total enrichment score, TES;, by combining independent
enrichment scores, ESji,...,ES;y, where U is the number of
functional gene sets:

U
TES; =2 ES;.

u=1

(10)

The total enrichment score is equivalent to the difference of the
Fisher’s statistic —2 Zf:l log Py [74] which was used to combine
independent tests obtained from k studies based on the p-values,
Py,...,Pr. The Fisher’s method is based on the fact that the
statistic —2 3% log P, follows a chi-square distribution with 2k
degrees of freedom under the global null hypothesis that all null
hypotheses are true. A small integral p-value for the hypothesis
indicates that the j-th regulator controlled at least one or more
functional gene sets during the change of the modulator.

Supporting Information

Figure S1 Quantitative real-time RT-PCR analysis of
KLF5 in siKLF5-treated A549 cells.
(PDF)

Figure 82 Expression profiles of miR-100 in order of
ascending the EMT-related modulator values.
(PDF)

Figure 83 miR-100-induced changes in biologic charac-
teristics in NCI-H1437 and NCI-H727 NSCLC cell lines.
(a) Representative phase contrast microscopic images showing
negligible changes in morphology by miR-100 introduction in
both NSCLC cells lines. NC#2, negative control. (b) Motility
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assay showing increased migration by introduction of miR-100 in
both NSCLC cell lines. *, P<0.05.

(PDF)

Figure S4 Histogram of computational times for infer-
ring cancer cell line-specific gene networks running on
12 core CPUs. The 762 cancer cell line-specific gene networks
related with the EMT were calculated from 13,508 x 762 gene
expression data when 100 target genes were randomly selected
among 13,508 genes and the number of regulators was not
restricted, i.e., 1,732 regulators were used. The comptational times
were based on 12 core CPUs (Intel Xeon Processor E5450 (# of
cores =4, clock speed =3.0 GHz)x 3). The histogram was
calculated by 100,000 iterations.

(PDF)

Figure 85 Example of paths among four genes, R, T3,
R; , and Ry.

(PDF)

Table S1 List of candidate regulators mapped to 1183
transcription factors and 47 nuclear receptors.

(XLS)

Table S2 List of candidate regulators mapped to 502
buman microRNAs.

(XLS)

Table $3 List of coherent genes (p-value <10~°) related
to EMT calculated by extraction of expression module
(EEM).

(XLS)

Table S4 EMT-related modulator values of 762 cancer
cell lines calculated by signature-based hidden modula-
tor extraction.

(XLS)

Table 85 List of 370 putative master regulators of E-
cadherin during the EMT which were estimated by
NetworkProfiler.

(XLS)

Table $6 List of 627 putative master regulators of E-
cadherin which were estimated by a structual equation
model (SEM) with the elastic net.

(XLS)

Table 87 Regulator function matrix between 1732
regulators and 5 functions. The row and column indicate
regulator and functional gene set, respectively. The (7,/)-th element
represents the change during the EMT in the statistical
significance (-logg(g-value)) for the enrichment of target genes
of the i-th regulator on the j-th function. The last column indicate
the integral g-value of each row regulator which were used to
determine which regulator strongly affected the functional gene
sets.

(XLS)

Table 88 List of 17 putative master regulators (integral
g-value <10~1%) which correlated at least one or more
EMT-related functions and were known to be down-
stream targets of TGFB1 with published evidence from
Ingenuity Knowledge Base (http://www.ingenuity.com).
(XLS)

Table S9 List of the changes in the regulatory effects
from 1732 regulators to E-cadherin and vimentin during
the EMT.

(XLS)
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MicroRNA (miRNA)-encoding small non-coding RNA have been
recognized as important regulators of a number of biological pro-
cesses that inhibit the expression of hundreds of genes. Accumu-
lating evidence also indicates the involvement of miRNA
alterations in various types of human cancer, including lung
cancer, which has long been the leading cause of cancer death in
economically well-developed countries, including Japan. We previ-
ously found that downregulation of members of the tumor-sup-
pressive Jet-7 miRNA family and overexpression of the oncogenic
miR-17-92 miRNA cluster frequently occur in lung cancers, and
molecular insight into how these miRNA alterations may contrib-
ute to tumor development has been rapidly accumulating. The
present review summarizes recent advances in elucidation of the
molecular functions of these miRNA in relation to their roles in the
pathogenesis of lung cancer. Given the crucial roles of miRNA
alterations, additional studies are expected to provide a better
understanding of the underlying molecular mechanisms of disease
development, as well as a foundation for novel strategies for can-
cer diagnosis and treatment of this devastating disease. (Cancer
Sci 2011; 102: 9-17)

Lung cancer, the number one killer

Lung cancer is the leading cause of cancer death in most econom-
ically developed countries, including Japan. Solid evidence indi-
cates that the disease develops from accumulations of various
genetic and epigenetic alterations"~? resulting in alterations of
gene expression profiles, which are tightly associated with the
clinicopathological features of lung cancer. MicroRNA (miRNA)
in the human genome were only recently discovered® and accu-
mulating evidence clearly indicates their roles in various crucial
aspects of gene expression regulation. We initiated a search for
miRNA that are dysregulated in lung cancer, which resulted in
the discovery of major representative miRNA involved in lung
cancer development with either tumor suppressive or oncogenic
roles. These miRNA are members of the ler-7 miRNA family and
among the most representative type of tumor suppressor
miRNA,® along with the miR-17-92 miRNA cluster, which is
recognized as a typical oncogene-type miRNA.® There is a
number of high-quality review articles dealing with the general
roles of miRNA alterations in carcinogenesis, ) thus in the
present review we specifically focus on recent advances related
to let-7 and miR-17-92, with special emphasis on their relation-
ships to lung carcinogenesis.

Discovery of miRNA in lower eukaryotes and humans

miRNA are evolutionally conserved approximately 22 nucleo-
tide-long short non-coding RNA molecules. As of March 2010,

doi: 10.1111/j.1349-7006.2010.01707.x
© 2010 Japanese Cancer Association

721 hairpin miRNA precursors and 1007 mature miRNA in the
human genome had been deposited into the primary database
(miRBase: http://www.mirbase.org/index.shtml). The genes first
recognized to encode miRNA were lin-4 and lez-7, both of which
were originally identified as heterochronic mutant genes and
affect the pro(gression of larval stages during the development of
C. elegans.'%'? As C. elegans develops, lin-4 is upregulated in
the first larval (L1) stage and suppresses expression of lin-14,
thus promoting progression from the L1 to L2 stage. Subsequent
downregulation of a second lin-4 target, lin-28, is required for
execution of the L3 larval stage. In contrast, let-7 is expressed
later in development and required for execution of the larval to
adult (L/A) switch, which occurs at the end of the L4 stage.
Mutations of lin-4 and let-7 have effects on the differentiation of
seam stem cells, resulting in reiteration of the larval stages. 119

miRNA are generated from long precursor transcripts and
have an imperfectly matched stem-loop structure. These primary
transcripts (pri-miRNA) are first processed into hairpin RNA
(pre-miRNA) by a nuclear ribonuclease, Drosha, then trans-
ported to the cytoplasm and processed by a second ribonuclease,
Dicer. Subsequently, the single stranded miRNA (mature miR-
NA) are incorporated into a miRNA-induced silencing complex
(miRISC) and interact with ‘‘seed’’ sequence-matched recogni-
tion sites at the 3" UTR of target mRNA. These miRNA-mRNA
interactions result in inhibition of expression of the target genes
at the post-transcriptional level through translational inhibition
and mRNA destabilization."*'> "Each miRNA directly
represses, albeit mildly in general, hundreds of target genes,
most of which contain conserved seed sequence(s) at the 3’
UTR. Because a large number of miRNA is present in the human
genome, more than 60% of human protein-coding genes are tar-
geted by miRNA, 19 suggesting that miRNA abnormalities may
cause a wide spectrum of alterations in gene expressions.

let-7 alterations in lung cancer

In 2004, we reported that expression levels of the let-7 family
members are generally reduced in lung cancer when compared
with those in normal lung tissues, indicating an association with
poor prognosis in surgically treated 4}gaticnts who have tumors
with low levels of ler-7 expression.®® That study was the first
report of ler-7 alterations in any type of cancer, as well as of the
relationship of cancer patient prognosis with any type of miRNA
alteration. Perhaps more importantly, our experimental finding
that the introduction of let-7 into a lung cancer cell line with a
low level of let-7 expression significantly inhibited the growth
of lung cancer cells was the first direct indication that the
miRNA expression level has an effect on the biological behavior
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of cancer cells. Subsequently, Slack’s group identified K-ras as
a target of ler-7 and showed that antisense-mediated inhibition
of let-7 increased cancer cell division, whereas overexpression
of let-7 induced cell-cycle arrest in cancer cell lines.!”
Together, these findings observed in human lung cancer cells
appear to be consistent with the roles of let-7 in C. elegans, as
seam cells in ler-7 mutants fail to exit the cell cycle and reiterate
the larval stage, showing dysregulation of the cell cycle and cell
growth. The significance of reduced ler-7 expression in lung car-
cinogenesis was further supported in studies of genetically engi-
neered mice. Jacks’ group showed that lez-7 suppressed tumor
initiation in an autochthonous non-small cell lung cancer
(NSCLC) model of K-RasG12D transgenic mice, which was
effectively rescued by ectopic expression of K-RasG12D lack-
ing the 3" UTR.Y® TJer-7 also inhibited in vitro and in vive
growth of K—RasGlZD-expressing murine lung cancer cells and
human lung cancer xenografts.?® Inhibitory effects of let-7
against human lung cancer development have also been
supported by circumstantial evidence reported by Chin e al.,*?
who sequenced let-7 complementary sites (LCS) in the KRAS 3’
UTR from NSCLC cases and found that the single nucleotide
polymorphism (SNP) at LCS6 was significantly associated with
NSCLC patients who smoked <40 pack-years. Interestingly,
they also showed that this SNP results in KRAS overexpression
in vitro.

Each miRNA is thought to regulate tens or hundreds of protein
coding genes, thus it is reasonable to speculate that lez-7 downre-
gulates other growth-promoting genes, such as oncogenes
(Fig. 1). Indeed, HMGAZ2, which encodes a non-histone chromo-
somal high-mobility group protein with a putative oncogenic
function, has been shown to be under the control of lez-7.%Y In
several types of malignancy, the HMGA?2 gene locus is disrupted
by chromosomal translocation and loses its 3 UTR that harbors
multiple let-7 recognition sites, while HMGA?2 promotes anchor-
age-independent growth.?® In mice, Hmga2 promotes self-
renewal of fetal and young-adult neural stem cells, partly by
decreasing p16Ink4a/p19Arf expression, while let-7 expression,
which increases with age, negatively affects Hmga2 expression
and self-renewal capacity.'””’ Other targets of let-7 include vari-
ous cell-cycle-related genes such as cyclin D2, CDK6 and
CDC25A,%% as well as various oncofetal genes, including insu-
lin-like growth factor 2 mRNA binding protein 1 gIGF2BP1, also
called IMP-1/CRD-BP) and IGF2BP2/IMP-2,*> which are
known to bind various mRNA and regulate their translation,
leading to stabilization of crucial mRNA such as Myc."

Shell et al.®® also reported the importance of ler-7 in cancer
classification. Cancer cell lines can be divided into two groups,
epithelial type (II) and mesenchymal type (I), suggesting a pro-
gression from type II to type I through epithelial-mesenchymal
transition (EMT).?” Shell e al.®® found that cancer cell lines
that exhibit epithelial-type characteristics express higher levels
of let-7 than those with mesenchymal features, and suggested
that loss of let-7 expression may be a marker for less differenti-
ated and advanced cancer. Also, a joint study conducted by the
laboratories of Croce and Harris reported associations of
miRNA profiles with survival of patients with lung adenocarci-
nomas, and showed that high expression of miR-155 and low
expression of let-7a-2 were strongly associated with poor sur-
vival."* An association of reduced ler-7a level with unfavor-
able postoperative prognosis in patients with NSCLC was also
reported by Yu et al. using quantitative RT-PCR-based analysis,
in which a poorer prognosis was shown to be associated with
reduced ler-7 and miR-221 expression, as well as with increased
levels of miR-137, miR-372 and miR-182*.* Interestingly, a
search for miRNA differentially altered between lung cancer
patients who never smoked and those who were smokers showed
that downregulation of ler-7c and miR-138 was preferentially
present in the never-smoked patients.
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Fine tuning of let-7 expression level and cancer

In addition to the cancer-related genes described above, let-7
appears to have another interesting target (Fig. 1). We found that
let-7 directly downregulates Dicer through binding sites at the 3’
UTR.®" Dicer is an essential endonuclease required at the final
processing step in miRNA biogenesis that includes let-7. Overex-
pression of let-7 reduces the expression of Dicer as well as that of
a large number of other mature miRNA, whereas antisense-medi-
ated inhibition of ler-7 leads to upregulation of Dicer expression
associated with increased expression levels of mature miR-
NA.CY The existence of three conserved ler-7 target sites within
the open reading frame in Dicer was also reported,®® although
they appear to be less efficient than the 3’ UTR binding sites
(Tokumaru S and Takahashi T, unpublished observation 2008).
Therefore, the existence of ler-7-mediated negative regulation of
Dicer may provide a basis for the tightly regulated equilibration
of expression levels of Dicer and lez-7, as well as of other miR-
NA. Interestingly, let-7 appears to be a constituent of another reg-
ulatory loop within the miRNA processing steps (Figs 1,2).
Lin28 was shown to be a direct target for lezr-7-mediated inhibi-
tion, while it in turn inhibits Drosha- and/or Dicer-mediated pro-
cessing of let-7.%**% Both Lin28 and a homologue, Lin28B, are
overexpressed in approximately 15% of primary human tumor
samples in association with reduced expression of the entire let-7
family, as well as with a poor clinical prognosis.®> Furthermore,
negative regulation of the ler-7 family by Lin28 and Lin28B
involves induction of uridylation of the pre-let-7 3’-terminus.®
In addition, Lin28 proteins may directly recruit the uridylating
enzyme TUTase4 (TUTA4),%” also known as zinc finger, CCHC
domain containing 11 (Zcche11),®® to pre-let-7. The terminal
uridylation of pre-let-7 blocks Dicer processing and also pro-
motes its decay, while a tetra-nucleotide sequence motif (GGAG)
in the terminal loop is recognized by Lin28. Thus, other miRNA
with the same loop sequence motif may also be regulated via the
same mechanism. Indeed, Zcchcl1 has been shown to uridylate
miR-26a targeting IL-6 and stabilize IL-6 transcripts.®*

It is notable that reduced Dicer expression appears to be
involved in tumor development. We previously reported an
association of reduced expression of Dicer with poor prognosis
in lung cancer patients.“”’ Consistent with that finding in human
lung cancer, Jacks® group reported that knockdown of Dicerl
accelerated the tumorigenicity and invasiveness of a mouse lung
adenocarcinoma cell line, while conditional deletion of Dicerl
enhanced tumor development in a K-Ras-induced mouse model
of lung cancer.“?

Maintenance of stemness in relation to /et-7 expression

Oct4, Sox2 and Nanog, core regulators of ES cell differentia-
tion, co-occupy the promoters of differentiation-related tran-
scriptional factors and also several miRNA, suégesting miRNA
plays a role in regulation of differentiation.*”> A number of
mature miRNA are not expressed in ES or P19 EC cells,
whereas they are expressed at the late embryonic stage. Lin-28
binds conserved nucleotides in the loop region of lei-7 precur-
sors, ™ and effectively blocks their cleavage by the Drosha-
DGCRS micro?rocessor in the nucleus®*** and by Dicer in
the cytoplasm®® of embryonic stem cells (Fig. 1). In neuronal
stem (NS) cells, which are more differentiated than ES cells,
Lin-28 is downregulated by mir-125 (lin-4 homologue) and let-
7, which allows pre-let-7 processing to proceed. Suppression
of let-7 or mir-125 activity in NS cells leads to upregulation of
Lin-28 and loss of pre-let-7 processing activity, suggesting that
let-7, mir-125 and Lin-28 participate in an autoregulatory cir-
cuit that controls miRNA processing during NS cell commit-
ment.®” Thus, Lin28 functions as a negative regulator of
miRNA biogenesis, and may play a central role in blocking
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processed sequentially in the nucleus and cytoplasm. The biogenesis and functions of let-7 are regulated by Lin41, Lin28 and TUT4 in a complex
manner, while /et-7 plays the role of tumor suppressor by inhibiting the expression of tumor-promoting genes such as RAS and HMGAZ2.

miRNA-mediated differentiation in stem cells and certain can-
cers (Figs 1,2).

In addition to Lin-28, the zinc finger protein Lin41 is also a
target of let-7 and involved in the regulatory network that con-
trols pluripotency.“* Lin41 interacts with Dicer and the Ago
family at P-body, and acts as an E3 ubiquitin ligase, mediating
the ubiquitylation of Ago2.“® Therefore, Lin41 negatively reg-
ulates let-7 activity and co-operates with Lin28 in stem cells

Osada and Takahashi

(Figs 1,2). These findings indicate the importance of Lin-28 to
maintain pluripotency and are consistent with the finding that
Lin-28 is included in a cocktail of reprogramming factors
(Oct3/4, Sox-2, Nanog, Lin28) to create induced pluripotent
stem (iPS) cells from adult human fibroblasts.*> In addition,
Myc directly associates with the Lin28B promoter to induce
Lin-28B expression, resulting in let-7 repression. Accordingly,
Lin-28B loss-of-function significantly impairs Myc-dependent
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Fig. 2. Fine tuning of the expression level of mature /et-7 balancing
stemness and differentiation. Lin28/Lin28B and Lin41 are conserved
targets of the let-7 family, while the let-7 family is conversely under
negative regulation via inhibition of Drosha and Dicer bylLin28/Lin28B
and Ago2 by Lin41, thus implementing possible positive feedback
regulations.

cellular proliferation.*® The self-renewing progenitor popula-
tion in mouse mammary epithelial cells shows a unique miRNA
signature of high expression levels of miR-205 and miR-22, and
depletion of let-7 and miR-93, while enforced let-7 expression
was shown to induce loss of the self-renewing population, sug-
gestir(%)negative regulation of tissue progenitor maintenance by
let-7.

Other lines of evidence suggest the involvement of ler-7 in
carcinogenesis in relation to its function to regulate differentia-
tion. For example, let-7 expression is markedly reduced in mam-
mospheres/tumor-initiating cells of breast cancer and increased
along with cell differentiation.“® Conversely, forced expression
of let-7 has been shown to reduce cellular proliferation and
mammosphere formation, as well as in vivo tumor formation
and metastasis. Interestingly, silencing of H-RAS reduced the
self-renewal of mammospheres but had no effect on differentia-
tion, while that of HMGAZ2 enhanced differentiation but did not
affect self-renewal, suggesting that both H-RAS and HMGA2
are major target genes of ler-7 and de-repression of both is
involved separately in tumorigenesis.“*® In addition, those find-
ings indicate an important role for ler-7 and its regulation in the
regulation of pluripotency. In contrast to let-7, several miRNA
such as the members of the miR-290 family are expressed spe-
cifically in ES cells“? and positively regulate ES cell self-
renewal. ®%" Dgcr8-deficient ES cells are unable to suppress
self-renewal, because of defective biogenesis of miRNA. How-
ever, introduction of let-7 can suppress self-renewal and induce
differentiation, whereas miR-294, an ES cell-specific miRNA,
blocks the suppression of self-renewal by lez-7, suggesting that
let-7 and ES cell-specific miRNA alternatively regulate ES cell
fate, that is, self-renewal versus differentiation.®” Our recent
miRNA microarray analysis findings showed that lung adeno-
carcinomas are grouped into four major clusters with distinct
miRNA expression profiles. Along the same line, it is interesting
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that one of the clusters with characteristically low let-7 and high
miR-17-92 expression levels was related to a significantly worse
prognosis, and those patients exhibited significantly higher dys-
regulation of ES cell-related gene sets (Arima C and Takahashi
T, manuscript in preparation).

miR-17-92 overexpression in lung cancer

Our initial discovery of frequent downregulation of let-7 and its
biological and clinicopathological involvement in lung cancer
prompted us to search for miRNA conversely overexpressed in
lung cancers.”” Consequently, we found frequent and marked
overexpression, with occasional gene amplification, of clustered
miRNA (miR-17-92) within intron 3 of the C130rf25 gene at
13g31.3 in lung cancer samples, especially those with a small
cell lung cancer (SCLC) histology.” Stimulatory activity by
this miRNA cluster toward lung cancer cell growth was
observed, while antisense-mediated inhibition of miR-17-5p and
miR-20a, constituents of miR-17-92, induced apoptosis in miR-
17-92-overexpressing lung cancer cell lines, suggesting an
addiction to continued overexpression of miR-17-92 for cancer
development. In contrast to our approach, Hammond et al initi-
ated a study based on evidence suggesting the involvement of
the C130rf25 genomic region in B-cell lymphomas, as previ-
ously reported by Ota er al.®® in the results of detailed array
CGH analysis. Consequently, they identified overexpression of
miR-17-92 in occasional association with gene amplification in
B-cell Iymphomas(53) and showed that introduction of miR-17-
92 into hematopoietic stem cells in Ep-myc transgenic mice sig-
nificantly accelerated formation of lymphoid malignancies.
MYC transactivates expression of the miR-17-92 miRNA clus-
ter,®® while members of the myc gene family have been shown
to be frequently amplified and/or overexpressed in SCLC.®>
Interestingly, our previous studies of miR-17-92 and the myc
gene family in lung cancers suggested the existence of two
potential mechanisms that lead to overexpression of the miR-17-
92 cluster, that is, gene amplification of the miRNA cluster itself
and increased expression of the myc gene family, with or with-
out gene amplification. It is also important to note that a signifi-
cant role of the miR-17-92 cluster in tumorigenesis is also
supported by frequent retrovirus integration-mediated activa-
tions of mouse miR-17-92°% and paralogous miR-160a-363°"7
in mouse tumors.

Myc-E2F-miR-17-92 network

Overexpression of E2F1 induces inapprol()riate entry into the
S-phase, resulting in apoptosis induction.®® MYC and E2F1
positively regulate each other, while MYC-induced miR-17-92
negatively regulates E2F1,5% suggesting possible fine tuning of
the E2F1 expression level for correct regulation of S-phase
entry. In addition to Myc, the E2F family also transactivates
miR-17-92, which exerts a negative feedback loop, resulting in
suppression of E2F family expression.®*%? Therefore, the
expression levels of MYC, the E2F family and miR-17-92 are
finely regulated by each other, suggesting their crucial roles in
cell-cycle regulation (Fig. 3). miR-17-92 is preferentially over-
expressed in lung cancers with neuroendocrine features, espe-
cially in SCLC, which is known to exhibit overexpression of
members of the MYC gene family with frequent gene amplifica-
tion. We reported that survival of lung cancer cell lines with
miR-17-92 overexpression relies on the continued expression of
miR-17-92.6V Interestingly, we also found frequent accumula-
tion of constitutively phosphorylated H2AX (y-H2AX), which
reflects persistent DNA damage, preferentially in SCLC. Small
cell lung cancers almost invariably carry inactivated retinoblas-
toma (RB) and p53, which conceivably contributes to elicit dys-
regulated cell-cycle progress, leading to replication-dependent
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Fig. 3. Tumor growth stimulatory and apoptosis inhibitory regulations by miR-17-92 and its paralogous microRNA (miRNA) clusters via
inhibition of their target genes (marked with white letters on a blue background). The finely tuned network involving miR-17-92 Myc, E2F and

Rb is indicated by purple lines. EGFR; epidermal growth factor receptor.

DNA double-strand breaks. In fact, in NSCLC cells with wild-
type RB, knockdown of RB induced y-H2AX foci formation
and growth inhibition in NSCLC cells with wild-type RB, which
was canceled by overexpression of miR-20a. In addition, sup-
pression of miR-20a with antisense-oligonucleotides further
induced y-H2AX foci formation in a miR-17-92-overexpressing
SCLC cell line.®? RB disruption also induces ROS, which are
negatively regulated by miR-20a. Therefore, miR-17-92 overex-
pression may serve as a fine-tuning influence to counterbalance
the generation of DNA damage in RB-inactivated SCLC cells,
thus reducing excessive DNA damage to a tolerable level and
consequently leading to genetic instability (Fig. 4).%? These
findings are consistent with the report by Pickering et al.,®®
who showed the role of miR-17/miR-20a in the cell-cycle regu-
lation of fibroblasts. Inhibition of miR-17/miR-20a leads to G1
checkpoint activation due to an accumulation of DNA double-
strand breaks, resulting from premature temporal accumulation
of the E2F1 transcription factor. Thus, Myc-regulated miR-
17/miR-20a appears to play a role in controlling the precise tim-
ing of E2Flexpression and circumventing the G1 checkpoint
caused by E2F1 accumulation, which is perturbed in cancer
overexpressing miR-17-92. It is also important to note that the
consequences of coupling between the E2F/Myc positive feed-

Osada and Takahashi

back and E2F/Myc/miR-17-92 negative feedback loops have
been analyzed using a mathematical model, which predicted that
miR-17-92 plays a critical role in regulating the position of the
on—off switch related to E2F/Myc protein levels.®® Cyclin D1
may also be involved in this miR-17/miR-20a negative feedback
loop in breast cancer.>

Other targets of miR-17-92 related to cancer

Each miRNA may potentially influence more than 100 target
mRNA. Accordingly, a search for targets of miR-17-92, which
are actually affected in immortalized lung epithelial cells by the
components of this miRNA cluster, was conducted through glo-
bal expression profiling using differential tagging with iTRAQ™
reagent, followed by multidimensional liquid chromatography
and tandem mass spectrometry analysis, which resulted in iden-
tification of HIF-1o as a target for miR-17-92 (Fig. 4).® Inter-
estingly, an intricate and finely tuned circuit involving c-myc,
HIF-1o and miR-17-92 exists and plays a role in cancer cell pro-
liferation under normoxia in a cellular context-dependent man-
ner without interfering with the robust induction of HIF-1a for
cellular adaptation to hypoxia. Yan et al.®? recently reported
that hypoxia reduced miR-17-92 expression in colon cancer cells
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through p53-mediated repression by its direct binding to the pro-
moter of miR-17-92 and consequential competition with the
TATA-binding protein (TBP). They also showed that forced
expression of miR-17-92 markedly inhibited hypoxia-induced
apoptosis, whereas antisense-mediated inhibition of miR-17-5p
and miR-20a sensitized the cells to hypoxia-induced apoptosis,
indicating that p53-mediated repression of miR-17-92 expression
is likely to have an important function in hypoxia-induced apop-
tosis. In contrast, we did not detect a readily noticeable change
in miR-17-92 expression under hyéooxia in an immortalized nor-
mal bronchial epithelial cell line,® suggesting that there might
be different effects depending on the cellular contexts.

Additional targets for miR-17-92 have been reported in studies
that used various systems (Fig. 3). Transgenic mice carrying the
miR-17-92 transgene conditionally active in lymphocytes showed
increased proliferation and reduced activation-induced cell death
of lymphocytes, resulting in lethal lymphoproliferative and
autoimmune diseases.®® That study also found that miR-17-92
miRNA suppressed the expression of Pten and Bim, both of
which contribute to the phenotype. BIM, a proapoptotic BCL2
family member, functionally inhibits anti-apoptotic BCL2 family
members through physical interaction and plays an essential
role in apoptosis induction during lymphocyte differentiation.
PTEN encoding phosphatidylinositol-3,4,5-trisphosphate (PIP3)
3-phosphatase inhibits activation of the PDK1-AKT signaling
pathway through inhibition of PIP3 generation and is frequently
inactivated by mutations in several cancer types. Disruption of
both genes induces lymphoproliferative and autoimmune dis-
eases, suggesting that the lethal phenotype is attributable mainly
to repression of PTEN and Bim by miR-17-92.® Meanwhile,
disruption of miR-17-92 leads to upregulation of Bim and inhibits
B cell development during the transition from pro-B to pre-B.%
Another tumor suppressor gene, CDKN1A (p21Wafl/Cipl), is
also repressed by miR-17, miR-20a and miR-106b.©>7%7D

It has also been shown that miR-17-92 is involved in regula-
tion of angiogenesis. Although K-Ras-transformed colonocytes
were shown to form indolent and poorly vascularized tumors,
transduction of the Myc gene caused upregulation of miR-17-92
in K-Ras-colonocytes and neovascularization in related tumors,
in association with downregulation of anti-angiogenic thrombo-
spondin-1 (Tspl; and a related protein, connective tissue growth
factor (CTGF)."’® In addition, antisense-mediated suppression
of miR-17-92 expression partly restored Tspl and CTGF expres-
sions, while transduction of miR-17-92 reduced Tspl and CTGF
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Persistent yH2AX
foci in SCLC

Fig. 4. Counterbalance between RB inactivation and
miR-17-92 overexpression in SCLC. SCLC tumors
almost invariably carry RB inactivation and
frequently exhibit miR-17-92 overexpression, which
potentially attenuates the aberrant cell-cycle
progression and consequential excessive DNA
damage in cells with RB inactivation.

levels, resulting in larger, better-perfused tumors.? Similarly,
vascular endothelial growth factor (VEGF) induced expression
of miR-17-92 in endothelial cells, which was shown to be via
miR-18a-mediated inhibition of Tsplexpression.”™® These
results suggest a possible role of miR-17-92 overexpression in
tumor angiogenesis in lung cancer. In contrast to these reports
on the proangiogenic effects of miR-17-92, forced overexpres-
sion of miR-92a in endothelial cells was shown to block angio-
genesis both in vitro and in vivo through repression of several
proangiogenic proteins (integrin o-subunits, etc.).m) In contrast,
a different network was observed in chronic lymphocytic leuke-
mia (CLL), as upregulation of miR-92 was found to contribute
to repression of von Hippel-Lindau tumor suppressor gene
(VHL) expression under a normoxic condition in CLL cells,
which led to reduced ubiquitination and degradation of HIF-1a
and consequential autocrine stimulation of VEGF secretion. ('
Such overexpression of miR-17-92 observed in lung cancer may
contribute to angiogenesis. Therefore, miR-17-92 may regulate
the angiogenic network positively or negatively in a cellular
context-dependent manner.

Paralogous clusters of miR-17-92

In the mammalian genome, there are three paralogous miRNA
clusters; miR-17-92, miR-106a-363 and miR-106b-25, among
which the miR-17-92 and miR-106b-25 clusters have similar
expression patterns in adult mice, while the expression level of
the miR-106a-363 cluster is generally undetectably low.® miR-
106b-25 is localized in an intron of the MCM7 gene, which is
involved in licensing of DNA replication, and is transcriptionally
regulated by E2F1 and MYC, similar to miR-17-92. miR-106b-
25 was reported to be overexpressed in gastric cancer,’® while
it has also been shown that overexpression of miR-106b-25 mod-
ulates transforming growth factor (TGF)-B-induced cell-cycle
arrest and apoptosis through inhibition of CDKN1A (p21Wafl/
Cipl) and BIM, respectively.’® However, a large body of evi-
dence points to crucial involvement of miR-17-92 in tumor
development among these three paralogous miRNA clusters.
Along this line, it is interesting that only the miR-17-92 cluster
contains miR-18 and miR-19, which are absent in other miRNA
clusters, while miR-19 was suggested to be crucially involved as
a key oncogenic miRNA in mice models of lymphoma develop-
ment through inhibition of PTEN expression and consequent
activation of AKT-mTOR and apoptosis repression.”-’®
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miR-17-92 in lung development

There are several lines of evidence that support the notion that
miRNA are crucially involved in lung development.©®-79-8D
Dicer deficiency induces branching arrests without epithelial
growth arrest, resulting in a few large epithelial pouches. There-
fore, miRNA processed by Dicer appear to pla}/ important roles
in regulating lung epithelial morphogenesis.(79 miRNA expres-
sion profiling analysis has also shown that miR-17-92 clusters
are abundantly expressed at the early stages of lung develop-
ment, while the expression level declines as development pro-
ceeds. In contrast, the ler-7 miRNA family has an inverse
expression pattern and becomes predominant at the late
stage.‘go’sz) Since the expression pattern suggests a physiological
role of miR-17-92 in the early development of the lung, SPC-
miR-17-92 transgenic mice were produced, which demonstrated
expansion of the distal epithelial progenitors and increases in
neuroendocrine cell clusters, indicating that miR-17-92 promotes
a high level of proliferation and an undifferentiated phenotype
of normal lung epithelial progenitors. Meanwhile, disruption of
miR-17-92 clusters was shown to cause lethal abnormalities,
including lung hypoplasia, ventricular septal defects and inhibi-
tion of B cell development.®® In contrast, ablation of either
miR-106b-25 or miR-106a-363 had no obvious phenotypic
consequences. Interestingly, combined disruption of both
miR-106b-25 and miR-17-92 resulted in a more severely lethal
phenotype,®® suggesting an additive effect of miR-106b-25.
Crucial roles of miR-17, miR-20a and miR-106b, all of which
are highly expressed at the pseudo-glandular stage of embryonic
lung development, were also reported by Carraro et al®) In
that study, expression of these miR-17 family members was sup-
pressed in explants of isolated lung epithelium, and experimen-
tal results showed that these miRNA modulate FGF10-induced
budding morphology by specifically targeting the signal trans-
ducer and activator of transcription 3 (STAT3), as well as mito-
gen-activated protein kinase 14 (MAPK14), which are FGF10-
FGFR2p downstream signal mediators.®" These results indicate
a tight relationship between oncogenic properties and physiolog-
ical functions of miR-17-92 in the lung.

Mechanisms of dysregulation of let-7 and miR-17-92 in
cancer

Elucidation of the molecular mechanisms of miRNA dysregula-
tion is of immense interest and should help to better explain the
global picture of the molecular pathogenesis of cancer, which
would eventually lead to development of therapeutic strategies
targeting miRNA abnormalities. Transcriptional repression, epi-
genetic silencing and genetic alteration may play roles in the
reduced expression of let-7, as has been shown following down-
regulation of protein-coding genes. Among the 11 let-7 family
members, six are localized within cancer-associated genomic
regions or in fragile sites,®® while there are also lung cancer
cell lines that harbor homozygous deletions of the let-7c cluster
at 21q11.2- q21.1%%, Egigenetic silencing has been specifically
reported in let-7a-3%%%%) although cancer-related epigenetic
silencing has not been reported in other ler-7 family members.
Furthermore, expression of the let-7 family was reggorted to be
under the influence of direct repression by c-MYC.®7

Aberrations in miRNA processing also appear to be involved.
let-7 biogenesis is controlled by multiple layers of regulation,
including negative regulation by LIN28, as discussed above.
Along this line, c-MYC overexpression indirectly suppresses the
expression level of mature ler-7 through induction of LIN28,¢
which inhibits the processing of letr-7 precursors. LIN28/
LIN28B have also been shown to be induced by overexpression
of c-MYC“o®® a5 well as NF-kB activation,® both of which
are known to be frequent in lung cancers.
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Overexpression of miR-17-92 appears to be caused by tran-
scriptional activation and/or genetic amspliﬁcation. The miR-17-
92 cluster is transactivated by ¢-MYC,®? E2F1/E2F36%69 and
STAT3,®? each of which are frequently activated in cancer. In
addition, a paralogous cluster, miR-106b-25, is transcriptionallgl
upregulated together with a host gene, MCM7, by E2F1.7®
Inactivation of p53, which is frequently present in various types
of cancer including lung cancer, may also be involved, since
transcription of the miR-17-92 cluster has been shown to be
repressed by this tumor suppressor.(67) Furthermore, we previ-
ously reported occasional association of the gene amplification
of miR-17-92 with its overexpression in lung cancers,”” while
our preliminary analysis of a CGH dataset at Sanger Institute
(http://www.sanger.ac.uk) showed an association of focal ampli-
fication/gain of the miR-17-92 locus with SCLC histology and
large cell carcinomas (data not shown), confirming our previous
report.® Also, Re et al.®v performed a genome-wide survey
and reported the possible existence of feed-forward regulatory
circuits involving microRNA and transcription factors, including
those of let-7 and miR-17-92. Given that computing power con-
tinues to increase, future detailed investigations of genome-wide
mRNA-miRNA networks using high-powered computing meth-
ods will be of particular interest and should provide in-depth
insight into the molecular mechanisms of dysregulation of miR-
NA in cancer.

Conclusion

Findings thus far reported clearly point to crucial roles for
let-7 and miR-17-92 in the pathogenesis and progression of
lung cancer, as they appear to affect the machinery of two
key cellular functions, stemness maintenance and cell-cycle
regulation. Several relevant targets for let-7 and miR-17-92
have been identified, and suggested to play roles in cancer
development. However, we are far from gaining a complete
picture of the dysregulation involved in the complex regula-
tory networks related to these miRNA. In addition, the world
of non-coding RNA is rapidly expanding. Recent reports have
demonstrated a miRNA-like function of snoRNA®? and a
novel RNA decoy function of miRNA.®® Each miRNA is
thought to regulate hundreds of target mRNA, which in turn
regulate multiple genes, including protein-coding genes and
miRNA, while tens of thousands of non-coding RNA other
than. miRNA are known to be transcribed from the human
genome. Thus, it would be reasonable to predict the future
necessity of a radically different approach to elucidate the
resultant unbelievably complex regulatory networks present in
cells in both normal and cancerous conditions. Along this
line, a cancer systems biology approach with the aid of ever
evolving computing power may help to show how these
indispensably informative pieces of an as yet unresolved puz-
zle fit into a comprehensive understanding of lung cancer
biology. Therapeutic application of such acquired knowledge
of miRNA alterations in cancer remains a daunting challenge,
although additional information should ultimately lead us to
the answers we seek.
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Abstract

Malignant mesothelioma (MM) is an aggressive neoplasm associated with asbestos exposure. We carried out
genome-wide array-based comparative genomic hybridization analysis with 14 MM cell lines. Three cell lines
showed overlapping homozygous deletion at chromosome 13q12, which harbored the LATS2 (large tumor
suppressor homolog 2) gene. With 6 other MM cell lines and 25 MM tumors, we found 10 inactivating homozygous
deletions or mutations of LATS2 among 45 MMs. LATS2 encodes a serine/threonine kinase, a component of the
Hippo tumor-suppressive signaling pathway, and we transduced LATS2 in MM cells with its mutation.
Transduction of LATS2 inactivated oncoprotein YAP, a transcriptional coactivator, via phosphorylation, and
inhibited MM cell growth. We also analyzed LATS2 immunohistochemically and found that 13 of 45 MM tumors
had low expression of LATS2. Because NE2 is genetically mutated in 40% to 50% of MM, our data indicate that
Hippo pathway dysregulation is frequent in MM cells with inactivation of LATS2 or an upstream regulator of this
pathway, Merlin, which is encoded by NF2. Thus, our results suggest that the inactivation of LATS2 is one of
the key mechanisms for constitutive activation of YAP, which induces deregulation of MM cell proliferation.

Cancer Res; 71(3); 873-83. ©2011 AACR.

introduclion

Malignant mesothelioma (MM) is an aggressive neoplasm
associated with asbestos (1-4). Because MM is usually
diagnosed at advanced stages and is largely unresponsive
to conventional therapy, the prognosis of patients with MM
is very poor (5, 6). MM shows frequent mutation of p16™~*%/
p14™ and NF2 (neurofibromatosis type 2) tumor suppressor
genes (TSG) and recent comprehensive analyses have
identified other candidate cancer-associated genes respon-
sible for MM development, progression, and poor outcome
(7-10).

The NF2 gene, which encodes Merlin, is inactivated in 40%
to 50% of MMs (11-13). Transduction of NF2 into MM cells
was shown to inhibit cell proliferation and invasiveness of MM
cells (14, 15). Mouse models with nf2 allele loss have been
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shown to enhance mesothelioma development after asbestos
exposure (16, 17). Mesothelioma also develops with a high
incidence in Nf2:Arf conditional knockout mice (18). However,
it remains unclear whether MM tumors without an NF2
mutation express functional Merlin or the tumor-suppressive
activity of Merlin is inactivated by other mechanisms. In this
regard, possible involvement of the increased expression of
CPI-17, a regulator of Merlin, or the upregulation of microRNA
that might target NF2 has been suggested (19, 20).

The mammalian Hippo cascade, which was initially identi-
fied via genetic studies in Drosophila, is one of the possible
downstream signaling cascades of Merlin and Expanded (21~
25). This pathway controls tissue growth by inhibiting cell
proliferation and by promoting apoptosis. The components of
this pathway include SAV1 (also called WW45), MST (Droso-
phila Hippo), and LATS family members, which ultimately
phosphorylate and inactivate the YAP transcription coactiva-
tor. YAP, a candidate oncogene, was shown to be amplified in
human cancers (26, 27). We previously reported amplification
of the chromosomal 11g22 region including YAP in a subset of
MM specimens and a positive role of YAP in MM cell pro-
liferation (28).

In this study, we carried out array-based comparative
genomic hybridization (CGH) and sequencing analyses and
found that 10 of 45 MMs had an inactivating homozygous
deletion or mutation of LATS2. Furthermore, we showed that
transduction of LATS2 induced phosphorylation of YAP and
inhibited MM cell growth. Our results suggest that the Merlin-
Hippo pathway is frequently inactivated in MM cells and that
LATS2 is a TSG of MM.
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Materials and Methods

Cell lines and primary specimens of malignant
mesothelioma

Fourteen Japanese MPM (malignant pleural mesothelioma)
cell lines, including ACC-MESO-1, -4, Y-MESO-8D, -9, -12, -14,
-21, -22, -25,-268B, -27, -28, -29, and -30, were established in our
laboratory as reported previously and described elsewhere,
and the cells at 10 to 15 passages were used for assays (29, 30).
Four MPM cell lines, including NCI-H28, NCI-H2052, NCI-
H2373, and MSTO-211H, and one immortalized mesothelial
cell line, MeT-5A, were purchased from the American Type
Culture Collection (ATCC) and cells at 3 to 5 passages were
used after receiving from ATCC. NCI-H290 and NCI-H2452
were the kind gifts of Dr. Adi F. Gazdar. All MPM cell lines were
cultured in RPMI 1640 medium supplemented with 10% fetal
calf serum (FCS) and 1x antibiotic-antimycotic (Invitrogen)
at 37°C in a humidified incubator with 5% CO,. MeT-5A was
cultured according to ATCC instructions. MM tissue samples
from patients treated at Aichi Cancer Center Hospital, Nagoya
University Hospital, Japanese Red Cross Nagoya First Hospital,
Toyota Kosei Hospital, and Kasugai City Hospital were
obtained according to the Institutional Review Board-
approved protocol for each and the written informed consent
from each patient. The human mesothelioma tissue array with
19 MM samples was also used (US Biomax Inc.).

Preparation of DNA and RNA

Genomic DNA was extracted using a standard phenol-
chloroform method (31). Total RNA was prepared using
RNeasy Plus RNA extraction kit (Qiagen KK.) according to
the manufacturer's protocol. Random-primed, first-strand
cDNA was synthesized from 3 pg of total RNA, using Super-
script I, according to the manufacturer's instructions (Invi-
trogen).

Oligonucleotide array CGH analysis

All microarrays used were Agilent 244K whole human
genome microarrays, with an average distance of 6.4 kb
between each probe (array G4411B sourced from the NCBI
genome Build 36; Agilent Technologies). Comparison genomic
DNA was obtained commercially (Promega) and matched for
sex. The methods for labeling, hybridization, and scanning
using a G2505B Agilent DNA microarray scanner (Agilent
Technologies) were conducted according to the man-
ufacturer's protocol. The scanned TIFF image data were
processed with Agilent Feature Extraction software (version
9.5.3.1) by the CGH-v4_95_Feb07 protocol (Agilent Technol-
ogies). Extracted data were analyzed with Agilent DNA Ana-
lytics 4.0 software (version 4.0.81; Agilent Technologies), and
the Aberration Detection Method 2 (ADM-2) algorithm was
used to identify contiguous genomic regions that corre-
sponded to chromosomal aberrations. The following para-
meters were used in this analysis: threshold of ADM-2: 5.0;
centralization: ON (threshold: 5.0, bin size: 10); aberration
filters: ON (minimum number of probes in region = 2 and
minimum absolute average log ratio for region = 1.6
and maximum number of aberrant regions = 10,000 and %

penetrance per feature = 0). At a minimum, 2 contiguous
suprathreshold probes were required to define a change. To
find an obvious homozygous deletion in cell line DNA, aber-
rant regions with a signal log, ratio of less than —1.6 were
searched. Genomic positions were based on the UCSC
March 2006 human reference sequence (hgl8; NCBI build
36.1 reference sequence). The accession number of array
CGH analysis data to Gene Expression Omnibus is
GSE22237. For tumor tissue DNA, regions of homozygous
deletion or one allelic loss of the LATS2 locus were defined
as log, ratio < —1.0 or —1.0 < —0.4 for at least 3 consecutive
probes, respectively.

Mutation analysis

Mutation analysis of all coding exons of the LATS2 and SAVI
and NF2 genes was carried out by direct sequencing after PCR
amplification of genomic DNA. The primer sets of LATS2 are
described in Supplementary Materials and Methods. The
primer sets of NF2 were described previously (11, 29), and
sequences of the primer sets of SAVI are available upon
request.

Antibodies and reagents

Rabbit anti-LATS2 antibody (NB200-199) for Western blot
analysis was purchased from Novus Biologicals, and mouse
anti-YAP (clone 2F12, H00010413-M01) and anti-SAV1 (clone
3B2, H00060485-M02) antibodies were from Abnova. Rabbit
anti-LATS2 antibody (ab70565) for immunohistochemistry
and rabbit anti-YAP antibody (EP1674Y) were purchased from
Abcam, and anti-NF2 (1C4, #9169) and anti-phospho-YAP
(8127; #4911) antibodies were from Cell Signaling Technology.
Anti-B-actin (clone AC74) and anti-Flag (M2) antibodies were
from Sigma, and anti-V5 antibody was from Invitrogen. Rabbit
anti-B-catenin (SC-7199) was from Santa Cruz Biotechnology.

Plasmid and lentiviral vector

The cDNA fragments of wild-type or mutant LATS2 were
amplified by PCR, using PrimeSTAR Max DNA polymerase
(Takara Bio), and introduced into the pFLAG-CMV2 expres-
sion vector (Sigma) with an infusion cloning system (Clon-
tech), thereby fusing these cDNAs with the FLAG sequence.
The sequences of all constructs were confirmed. To generate
LATS2-expressing lentiviral vector, cDNA coding for the
human LATS2 tagged with FLAG was amplified by PCR and
cloned in the pLL3.7 lentiviral vector. NF2 expression vectors
were described previously (28). RNA interference vectors to
generate lentiviruses that transcribe short hairpin (sh)-RNA
were prepared as described previously (32). sh-LATS2-RNA
interference vector (sh-LATS2) contained a target sequence of
the hairpin loop of LATS2 (5'-GGACCTCACTGCATTAAA-3').
A control shRNA vector for luciferase (Sh-Luc), which con-
tained a target sequence for luciferase (5'-CGTACGCGGAA-
TACTTCGA-3'), was described previously (32).

Cell proliferation assays

A total of 1.0 x 10% and 2.0 x 10° cells were seeded onto flat-
bottomed 24- and 12-well plates, respectively. Cells were trans-
duced with lentiviral vectors at the multiplicity of infection of 5,
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