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T ratio of 12.5:1. *p < 0.05. b A 4-h °'Cr-release assay was also per-
formed against MCF7 cells expressing HER2-wt or HER2-ECD, or
mock-treated MCF7 cells in the presence of 10 pg/ml of trastuzumab
or control rituximab. Data represent the mean + SD of 3 wells at four
different E/T ratios. *p < 0.05

Fig. 3 Trastuzumab-mediated ADCC activity on HER2-ECD-
expressing MCF7 cells. a The cytotoxic activity against MCF7 human
breast cancer cells transfected with vector expressing HER2-wt or
HER2-ECD or empty vector (mock) was assessed by a 4-h standard
SICr-release assay in the presence of the indicated doses of trastuzumab
or control rituximab. Data represent the mean & SD of 3 wells at an E/

Table 1 HER?2 expression status of gastric cancer cell lines

Direct antitumor effects of Ad-HER2-ECD
on trastuzumab-resistant or low HER2-expressing

Cell lines HER?2 status
human cancer cells
FACS (MFI) HercepTest Western
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adenovirus-mediated overexpression of HER2-ECD unex-

HER?2-expressing status of six different gastric cancer cell lines mea-
sured by flow cytometry, immunocytochemistry (HercepTest), and
Western blotting analysis

pectedly induced a significant suppression of in vitro
growth in all cell lines as compared to uninfected cells or
cells infected with control dI312 (Fig. 5). These results sug-
gest that Ad-HER2-ECD had a slight but significant direct
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Fig. 4 Efficient HER2-ECD overexpression in human cancer cell
lines by a recombinant replication-deficient adenovirus vector.
a Western blot analysis of HER2-wt (185 kDa), HER2-ECD
(100 kDa), and representative HER2-related signaling proteins in var-
ious types of human cancer cells. Trastuzumab-resistant breast cancer
cells (SKBR3 and BT474), low HER2-expressing breast cancer cells
(MCF7 and MDA-MB-231), and low HER2-expressing gastric cancer

antitumor effect on trastuzumab-resistant and low HER2-
expressing human cancer cell lines in vitro.

Adenovirus-mediated HER2-ECD overexpression
sensitizes trastuzumab-resistant or low HER2-expressing
human cancer cells to trastuzumab-mediated ADCC

Finally, we examined whether Ad-HER2-ECD infection
could overcome acquired resistance to trastuzumab-medi-
ated ADCC in SKBR3 and BT474 human breast cancer
cells. Enhancement of ADCC activity by Ad-HER2-ECD
infection was also assessed in low HER2-expressing human
breast and gastric cancer cell lines. Following Ad-HER2-
ECD infection, trastuzumab-resistant (Fig. 6a) as well as
low HER2-expressing cells (Fig. 6b, c¢) were more
efficiently killed by ADCC, and a significant difference was
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cells (MKN1 and MKN28) were infected with replication-deficient
adenoviral vector expressing exogenous HER2-ECD (Ad-HER2-
ECD) or replication-deficient control adenovirus (d1312) at an MOI of
20 for 36 h. b Flow cytometric analysis of HER2 expression and the
amount of bound trastuzumab in cells 36 h after Ad-HER2-ECD
infection at an MOI of 20

detected at all effector/target ratios in all cell lines, except
trastuzumab-resistant SKBR3 cells, as compared to mock-
or control d1312-infected cells. Thus, Ad-HER2-ECD-med-
iated exogenous expression of HER2-ECD could sensitize
trastuzumab-resistant HER2-downregulated cells or low
HER2-expressing cells to trastuzumab through ADCC acti-
vation in vitro.

Discussion

The nature of acquired resistance to trastuzumab is an area
of active research in both the laboratory and the clinic. In
the present study, we exposed HER2-positive breast cancer
cells to trastuzumab continuously in vitro to induce resis-
tance against this antibody and investigate the mechanisms
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Fig. 6 Molecular sensitization of human cancer cells to trastuzumab
by Ad-HER2-ECD-mediated exogenous expression of HER2-ECD.
The cytotoxic reactivity of PBMCs against HER2-downregulated
SKBR3 or BT474 cells (a), low HER2-expressing MCF7 or MDA-

MKNI1 or MKN28 human gastric cancer cells (¢) was assessed after
Ad-HER2-ECD or dI312 infection in the presence of 10 pg/ml of trast-
uzumab or control rituximab by a 4-h 3'Cr-release assay. Data repre-
sent the mean + SD of 3 wells at four different E/T ratios

MB-231 human breast cancer cells (b), or low HER2-expressing
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responsible for this resistance. Some studies indicated that
trastuzumab treatment does not alter the cell-surface HER2
expression status [30, 31]. However, we have demonstrated
that continuous exposure to trastuzumab results in HER2
downregulation in HER2-overexpressing breast cancer cell
lines in vitro. Previous studies also showed that alternative
receptor tyrosine kinase signaling may play a role in trast-
uzumab resistance [18-20]. In fact, trastuzumab-exposed
SKBR3 cells exhibited upregulated IGF-1R expression,
suggesting that an alternative signaling pathway was
enhanced to protect cells from trastuzumab-mediated
HER?2 signaling inhibition.

We also found that trastuzumab-exposed HER2-over-
expressing breast cancer cells developed impaired trast-
uzumab-mediated ADCC activity in vitro. The ability of
trastuzumab to mediate ADCC activity is strictly related to
HER?2 density [7]. In addition, Mimura etal. [32] previ-
ously reported that the HER2 status determined by flow
cytometry is well correlated with trastuzumab-mediated
ADCC activity in esophageal squamous cell carcinoma cell
lines in vitro. Taking into account these reports, we con-
clude that the impaired trastuzumab-mediated ADCC activ-
ity in trastuzumab-exposed HER2-positive human cancer
cells was due to the downregulation of HER2 expression on
the cell surface. These results led us to examine whether
exogenous expression of the HER2 receptor on the cell sur-
face could re-sensitize HER2-downregulated human cancer
cells to trastuzumab via ADCC re-activation.

HER2 overexpression is a significant prognostic factor
in terms of nodal status, tumor grade, overall survival and
probability of relapse in breast cancer patients [33, 34].
Although reports are conflicting, some studies have sug-
gested that HER2-positive status in gastric cancer is associ-
ated with poor outcomes and aggressive disease [12, 13].
As expected, human cancer cells transfected with the full-
length functional HER2 showed accelerated cell growth as
compared to parental cells, whereas the cell growth pattern
of HER2-ECD-transfected low HER2-expressing human
cancer cells was similar to that of parental cells. Further-
more, we showed that HER2-ECD transfection of low
HER2-expressing human cancer cells did not enhance the
HER2/HER3 signaling pathway, which is the major onco-
genic signal in HER2-overexpressing breast tumors [35,
36]. Although transfection of HER2-ECD-expressing plas-
mid did not influence cell growth, adenovirus-mediated
exogenous HER2-ECD expression significantly sup-
pressed the tumor cell growth in vitro, suggesting that the
growth inhibition associated with HER2-ECD overexpres-
sion might be due to its levels on the cell surface. There-
fore, Ad-HER2-ECD infection showed slightly enhanced
cytotoxic activity against some types of human cancer cells
even with the control antibody rituximab in the 3'Cr release
assay. The mechanism of Ad-HER2-ECD-mediated cell
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growth inhibition is unclear; however, it is likely to be
caused by the restriction of other HER family receptors
through the formation of heterodimers with exogenously
expressed HER2-ECD that lacks the downstream signaling
pathway.

Some previous studies demonstrated that primary or
acquired resistance to trastuzumab often results from pre-
venting the binding of antibody to the HER2 protein by
proteins such as membrane-associated glycoprotein mucin-
4 [37, 38]. In our study, even after a long-term exposure to
trastuzumab, trastuzumab-mediated ADCC activity on sta-
bly HER2-ECD-expressing MCF7 cells was significantly
enhanced compared to mock-treated MCF7 cells, and, fur-
thermore, HER2-downregulated or low HER2-expressing
human cancer cells could be re-sensitized to trastuzumab
via re-activation of trastuzumab-mediated ADCC. These
results indicate that the degree of antibody-mediated
ADCC activity is likely to be correlated with the cell-sur-
face expression levels of HER2. These results suggest that
the HER2-downregulated or low HER2-expressing human
cancer cells exogenously overexpressing HER2-ECD is
hard to develop resistance to trastuzumab in terms of the
importance of ADCC activity in antitumor effects of this
antibody.

A previous study has demonstrated that heterogeneity
and incomplete membranous immunoreactivity for HER2
were more common in gastric cancer than in breast cancer
[39], suggesting that the gastric tumors diagnosed as
HER2-positive by immunohistochemistry or fluorescent in
situ hybridization are more likely to be residual and re-
grow under trastuzumab treatment. Therefore, molecular
sensitization to trastuzumab through the expression of
HER2-ECD is thought to be effective even against HER2-
positive gastric cancer. We would like to examine whether
the ADCC activation by exogenous HER2-ECD expression
functions in vivo; however, since murine NK cells do not
recognize trastuzumab, which is a humanized antibody, the
in vivo experiments are hard to be performed. The geneti-
cally engineered fluorescent tumor cells as well as the
whole-body fluorescent imaging technology may be avail-
able for such kinds of in vivo studies [40, 41].

Although the strategy for molecular sensitization to
trastuzumab via ADCC activation by using an adenoviral
vector is considered to be effective, some limitations exist;
for example, there are variations in the efficiency of viral
infection and the expression levels of exogenous HER2-
ECD. As we used a replication-deficient adenovirus vector,
the viral spread might be less than ideal after intratumoral
administration. We previously developed a telomerase-spe-
cific oncolytic adenovirus that causes cell death in human
cancer cells with telomerase activities. These oncolytic
viruses engineered to replicate in tumor cells but not in nor-
mal cells could be used as tumor-specific vectors carrying



Cancer Immunol Immunother

therapeutic genes such as HER2-ECD. Moreover, ADCC
activity of PBMCs from cancer patients is likely to be
impaired due to immunosuppression and NK cell dysfunc-
tion, as previously reported for gastric cancer patients [42,
43]. The immunosuppressive state is associated with immu-
nosuppressive cytokines such as IL-10 and TGF-f. These
cytokines are produced within the tumor microenvironment
and suppress the activity of NK cells, monocytes, and T
cells [43-46]. Therefore, to sufficiently enhance the effect
of trastuzumab-mediated ADCC activity in cancer patients,
supportive immunotherapy such as the administration of
immune-stimulating cytokines may be required.

In conclusion, our data demonstrate that HER2 down-
regulation and impaired ADCC activity may be one mecha-
nism of trastuzumab resistance. We also show that
exogenous overexpression of non-signaling HER2-ECD
could sensitize HER2-downregulated or HER2-negative
human cancer cells via ADCC activation, an outcome that
has important implications for the treatment of human can-
cers.
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