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Lineage-Dependent ASH1-miR-375-YAP1 Regulation
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Figure 8. Lineage-dependent growth-regulating effects of YAP1 in lung
cancers. A, fluorescent image of lentivirus-infected A549 and ACC-LC-
172 obtained 9 days after infection. Cells were infected with a YAP1-
expressing or empty lentivirus carrying the fluorescent protein Venus.
YAP1 and empty virus infection resulted in fluorescent signals in A549
cells. In contrast, fluorescence-positive cells were scarcely detected in
ACC-L.C-172 cells infected with the YAP1-virus, whereas noninfected
cells grew well. B, flow cytometric analysis of fluorescence-positive cells.
Lentivirus-infected cells were analyzed at 3 and 9 days after infection. The
fluorescence-positive population was moderately increased in the A549
cells infected with the YAP1-virus, whereas that population almost
disappeared in ACC-LC-172 cells infected with the YAP1-virus. C,
Westem blotting analysis of YAP1. A549 abundantly expressed
endogenous and exogenous (HA-tagged) YAP1. In contrast, ACC-L.C-172
did not express endogenous YAP1. In addition, exogenous YAP1 was
scarcely detected. D, Western blotting analysis of caspases. Five days
after infection, activated cleavage of caspase-7 and caspase-3 was
detected in YAP1 virus-infected ACC-LC-172 cells. Normalized intensities
of cleaved caspases are numerically indicated.

blotting analysis, using lysates harvested on day 9, which
showed scarcely detectable HA-tagged exogenous YAP1 pro-
tein expression in ACC-LC-172 as opposed to the abundant
exogenous YAP1 expression in A549 cells (Fig. 5C). Cleavage of
caspase-7 and caspase-3 was detected in YAPl-introduced
ACC-LC-172 cells (Fig. 5D), whereas propidium iodide-stained
dead cells were frequently observed in YAPI-introduced

fluorescence-positive cells in ACC-LC-172 (Supplementary
Fig. S6B), but not in A549 (data not shown). YAP1 introduction
also resulted in growth suppression in 2 other SCLC cell lines,
NCI-H69 and ACC-LC-48 (Supplementary Fig. S7), which
confirmed the results observed in ACC-LC-172.

Discussion

The present results clearly show that ASH1 directly trans-
activates miR-375, resulting in an NE lineage-specific upregu-
lation of miR-375 in lung cancers. Although NeuroD1 and Pdx1
potentially bind to the E-box in the miR-375 promoter (13),
their expression was rarely detected and showed no correla-
tions with miR-375 expression (data not shown). Therefore, we
believe that ASH1 plays a major role as a transcriptional
activator of miR-375. Our finding of NEB-specific expression
of miR-375 also supports the existence of an ASH1-miR-375
signaling axis in the lung, It is important to note that miR-375
was recently reported to be detectable in pancreatic islet cells
under the regulation of NeuroD1 and Pdx1, as well as in
pituitary and adrenal glands (13-16). Herein, we clearly
showed the functional importance of 3 E-boxes (E1, E2, and
E3) in ASH1-mediated induction of the promoter activity of
miR-375. Furthermore, a recent report described the promoter
activity of a similar genomic region 5’ to murine miR-375 in a
B-cell line, though its responsiveness to potential activators
such as NeuroD1 and ASH1 was not examined (17).

Downregulation of miR-375 has been reported in a few other
types of cancer (18-20). Interestingly, miR-375 was suggested
to play tumor suppressor roles in those cancer types, whereas
target genes for miR-375 thus far reported include PDK1, 14-3-
3L (19), HuD (21), and JAK2 (22). Also, hepatocellular carci-
noma was recently added to the list of cancers with miR-375
downregulation and YAP1 has been suggested to be a target
gene relieved by that downregulation. Consistent with those
findings, we observed moderate downregulation of PDK1, 14-
3-3(, HuD, and JAK2 when miR-375 was introduced to A549
cells, though YAP1 showed the most significant downregula-
tion in our experimental settings (Supplementary Fig. S§B). In
addition, we did not observe clear growth inhibition of A549
cells stably introduced with a lentivirus expressing miR-375
(Supplementary Fig. S8A), even though YAP1 was effectively
downregulated by miR-375 (Fig. 4B-D). Along this line, it
is notable that miR-375 knockout mice were shown to be
hyperglycemic in association with decreased [B-cell mass as a
result of impaired proliferation of -cells (15) and that miR-375
was shown to regulate a number of genes other than YAPI,
which potentially control cellular growth and proliferation of
pancreatic islets (15). It is also interesting that estrogen
receptor-o. (ERar)-expressing breast cancers showed ERo-sig-
nal dependency and a high expression of miR-375 (23). ERo
binds the miR-375 promoter and induces its expression. miR-
375 in turn represses the RAS, dexamethasone-induced 1
(RASDI) gene, which negatively regulates ER0 expression,
suggesting the existence of a positive feedback loop between
ERo and miR-375, as well as a growth-promoting role of miR-
375 in ERo-positive breast cancers (23). Taken together, it is
conceivable that miR-375 plays distinct roles in various can-
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cers, depending on the cellular context and transcriptomes
including its potential target genes, and that downregulation
of YAP1 by ASH-1-transactivated miR-375 promotes rather
than inhibits growth of SCLC cells.

YAP1 has several domains including a TEAD binding
region and 2 WW domains, whereas it lacks a DNA binding
domain and functions as a transcriptional coactivator
through interactions with DNA binding transcription
factors (24-26). YAP1 interacts with the TEAD family
through a TEAD binding domain, and transactivates
growth-promoting genes, whereas it also binds to PPXY
motif-containing molecules including p73 through
WW domains, thus enhancing p73-dependent apoptosis
in response to DNA damage (27-29). It has been reported
that phosphorylation by AKT or repression by ANp63
downregulates the proapoptotic activity of YAP1 (30),
and that PML is also involved in regulation of p73-YAP
apoptotic signaling through sumoylation and stabilization
of YAP (31). Therefore, accumulating evidence enhances
the notion that YAP1 exerts both oncogenic and tumor-
suppressive activities in a context-dependent manner (32,
33). The present findings show that YAP1 moderately
promotes NSCLC proliferation when overexpressed, where-
as it significantly suppresses SCLC growth, suggesting its
lineage-dependent dual roles in lung cancers.

In conclusion, we identified miR-375 as a direct transcrip-
tional target for ASH1 and showed that it has a crucial role for
mediating signals required for ASH1-mediated induction of
NE features in lung cancers. In addition, the present findings
indicate that miR-375 directly downregulates YAP1, whereas
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Proteasomal Non-catalytic Subunit PSMD2 as a
Potential Therapeutic Target in Association With
Various Clinicopathologic Features in Lung
Adenocarcinomas
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We previously identified PSMD2, a subunit of the 19S regulatory complex of proteasomes, as a constituent of a
signature associated with the acquisition of metastatic phenotype and poor prognosis in lung cancers. In the present
study, we found that knockdown of PSMD2 decreased proteasome activity, and induced growth inhibition and
apoptosis in lung cancer cell lines. These effects of siRNA-mediated PSMD2 inhibition were associated with changes in
the balance between phosphorylated AKT and p38, as well as with induction of p21. In addition, patients with higher
PSMD2 expression had poorer prognosis and a small fraction of lung cancer specimens carried increased copies of
PSMD2. Notably, our findings clearly illustrate that lung adenocarcinomas can be divided into two groups; those with
and without general upregulation of proteasome pathway genes including PSMD2. This general upregulation was
significantly more prevalent in the non-terminal respiratory unit (non-TRU)-type, a recently proposed genetically and
clinicopathologically relevant expression profile-defined classification of adenocarcinomas (P < 0.001 by Fisher's exact
test). Patients with adenocarcinomas with general upregulation had significantly shorter survival after potentially
curative resection (P=0.0001 by log-rank test) independent of disease stage, as shown by multivariate Cox regression
analysis. Our results suggest that PSMD2 may be a good molecular target candidate and that other co-regulated
proteasome pathway genes and/or their common regulator(s) might aiso be potential targets, warranting future study
including elucidation of the underlying common regulatory mechanism. © 2011 Wiley-Liss, Inc.

Key words: lung cancer; apoptosis; gene expression profile

INTRODUCTION

Lung cancer is the leading cause of cancer-related
death in Japan, as well as in many other economi-
cally well-developed countries [1]. A better under-

cytoplasm and nucleus, and consists of a 20S core
catalytic cylindrical complex capped at both ends
by a 19S regulatory complex [3,4]. The 20S core
catalytic complex harbors the proteolytically active

standing of the molecular pathogenesis of this
disease is thus urgently required for preventive or
therapeutic breakthroughs to drastically reduce the
unacceptable number of deaths. Non-small cell lung
cancers (NSCLCs) are mainly comprised of adeno-
carcinomas, squamous cell carcinomas, and large
cell carcinomas, of which adenocarcinomas are
known to exhibit the highest degree of morphologic
and clinical diversities.

Proteasomes are crucially involved in the execu-
tion of a number of cellular functions, such as
apoptosis and cell-cycle progression in both normal
and malignant cells. The 26S proteasome is an
abundant multi-enzvme complex that provides
the main pathway for degradation of intracellular
proteins in eukaryotic cells [2]. It is found in the

© 2011 WILEY-LISS, INC.

B1 (caspase-like), B2 (trypsin-like), and B5 (chymo-
trypsin-like) subunits. Despite the premise that it
would be difficult to use as a target for chemotherapy
while maintaining a tolerable therapeutic index,

Additional Supporting Information may be found in the online
version of this article.
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interfering RNA; TUNEL, Terminal Transferase dUTP Nick End
Labeling; TRU, terminal respiratory unit.
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many types of actively proliferating malignant cells
are more sensitive to proteasome blockade than
non-cancerous cells. The B85 subunit in the 20S
proteasome complex is the specific target of borte-
zomib, the first proteasome inhibitor to enter clinical
development for treatment of multiple myelomas
and other malignant disorders, including lung
cancers [5-7]. The present study was initiated based
on our previous finding that PSMD2, a subunit of the
19§ regulatory complex, constituted an expression
signature that was associated with the acquisition of
a metastatic phenotype in the NCI-H460-LNM35
lung cancer cell line as well as with poor prognosisin
surgically operated lung cancer patients [8]. Herein,
we present evidence of apoptosis by small interfering
RNA (siRNA)-mediated inhibition of PSMD2 in lung
cancer cell lines and the presence of increased copies
of the PSMD2 gene in a fraction of lung cancer tissue
specimens. In addition, we report that not only
PSMD2, but also multiple genes of the 26S protea-
some and those involved in their assembly were
co-upregulated, showing a significant association
with shorter survival in surgically treated adeno-
carcinoma patients.

MATERIALS AND METHODS

Cell Lines

We used ACC-LC-94, ACC-LC-319, AS549, and
A427 cells derived from human lung adenocarci-
noma cell lines, as well as Calul cells from a human
lung squamous cell carcinoma cell line. NCI-H460-
LNM35 cells {9] (hereafter termed LNM35), a highly
metastatic subline of the NCI-H460 human lung
large cell carcinoma cell line, were also used. Culture
conditions and derivations of the panel of lung
cancer cell lines were as described previously [10].
Human dermal fibroblasts, TIG112 cells, were also
utilized and cultured in Dulbecco’s Modified Eagle
Medium (DMEM) with 20% fetal calf serum [11].

Antibodies and siRNAs

The following antibodies were used for Western
blot analysis: anti-PSMD2 (ABR PA1-964) and anti-f-
actin (Sigma-Aldrich, St. Louis, MO); anti-lamin B,
anti-cyclin A, and anti-cyclinB1 (Santa Cruz Bio-
technology, Santa Cruz, CA); anti-caspase-7, anti-
p53, anti-phospho-p38 MAPK (Thr180/Tyr182),
anti-phospho-AKT (Ser473), anti p53, and anti-AKT
(Cell Signaling Technology, Danvers, MA); and anti-
BCLZ2, anti-BAD, anti-p38«, and anti-p21 (BD Trans-
duction Laboratories, San Jose, CA). The sequences of
siRNA against PSMD2 (siPSMD2) used were as follow:
sense strand, §-CACACUAUGGCAAACUGAATT;
and anti-sense strand, 5'-UUCAGUUUGCCAUAGU-
GUGTT. siCTRL refers to the AM4611 Silencer®
Negative Control #1 siRNA obtained from Applied
Biosystems (Foster City, CA). Silencing efficiency was
evaluated by both Western blotting and TagMan-
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based real-time reverse transcription-PCR analyses
(TagMan gene expression, Hs 01092070_g1, Applied
Biosystems) (data not shown for the latter).

3-(4,5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium
Bromide (MTT) Assay

Cells were plated at a density of 8 x 10*in 0.5 mL of
culture medium on six-well plates. The next day,
either siPSMD2 or siCTRL was transfected at a final
concentration of 1 or 10nM using RNAi MAX
(Invitrogen, Carlsbad, CA) (day 0). Viable cells were
measured in triplicate using TetraColor One (Seika-
gaku, Tokyo, Japan) in reference to the viability of
non-treated cells on various days after transfection.

Proteasome Activity Assay

Proteasome activity was measured using a 20S
proteasome activity assay kit (Chemicon, Temecula,
CA), according to the manufacturer’s instructions. In
brief, control or siRNA-treated cells were lysed in a
lysis buffer {150 mM NaCl, 20 mM Tris-HCl (pH 7.2),
1% Triton X-100, 1mM DTT] without protease
inhibitors. Total cell lysates (1.6 pg) prepared from
LNM3S5 cells treated with either siPSMD2 or siCTRL
were incubated with 20 pmol/L of the fluorogenic
substrate Suc-Leu-Leu-Val-Tyr-AMC for determining
proteasomal chymotrypsin-like activity at 37°C in
100 uL of assay buffer [250 mM HEPES-KOH (pH 7.5),
SmM EDTA, 0.5% NP40, and 0.01% SDS]. Free AMC
liberated by the substrate hydrolysis was quantified
using a microtiter plate fluorometer (ARVO™ MX
1420 multilabel counter, PerkinElmer, Kanagawa,
Japan) with excitation at 355nm and emission at
460 nm.

Terminal Transferase dUTP Nick End
Labeling (TUNEL) Assay

Cells were plated at a density of 8 x 10* in 0.5 mL of
culture medium on six-well plates and cultured for
24 h, then transfected with siRNA, as described above
(day 0). Two days later, they were stained using an in
situ cell death detection kit (Roche Diagnostics,
Indianapolis, IN) according to the supplier’s protocol.

Flow Cytometric Analysis

Cells were plated at a density of 1.5 x 10°in 4 mL of
culture medium on 6-cm dishes. The next day,
SiPSMD2 or siCTRL (10nM) was transfected as
described above. After 48 h of continuous exposure,
the cells were treated with a phosphate-buffered
saline solution containing 0.5% NP-40 and 50 pg/mL
of propidium iodide (Sigma-Aldrich). Cellular DNA
contents were measured using a FACSCalibur flow
cytometer equipped with the CELLQuest program
(BD Biosciences), as described previously [12].

Patients and Statistical Analysis

Our previous dataset comprising 149 patients with
NSCLC, which included 90 patients with adenocar-
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cinomas, was used in the present study [13]
(GSE11969). Adenocarcinoma cases were" divided
into high and low expression groups by comparison
with the median expression level of PSMD2 in the 90
adenocarcinoma specimens. Kaplan-Meier survival
curves were used to estimate survival rate as a
function of time and survival differences were
analyzed by a log-rank test, as described previously
[1314]. Approval for this study was obtained from the
institutional review boards of both Nagoya Univer-
sity and Aichi Cancer Center.

TagMan-based Copy Number Analysis

Gene copies of PSMD2 and PIK3CA in each tumor
were analyzed using TagMan Universal PCR Master
Mix (Applied Biosystems) with the following PCR
primers and TagMan probes: Hs03470293_cn and
Hs04761440_cn for PSMD2 and PIK3CA, respectively.
Quantification of the control ALB has been described
[15]. The fold increase in copy number in a given
cancer tissue was calculated as the ratio of either
PSMD?2 or PIK3CA signals to the ALB signal, followed
by further normalization to that of the mean value
obtained from 46 normal lung DNA samples.

RESULTS

Reduction of Lung Cancer Cell Proliferation by
Inhibition of PSMD2 Expression

First, we examined two human lung adenocarci-
noma cell lines, LNM35 and ACC-L.C-94, aswell as a
human normal fibroblast cell line, TIG112, for their
response to siRNA-mediated inhibition of PSMD2.
Western blot analysis showed a significant reduction
of PSMD2 expression in all three cell lines treated
with siPSMD2 (Figure 1A). Furthermore, an MTT
assay conducted on day 2 after the start of siRNA
treatment revealed that siPSMD2 treatment signifi-
cantly reduced proliferation in both LNM3$ and
ACC-LC-94, but not in TIG112, when compared to
treatment with the negative control siCTRL (Figure
1B). ACC-LC-94 and LNM35 showed gradual and
further incremental decreases in proliferating cells
over time, whereas TIG112 did not (Figure 1C).

Inhibition of Proteasome Activity in Cells Treated with
siRNA Against PSMD2

PSMD2 is an ortholog of the proteasome subunit of
Rpn1/NASI in Saccharomyces cerevisiae as well as Mis4
in Schizosaccharomyces pombe [16,17]. We examined
the proteolytic cleavage activity of PSMD2 using a
fluorogenic peptide as a substrate for various times to
confirm that PSMD2 functions as a proteasome
subunit in human lung cancer cells. Cell lysates were
prepared from LNM35 cells that had been treated
with either siPSMD2 or siRNA for 48 h, and subjected
to proteasome activity analysis. siPSMD2Z treatment
clearly suppressed the proteasome activity (Figure 2),
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Figure 1. Reduction of cell growth by PSMD2 knockdown in lung
cancer cell lines (LNM35 and ACC-LC-94), but not in a normal
fibroblast cell line (TIG112). (A) Western blot analysis of PSMD2 at
48 h after siRNA treatment. B-actin was used as a loading control. (B)
MTT assay of cells treated with either 1 or 10nM siRNA for 48h. *
and ** indicate the significant growth suppression with the P values
of P<0.05 and P<0.01, respectively. (C) Results of MTT assay
that measured cell growth for up to 4 days after treatment with
10 nM siRNA. OD values with siCTRL in (B) and (C) were regarded as
100%. siPSMD2, siRNA against PSMD2; siCNTL, negative control
siRNA.
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Figure 2. Reduction of proteasome activity by PSMD2 knock-
down. Intracellular proteasome activity was measured using cell
lysates of LNM35 treated with either 10nM siCTRL or siPSMD2 for
2 days. Data shown were obtained after incubation for 30 and
60min, during which linear increases in proteasome activity were
observed. **Indicates the significant reduction in proteasome
activity with P< 0.01.

showing that PSMD2 is required for 26S proteasome
functions in human lung cancer cells.

Growth Inhibitory Effects of PSMD2 Knockdown in
Panel of Lung Adenocarcinoma Cell Lines

A panel of human lung adenocarcinoma
specimens was examined for growth inhibition in
response to PSMDZ2 knockdown using an MTT assay.
Western blot analysis showed apparent reduction of
PSMD2 expression in all cell lines treated with
siPSMD2 (Figure 3A). An MTT assay was performed
on day 2 after initiating siRNA treatment, which
showed significantly reduced proliferation in
LNM35, ACC-LC-94, ACC-LC-319, and AS549
(Figure 3B). In contrast, growth inhibition was not
observed in A427, Calul, or TIG112.

Induction of Apoptosis by PSMD2 Knockdown in Lung
Cancer Cell Lines

Next, we performed TUNEL and flow cytometric
assays to determine whether PSMD2 knockdown
induced apoptosis. The TUNEL assay results clearly
showed induction of apoptosis by siPSMD2 treat-
ment in LNM3S5, but not in TIG112 (Figure 4A). The
results of flow cytometric analysis also indicated
apoptosis occurrence in LNM3S cells treated with
siPSMD2, with a significant increase in the subG1
fraction (Figure 4B). The induction of apoptosis
in siPSMD2-treated LNM35 cells was further sub-
stantiated by Western blot analysis, which detected
cleaved forms of an effector caspase, caspase-7, and
lamin B, indicating activation of the apoptotic
pathway (Figure 4C). Furthermore, we found that a
phosphorylated form of p38 was increased as was a
phosphorylated form of AKT (Figure 4D), indicating
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Figure 3. Reduction of cell growth by PSMD2 knockdown in panel
of lung cancer cell lines. (A) Western blot analysis of PSMD2 in cells
treated with 10nM siRNA for 48h. B-actin was used as a loading
control. (B) Results of MTT assay showing varying degrees of cell
growth inhibition by siPSMD2 treatment. OD values with siCTRL
were regarded as 100%. * and ** indicate the significant
growth suppression with the P values of P<0.05 and P<0.01,
respectively.

that PSMD2 inhibition affects the crucial balance
between active forms of a pro-apoptotic MAPK, p38,
and a survival kinase, AKT [18,19]. We also observed
an increase in G1 in siPSMD2-treated LNM35 cells
(Figure 4E), which appeared to be consistent with
marked induction of p21, a negative regulator of cell
cycle and known target for proteasomes (Figure 4D).
In contrast, we did not observe any effects of
siPSMD2 treatment in LNM35 cells on the expression
of BCL2, BCL-x, Bad, cyclin A, or cyclin B, whereas
p53 was modestly affected by siPSMD2 treatment
(Supplementary Figure 1), consistent with a previous
reportthat p53isdegradedina PSMD2/S2 dependent
manner [20].

Increased Gene Copies of PSMD2 and Relationship of

PSMD2 Expression with Postoperative Survival in

Lung Adenocarcinomas .
The present findings that PSMD2 expression

was involved in lung adenocarcinoma cell growth

prompted us to analyze the relationship between the
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Figure 4. Apoptosis induction and G1 phase accumulation in cells
treated with siPSMD2. (A) TUNEL assay results showing apoptosis
induction in cells treated with siRNA for 48h. (B) Flow cytometric
analysis showing increased subG?1 fraction in LNM35 treated with
siPSMD2. (C) Western blot analysis of proteolytic cleavage of caspase
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respectively. (D) Western blot analysis of various apoptosis- and cell
cycle-related proteins in cells after 48 h of siRNA treatment. (E) Flow
cytometric analysis of cell cycle progression in cells after 48h of
siRNA treatment.
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level of PSMD2 expression and postoperative survival
in surgically treated adenocarcinoma patients
using our previously published dataset obtained by
microarray analysis. Kaplan—Meier survival curves
generated according to expression of PSMD2
either higher or lower than the median value in the
90 adenocarcinomas revealed poorer prognosis
in patients with higher expression (P=0.047 by
log-rank test; Figure SA).

Several studies have shown that genetic mutations
that directly activate the PI3K signaling pathway are
common in human cancers. Beside the loss of the
tumor suppressor PTEN, somatic activating muta-
tions and amplification of PIK3CA and AKT are
occasionally observed in epithelial cancers [21].
Among the PI3K signaling genes, PIK3CA resides at
3g26.3, which is close to PSMD2 at 3q27.1, and
locates in the area where gains uniquely related to
lung cancer at 3q24-q29 [22-24]. For thisreason, we
investigated the relationship between the expression
levels of PSMD2 and PIK3CA. Interestingly, we found
that the PSMD2 expression was significantly associ-
ated with that of PIK3CA in the 90 adenocarcinoma
cases (Figure 5B). Next, we examined 220 NSCLC
cases including 148 with adenocarcinomas for the
presence of increased gene copies of PSMD2 and
PIK3CA using a TagMan-based PCR analysis. Our
results showed that 12 cases (5.5%) carried more than
a 2.5-fold gain at the PSMD2 locus, while 9 (4.1%)
had similar levels of gain at the PIK3CA locus (Figure
5C). Modest gains between 1.5- and 2.5-fold for both
PSMD2 and PIK3CA were also observed in 38 (17.3%)
and 15 (6.8%) cases, respectively. Notably, a single
case exhibited 4.7-fold increase only at the PSMD2
locus without any appreciable increase at PIK3CA.

Identification of Co-regulated Expression of Proteasome
Pathway Genes, and Association With Expression
Profile-defined Subtype and Prognosis in Lung
Adenocarcinomas

It is possible that general co-upregulation of
proteasome pathway genes is advantageous for
cancer development and associated with clinicopa-
thologic features such as postoperative survival.
Therefore, we selected a gene set comprised of
various 19S and 208 subunits of the 26S proteasome,
as well as those functioning in proteasome assembly
[25], and performed an unsupervised hierarchical
clustering analysis of the 90 adenocarcinoma cases
(Figure 6A). We found that the cases could be clearly
divided into two groups; those with and without a
general high expression of genes involved in protea-
some-mediated protein degradation. Cluster 1, con-
sisting of cases with general high expression, showed
a significant association with adenocarcinomas with
non-terminal respiratory unit (non-TRU)-type his-
tology (P<0.001 by Fisher’s exact test), a recently
proposed expression Profile-defined subtype, as well
as a lack of bronchiole alveolar features (P =0.005;
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Figure 5. Relationship between PSMD2 expression and postoperatlve survival in patients following potentially
curative resection. (A) Kaplan—Meier survival curves according to expression levels of PSMD2 in 90 adenocarcinoma
cases [13]. The cases were divided into high and low expression groups based on the median value of PSMD2
expression. (B) Scatter plot analysis showing a positive correlation between expression levels of PSMD2 and PIK3CA
(R=0.54, P<0.0001). (C) TagMan-based gene dosage analysis of PSMD2 and PIK3CA showing modest increases
in a small fraction of NSCLC tissues. ALB signals were used as an internal control for loading. The mean value

obtained from 48 normal lung tissues was set as 1.

Table 1). In addition, we observed significant
associations of cluster 1 with past smoking history
(P=0.020) and higher histological grade (P = 0.031).
Kaplan—Meier survival curves revealed that patients
with adenocarcinomas belonging to cluster 1 had a
significantly shorter survival than that of those in
cluster 2 (P=0.0001 by log-rank test; Figure 6B).
Multivariate Cox regression analysis also showed
that cluster distinction based on the proteasome-
mediated protein degradation pathway was a sig-
nificant predictor of postoperative prognosis
(Hazard ratio=3.372; P=0.001), independent of
p-Stage (Hazard ratio = 3.135; P=0.001; Table 2).

DISCUSSION

It has been suggested that PSMD?2 is a functional
equivalent to yeast proteins of RPN1/NAS1 in S.
cerevisiae and Mts4in S. pombe, based on findings that
enforced expression of PSMD2 suppressed growth
defects in both rpnl/nasl and mts4 disrupted yeast
cells {16,17]. In the 198 regulatory complex, RPN1/
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NAS1 is a component of the base complex, which is
required for substrate translocation and gating of the
proteolytic channel, and possibly serves as a docking
site for a substrate-recruitment factor in the 195
complex [26]. In the present study, we found that
siRNA-mediated inhibition of PSMDZ2in human lung
cancer cells resulted in a reduction of proteasome
activity, in association with induction of apoptosis
and increase in number of cells in the G1 phase. A
decrease in phosphorylated AKT and increase in
phosphorylated p38 in siPSMD2-treated cells, as well
asinduction of p21 appears to be consistent with the
treatment effects. A future study to elucidate how
such molecular consequences are mediated in
PSMD2-inhibited lung cancer cells is warranted.
Interestingly, PSMD2 has been reported to
constitute cancer-associated signatures including
those related to undifferentiated cancers, metastatic
phenotypes, and prognosis in breast cancer
[8,27-29]. Those previous studies identified either
PSMD2 alone, or PSMD2 and PSMD7 among various
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Figure 6. Relationships among expressions of proteasome path-
way genes and various clinicopathologic features. (A) Hierarchical
clustering analysis of 90 adenocarcinoma cases showing
co-upregulation of a majority of the proteasome pathway genes.
(B) Kaplan—Meier survival curves according to the two major clusters
in (A) showing a significant difference in postoperative survival
(P=0.0001 by log-rank test).

members of the PSMD family. In addition, Wan et al.
[30] conducted a large-scale screening study and
reported that introduction of PSMDZ2 caused stimu-
lated colony formation of NIH3T3 cells by more than
six-fold, suggesting that PSMD2 offers a growth
advantage to cells under certain conditions. In the
present study, though PSMD2 and PIK3CA expres-
sions were significantly correlated and often had the
same increased gene copies, there was an exception
of lung cancer specimen with increased gene copies
only at the PSMD2 locus, suggesting that PSMD2 may
not be a mere bystander of PIK3CA, a well established
cancer associated gene.

Our results clearly demonstrated that genes encod-
ing components of the 268 proteasome and those
involved in proteasome assembly are co-regulated in
lung adenocarcinomas, showing a significant asso-
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Table 1. Associations Among Two Major Clusters and
Clinicopathologic Features

Variables Cluster 1 Cluster 2 P-Value*

Age (yr)
>61 18 22 0.834
<61 24 26

Sex
Male 26 21 0.096
Female 16 27

Smoking status
Current/former 27 18 0.020
Never 15 30

Histologic grade
Poor/moderate 21 13 0.031
Well 21 35 )

p-Stage
ihor il 20 18 0.395
| 22 30

EGFR
Mutant 13 19 0.509
Wild-type 29 29

K-ras
Mutant 6 4 0.505
Wild-type 36 44

p53
Mutant 18 11 0.070
Wild-type 24 37

EP-defined subtype®
TRU 15 38 <0.001
Non-TRU 27 10

BAC features
+ 6 20 0.005
- 36 28

*Fisher's exact test.
#eP-defined subtype, expression profile-defined subtype of
adenocarcinomas (13).

ciation between general high expression of the
proteasome pathway genes and shorter postopera-
tive survival. These suggest that such co-regulated
upregulation may confer greater advantage to cancer
cell growth during cancer development. Further,
they indicated the possibility of a common tran-
scriptional regulatory mechanism(s) among the
proteasome-related genes, which may be an effective
target(s) for diminishing proteasome activity for
cancer treatment.

It is also interesting to note that a general high
expression of proteasome-related genes was highly
significantly associated with the non-TRU type of
adenocarcinomas. We previously proposed a TRU/
non-TRU classification as a genetically and clinically
relevant grouping of adenocarcinoma patients
[31,32], which was further substantiated by a
report of their marked distinctions in expression
profiles [13]. Similar observations were subsequently
reported by other groups, confirming the existence
of adenocarcinoma subtypes with distinct expres-
sion profiles similarly associated with various
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Table 2. Results of Multivariate Cox Regression Analysis

Variables Unfavorable/favorable Hazard ratio 95% CI* P-Value
Age (yr) >61/<61 1.158 0.565-2.373 0.689
Sex Male/female 0.960 0.406-2.273 0.926
Smoking status Current or former/never 0.660 0.252-1.732 0.399
Histologic grade Poor or moderate/well 1.830 0.898-3.727 0.096
p-Stage Il or i 3.135 1.591-6.177 0.001
EP-defined subtype® Non-TRU/TRU 1.376 0.637-2.973 0.416
Cluster Cluster 1/cluster 2 3.372 1.643-6.921 0.001

*95% Cl, 95% confidence interval.

EP-defined subtype, expression profile-defined subtype of adenocarcinomas (13).

clinicopathologic features [33-35]. Following our
previous report of a significant association of TRU-
type with EGFR mutations [13,31], the present
findings add another layer of molecular distinctions
to the TRU/non-TRU classification of adenocarcino-
mas, thatis, prevalent high expression of proteasome
pathway genes specifically in the non-TRU type,
which suggests that proteasome inhibitors may be
more effective for this adenocarcinoma subtype.
Taken together, the present study results show that
PSMD2 may be a good candidate for development of
novel therapy for lung cancer treatment. In addition,
the findings of our expression profile analysis
indicate that other co-regulated proteasome path-
way genes and/or common regulator(s) of their
expression may be relevant potential target(s).
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Introduction

Currently, several large-scale omics projects, such as the National
Cancer Institute’s Cancer Genome Adlas (http://cancergenome.nih.
gov/) and the Sanger Institute’s Cancer Genome Project (http://
www.sanger.ac.uk/genetics/ CGP/), produce large amounts of data,
including genomic, epigenomic, and transcriptomic information,
about cancer patients or cell lines. Two challenges in omics are to
construct and analyze patient-specific molecular networks to develop
a comprehensive understanding of the molecular mechanisms of
tumorigenesis and to identify molecules that are critical for tumor
proliferation and progression [1]. If these challenges can be
overcome, it may be possible to personalize cancer therapy, improve
its efficacy, and reduce its toxicity and cost [2,3].

Systems biology integrates various types of omics data and
computational tools to represent and analyze complex biological
systems. For example, gene network estimation that is based on
Bayesian networks or mutual information networks can reconstruct
biological systems from gene expression data [4]. However, most
traditional gene network estimation methods construct a static
network by using gene expression data from different cellular

@ PLoS ONE | www.plosone.org

conditions. As a result, these methods only produce an averaged
network for all patients and cannot reveal patient-specific molecular
mechanisms of cancer. In addition, it is very difficult to infer a patient-
specific gene network from only a few gene expression profiles of the
patient without making any assumptions about the network.

In this study, we developed a novel statistical method called
NetworkProfiler, which infers patient-specific gene regulatory
networks from a dataset of cancer gene expression profiles.
NetworkProfiler is based on a statistical graphical model with varying
coefficients and a kernel-based data integration method with elastic
net regularization for parameter estimation. A key feature of
NetworkProfiler is that the strengths of the relationships between
genes are allowed to vary depending on cancer characteristics, such as
cancer progression, metastasis, disease-free survival, and drug
sensitivity. NetworkProfiler groups samples according to the specific
cancer characteristics so that neighboring samples have common
gene regulatory systems. Then, by integrating the gene expression
profiles of neighboring samples with a kernel method, NetworkPro-
filer produces a gene regulatory network for each sample. Finally, we
analyzed 2 post-analysis to discover upstream regulatory genes and
downstream target genes for specific cancer characteristics. Network-

June 2011 | Volume 6 | Issue 6 | 20804
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Profiler is the first algorithm for constructing patient-specific gene
regulatory networks from clinical cancer gene expression data to
elucidate cancer heterogeneity.

We applied NetworkProfiler to gene expression microatray data
from 762 cancer cell lines to determine system changes related to the
epithclial-mesenchymal transition (EMT). The epithelial-mesenchy-
mal transition (EMT) is a process that changes proliferating cells from
an aplanetic state to a motile state [5], which allows cancer cells to
leave the primary tumor and metastasize. The loss of E-cadherin, a
cell adhesion molecule, is a biomarker of EMT [5]. NetworkProfiler
identified 25 key regulators of E-cadherin, of which half have been
previously described and the other half were novel candidates.
NetworkProfiler also revealed regulatory changes in miR-141, JEBI,
and E-cadherin. Specifically, our results suggested that decreased
expression of miR-141 in mesenchymal cells disrupts the negative
feedback loop between miR-141 and JEBI, which would allow JEB/
to decrease the expression of E-cadherin during the EMT. In
addition, we predicted 45 EMT-dependent putative master regula-
tors that control sets of genes involved in cell adhesion, migration,
invasion and metastasis, namely, 17 of which are downstream targets
of TGFBI, a master switch of the EMT. To further validate the
performance of NetworkProfiler, we experimentally evaluated i silico
predictions obtained by NetworkProfiler. We consequently found
that knockdown of KLF5, a new candidate regulator of E-cadherin,
decreased E-cadherin expression and induced morphological changes
characteristic of EMT. In addition, the functional involvement of
miR-100 was validated in some EMT-related aspects, which was
consistent with the predictions obtained by Network Profiler.

Results

Overview of NetworkProfiler

Here, we provide an overview of NetworkProfiler; please refer to
the Methods section for a complete description. NetworkProfiler is a
modulator-dependent graphical model because it includes a

R>T

(b) A

Potient 1

" Patient 2

Network Profiling Analysis

modulator (M) variable in addition to regulator (R) and target (7)
variables (genes). R controls the transcription of 7 and M is a
cofactor that modulates the interaction between R and T'. In this
study, we defined M as a biological or a clinical feature that is related
to cancer, such as drug response, survival risk, or a molecule or
pathway that is related to cancer initiation, progression, or metastasis.
The relationships between R, T, and M are illustrated in Figure la.
As shown in Figure 1b, the strength of the relationship between R and
T varies depending on the value of M. Thus, M does not affect R
and T directly; instead, it influences the strength of the relationship
between R and T. In contrast, existing graphical models, such as
Bayesian networks and mutual information networks [4], do not
consider the effect of M (Figure 1c), so the strength of the relationship
between R and T remains constant for all values of M (Figure 1d).

In addition, NetworkProfiler can infer the relationships between
R and T, given a value of M. As a result, we could use
NetworkProfiler to construct patient-specific networks with varying
R-T relationships that reflect changes in the feature of interest in
cancer patients. A simple example with synthetic data for R, T, and
M is shown in Figure 2a. In this example, we assume that R
regulates 7" only with a high value of M (Figure 2b). In this case,
most existing methods that only consider R and T in all of the
samples (Figure 2¢) and ignore M would conclude that R does not
regulate 7. In contrast, NetworkProfiler attempts to quantify the
strength of the relationship between R and T for a specific value m
of M by reweighting the data according to the value of M to identify
the neighborhood of samples with values of M that are close to m.
Then, NetworkProfiler measures the dependency between R and T
on the basis of these neighboring samples. The optimization of the
size of the neighborhood is explained in the Method section.

A schematic representation of the entire analytical process of
NetworkProfiler is shown in Figure 3. NetworkProfiler used 2
mputs: (1) gene expression data and (2) the modulator for each
sample (Figure 3a). The gene expression data was represented as a
P X n matrix, where p is the number of genes and #z is the number

Patiant

R->T

(©) (d) 4

M

M

Figure 1. The relationships between a regulator (R), a target(7), and a modulator (}/) in NetworkProfiler and existing graphical
models. (a). The relationships between R, T and M in NetworkProfiler. The directed solid-line edge from R to T represents “R regulates the
transcript of 7". The directed dot-line edge from M to the edge between R and T describes “M controls the strength of the relationship between R
and T". (b). The strength of the relationship between R and T in NetworkProfiler that varies depending on the value of M. (c). The relationships
between R and T in existing graphical models that do not consider the effect of M. (d). The strength of the relationship between R and T in existing

graphical models that remains constant for all values of M.
doi:10.1371/journal.pone.0020804.g001

@ PLoS ONE | www.plosone.org

June 2011 | Volume 6 | Issue 6 | e20804

-87-



(a)

MO&Q"@@QF (M), ¢

Target (T) \_ | | o

(b)

Network Profiling Analysis

Target (T)
¢

i

T T T T T
~2 -1 ] 1 2

o # ey - o o
, . . o " . e o, «
) s 2 % N £ - « ¢ e o o
s UM : '%s g . i o:
| i 2 WF . Vum b ® o~ » ., » . ]
E w iffwliein . | B, aldal s | E
o o % k] }?a}e 2 e\‘k"w P ® sk s . * - - A q" & o 0N it
P wé‘& & f‘@ ﬁ%ﬁs@s‘&.. * @ » a8y £ ‘?' St B =
o R o8 & *wg& u%;?%,@:** P Drag 3 ‘.Q‘g"&’ ;‘:’ ¢ B jo
; L " ‘ e B Pt ’ 1
& P 4‘%%3.”%@,%'& - ® ;‘.E ® '.u”?“. " \?& L l_{g 5
T By % e B * * o ‘b L
e 2N M*‘ as’sa‘ . » * h" « ¥ [luidid .. o
@ ey BTy K * - Tose® = 5 4
¥ < " % * 5 -4
hd # e » ’: * ®
= ® o o ]
¥ . ¥ LA * “
DA 4 J : 2w ¢ ‘ : 2 - s : 2
Regulator (R) Regulator (R) Regulator (R)

Figure 2. A regulatory change between a regulator (R) and a target (7) depending on the value of a modulator M. (a). A simple
example with synthetic data from 1000 samples for R, T, and M where x-, y-, and z-axises correspond to the expressions of R and T, and the values
of M, respectively. (b). The 3 scatter plots of R and T that are conditioned on the value of M. The left, middle, and right figures represent the scatter
plots from 1-st sample to 333-th sample, from 334-th sample to 666-th sample, and from 667-th sample to 1000-th sample in order of ascending M,
respectively. (c). The scatter plot of R and T that are not conditioned on the value of M.

doi:10.1371/journal.pone.0020804.g002

of samples (patients). If the modulator was an observable variable,
then we directly applied NetworkProfiler to these inputs. However,
if the modulator was a variable that is difficult to observe, then we
used a signature-based hidden modulator extraction algorithm to
estimate the value of the modulator. The output of NetworkPro-
filer is a set of gene networks for every value of M (i.e., sample-
specific gene networks) shown in Figure 3b.

Afterwards, we used 2 post-analysis techniques to extract
biological information from the networks. The first technique
identified upstream regulators of a target gene of interest in the
constructed modulator-dependent gene networks. To evaluate the
modulator-dependent strength of a regulator for the target gene,
we created a measure called the regulatory effect. The regulatory
effect profiles of the upstream regulators for specific target genes
are shown in Figure 3c. The second technique discovered putative

@ PLoS ONE | www.plosone.org 3

master regulators that control downstream target gene sets with
previously curated functions. To evaluate the enrichment of the
target genes on a functional gene set, we created measure called
the enrichment score. The resulting regulator-function matrix
(Figure 3d) illustrates the candidate regulators (rows) of functions
(columns) that are enhanced in the target genes.

Identification of system changes in the epithelial-
mesenchymal transition

To identify system changes during the EMT, we applied
NetworkProfiler to gene expression profiles of 762 cancer cell lines
from the Sanger Cell Line Project (http://www.broadinstitute.
org/cgi-bin/cancer/datasets.cgi). This dataset included the ex-
pression profiles of 22,777 probes, which correspond to 13,006
mRNAs in these cancer cell lines from the Affymetrix GeneChip
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Figure 3. A schematic representation of the entire analytical process of NetworkProfiler. (a). Inputs of NetworkProfiler: gene expression
data matrix and the modulator for each sample. (b). Outputs of NetworkProfiler: a set of gene networks for every value of M (i.e., sample-specific
gene networks). (c). The regulatory effect profiles of the upstream regulators for a specific target gene. (d). The resulting regulator function matrix
whose columns are the candidate regulators and rows are functions that are enhanced in the target genes.

doi:10.1371/journal.pone.0020804.g003

Human Genome U133 Array Set (HG-U133A) and the expression
profiles of 502 human microRNAs from bead-based oligonucle-
otide arrays. The MAS5-normalized mRINA dataset was further
transformed to the log scale and quantile-normalized. During the
mapping of the probes to genes, we selected 1 probe for each gene
that had the largest variance, which produced a final 13,508
(genes) x 762 (cancer cell lines) gene expression matrix.

In this study, we considered transcription factors, nuclear
receptors, and microRNAs to be potential regulators. To identify
transcription factors and nuclear receptors, we selected human
genes that were annotated as a “transcription regulator” or
“ligand-dependent nuclear receptor” from the Ingenuity Knowl-
edge Base (IKB; http://www.ingenuity.com). We also included

@ PLoS ONE | www.plosone.org

some transcription factors that were not annotated in the IKB but
were annotated in the Biobase Knowledge Library (BKL; http://
biobase-international.com/). We mapped a total of 1230 genes in
the HG-U133A microarray gene set to 1183 transcription factors
and 47 nuclear receptors (Table S1). In addition, we included 502
human miRNA probes (Table S2).

To calculate the modulator values for the EMT in the 762 cancer
cell lines, we applied a signature-based hidden modulator extraction
algorithm (see Methods for details) to the expression data. First, we
selected 122 genes labeled “EMT_UP”, “EMT_DN”, “JECHLIN-
GER_EMT_UP”, and “JECHLINGER_EMT_DN” from Molec-
ular Signatures Database v2.5 ([6]; http://www.broadinstitute.org/
gsea/msigdb/index jsp). Then, this algorithm narrowed the set to
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Figure 4. Expression profiles of the 50 functionally coherent genes in ascending order of the EMT-related modulator values. The
heatmap represents normalized expression profiles so that the mean and variance for each gene are 0 and 1, respectively, The red color represents
positive expressions and the green color represents negative expressions. The upper strings indicate cell line names which are known to be epithelial
or mesenchymal. The upper horizontal color bar represents the values of the EMT-related modulator with the signature-based hidden modulator
extraction algorithm. The bottom horizontal color bar shows primary histories of 762 cancer cell lines whose color corresponds to one of the eight
primary histories or the other histories (black). The bottom histograms represent frequencies of the primary histories between samples with the 200

lowest and 200 highest values of the EMT-related modulator, respectively.

doi:10.1371/journal.pone.0020804.g004
50 functionally coherent genes with p<10~> by using the

extraction of expression module (EEM) [7] (Table S3) and
computed the first principal component of these 50 genes as hidden

@ PLoS ONE | www.plosone.org

values of the EMT-related modulator (Table S4). Since the
direction of the first principal component did not always correspond
to that of the EMT, we changed the sign of the modulator values by
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multiplying either plus or minus one so that epithelial-like cells have
lower modulator values than mesenchymal-like cells.

Figure 4 shows the expression profiles of the 50 functionally
coherent genes in ascending order of the EMT-related ‘miodulator
values. These modulator values clearly discriminated cell lines that
were cpithelial-like or mesenchymal-like. Specifically, cells with
smaller or larger modulator values had more epithelial or
mesenchymal phenotypes, respectively. Furthermore, many carci-
nomas and squamous tumors had low modulator values, while
many gliomas and melanomas had high values. By using these
EMT-related modulator values, NetworkProfiler constructed 762
regulatory gene networks that are related to the EMT. The list of
the estimated edges in each of these networks can be downloaded
from the supporting web site (Files SI, S2, and S3; http://bonsai.
hge.jp/ ~ shima/NetworkProfiler).

Identification of regulators of E-cadherin that induce the
epithelial-mesenchymal transition

To identify possible regulators that might control the
expression of E-cadherin during the EMT, we calculated the
regulatory effects of the upstream regulators of E-cadherin. Out
of 1732 potential regulators, NetworkProfiler inferred that 370 of
them may control the expression of E-cadherin in any of the 762
cancer cell lines (Table S5). These putative regulators were
ranked according to the change in their regulatory effect during
the EMT. Although we did not include any information on
known E-cadherin regulators, about half of the 25 highest ranked
regulators were previously reported in the literature (Table 1).
For example, 2 zinc finger transcription factors, ZEB1 and ZEB2,
are direct repressors of E-cadherin and are involved in the EMT
[9,15]. In addition, the miR-200 family indirectly suppresses the
EMT by inhibiting the translation of ZEB1 and ZEB2 mRNAs
[8]. Similarly, miR-192 inhibits the translation of ZEB2 [13,14].
In addition, SNAI2, a member of the Snail superfamily of zinc
finger transcription factors, also is involved in the EMT [16].
Likewise, TCF4 (also known as E2-2), a class I bHLH
transcription factor, is an EMT regulator; its isoforms induce
the EMT in MDCK kidney epithelial cells [12]. In contrast,
FOXA1 and FOXA2 are positive regulators of E-cadherin, which
suppress the EMT in pancreatic ductal adenocarcinoma [11].
KLF4 also inhibits the EMT by regulating E-cadherin expression
[10]. NetworkProfiler also identified several other known direct
repressors of E-cadherin, such as TWIST1 [17] and TCF3 (also
known as E47) [18]; however, these regulators were ranked 38th
and 84th, respectively.

The other half of the 25 highest ranked regulators has not yet
been reported and may be novel EMT-dependent regulators of E-
cadherin. For example, although the relationship between
GRHL2 and EMT is not known, GRHL2 is required for
morphogenesis of epidermal and tracheal cells and plays an
important role in regulating the expression levels of E-cadherin in
Drosophila post-embryonic neuroblasts [19]. ZNF217 binds the E-
cadherin promoter [20], which suggests that ZNF217 might be a
transcription factor for E-cadherin.

Next, we compared the performance of NetworkProfiler with
that of a structural equation model (SEM) of E-cadherin that was
inferred by the elastic net [22]. This model was equivalent to a
regression model where the response variable is the expression of
E-cadherin and the explanatory variables are the 1732 regulator
expressions. The significance of each regulator was evaluated
based on the number of non-zero regression coefficients in 1000
bootstrapped datasets. The SEM inferred 627 putative regulators
(Table S6). Among these putative regulators, there were only 6
regulators, namely, JEBI, miR-141, JEB2, TCF3, miR-200b, and
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Table 1. 25 top-ranked regulators of E-cadherin for the
change in the regulatory effect change among the EMT with
published evidence.

Evidence

regulator type r

I y effect chang

9

miR-141 A 87.58 18l

ZEB1 (SIP1) l 50.72 [9]

miR-200b A 31.55 [8]

ovoL2 A 22.08

FOXA2 A 17.26 [11]

ELF3 A

MYB A

miR-192 A 1230 {13,141

ZNF165 A 11.39

HNF1B A 11.08

ZEB2 (JEF) | 10.66 [15]

SNAI2 | » 9.74 h N 6]v

The labels “A” and “1” indicate 2 types of the regulator: activator (A) and
inhibitor (). See Table S5 for the complete table of the 370 putative regulators
for E-cadherin.

doi:10.1371/journal.pone.0020804.t001

miR-200c, in the 25 highest ranked regulators that were previously
reported in the literature. This result suggested that NetworkPro-
filer was superior to the traditional gene network estimation
methods to identify regulators of E-cadherin that are involved in
the EMT. Moreover, NetworkProfiler can reveal regulatory
changes among genes during the EMT. Figures 5a and 5b show
the regulatory profiles of putative regulators of E-cadherin when
the lengths of the paths from the regulators to E-cadherin is 1 and
2, respectively.

NetworkProfiler can also predict mechanistic interpretations
of published experiments. For example, it is known that ZEBI
and ZEB2 induce EMT by repressing E-cadherin transcription
and that ectopic expression of the miR-200 family (miR-200a,
miR-200b, miR-200¢, and miR-141) or miR-205 leads to
downregulation of ZEB1 and ZEB2, upregulation of E-
cadherin, and mesenchymal-epithelial transition (MET) in cells
[8]. As the relationships between these genes, the prediction of
NetworkProfiler provides the following results. As shown in
Figures 6¢ and 6d, although the expression of miR-141 had a
strong positive effect on that of E-cadherin in epithelial-like
cells, this effect decreases during the EMT. In contrast, although
the expression of ZEB1 had a weak negative effect on that of E-
cadherin in epithelial-like cells, this effect increased during the
EMT. Interestingly, miR-141 and ZEBI1 had a strong, direct
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Figure 5. Regulatory effect profiles of the putative regulators of E-cadherin among the EMT. (a). The regulatory effect profiles of the 13
putative regulators among the EMT when the length of the paths from the regulators to E-cadherin is 1 where rows indicate the putative regulators
of E-cadherin and columns indicate samples (cancer cell lines). The positive (red) and negative (green) regulatory effect indicate that the parent
regulator controls the transcript of E-cadherin positively and negatively, respectively. (b). The regulatory effect profiles of the 13 putative regulators
among the EMT when the length of the paths from the regulators to E-cadherin is 2.

doi:10.1371/journal.pone.0020804.9005

negative effect on each other only when the EMT-related
modulator values were low. This implied that there is a negative
feedback loop between miR-141 and ZEBI in epithelial-like

cells, which is consistent with a previous study [23]. Further-
more, during the EMT, the expression levels of miR-141 and E-
cadherin decreased, while the expression level of ZEBI

(a). epithelial-like cell (b). mesenchymal-like cell
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Figure 6. Regulatory changes among miR-141, ZEB1, and E-cadherin among the EMT. (a). The relationship among miR-141, ZEB1, and
E-cadherin in epithelial-like cells. {b). The relationship among miR-141, ZEB1, and E-cadherin in mesenchymal-like cells. (c). The expression profiles of
miR-141 (left), ZEB1 (middle), and E-cadherin (right) in order of ascending the EMT-related modulator values. The green and red colors indicate
epithelial- and mesenchymal-like cells, respectively. (d). The regulatory effects from ZEB1 to miR-141, from miR-141 to ZEB1, from miR-141 to
E-cadherin, and from ZEB1 to E-cadherin when the length of the paths is 1.

doi:10.1371/journal.pone.0020804.g006
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