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Abstract: Oral squamous cell carcinomas (OSCCs) are considered to arise from human oral keratinocytes. DNAs of
human papillomaviruses (HPVs), predominantly types 16 and 18, etiological agents of cervical cancer, have been
detected in approximately 25% of OSCCs. In accordance with the established role of E6 and E7 in inactivating p53
and pRB, respectively, mutations of p53 and inactivation of p16NK4a gre frequently observed in HPV-negative OSCCs.
In addition, other alterations such as overexpression of epidermal growth factor receptor (EGFR) are often observed
in both HPV-positive and -negative OSCCs. However, causal-relationships between accumulation of these abnormali-
ties and multi-step carcinogenesis are not fully understood. To elucidate underlying processes, we transduced either
HPV16 E6/E7 or mutant CDK4 (CDK4R24C), cyclin D1 and human telomerase reverse transcriptase (TERT) into pri-
mary human tongue keratinocytes (HTK), and obtained immortal cell populations, HTK-16EGE7 and HTK-K4DT. Addi-
tional transduction of oncogenic HRAS or EGFR together with MYC into the HTK-16EGE7 and dominant-negative p53
expressing HTK-K4DT resulted in anchorage-independent growth and subcutaneous tumor formation in nude mice.
These results indicate that either HRAS mutation or activation of EGFR in cooperation with MYC overexpression play
critical roles in transformation of HTKs on a background of inactivation of the pRB and p53 pathways and telomerase
activation. This in vitro model system recapitulating the development of OSCCs should facilitate further studies of
mechanisms of carcinogenesis in the oral cavity.

Keywords: Oral squamous cell carcinoma, HPV, carcinogenesis, human tongue keratinocytes, EGFR, HRAS, MYC

pact on the quality of life of patients and survi-
vors.’In spite of the clinical importance, we are
far away from having a complete understanding
of the molecular mechanisms of initiation and

Introduction

Oral cancers are the 6th most common human
neoplasms accounting for 3% of all newly diag-

nosed cancers[1], with about 300,000 new
cases being diagnosed every year worldwide [2,
3]. Despite efforts to improve the survival rates,
these have basically remained unchanged for
the last 20 years. Since 50 to 70% of patients
die within 5 years due to local recurrence, inva-
sion or metastasis to the cervical lymph nodes
~and/or lung, or second primary cancers, gener-
ally elsewhere in the oral cavity (in line with the
‘field cancerization’ theory), the prognosis is
poor. Moreover, oral cancers have a severe im-

progression of oral cancers.

The main accepted risk factors are tobacco us-
age and alcohol consumption but recently, hu-
man papillomaviruses (HPV) have also been
postulated to play roles [4-6]. While more than
95% of cervical squamous cell carcinomas are
linked to persistent HPV infection, the presence
of the HPV genome in oral cancers is reported
to range from 10 to 70%, depending on the
area, the ethnicity of the patients, the type of
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specimen and the detection method [4]. Several
studies have provided evidence that chronic
infection in basal cells of the oral mucosa with
high-risk HPVs, especially type 16 and 18, can
promote orai carcinogenesis [7]. Two viral onco-
proteins, E6 and E7, are thought to contribute to
tumor progression by inactivating p53 and reti-
noblastoma tumor suppressor (pRB), respec-
tively [8, 9]. E6 facilitates the degradation of
p53 through its association with an accessory
protein, E6-AP, a component of the ubiquitin
proteolytic pathway [9]. E7 proteins of the high-
risk types bind to pRB [10], leading to altered
activity of this cell-cycie regulator. However, epi-
demiological studies and experimental data
indicate that the viral presence is not enough to
induce cancers even in the cervix and the re-
quirement of additional cellular factors are es-
pecially suggested in the case of oral carcino-
genesis, the roles of HPV are still under estima-
tion.

More than 90% of oral cancers are histopa-
thologically squamous cell carcinomas (SCCs).
The development of oral squamous cell carcino-
mas (OSCCs) is a multistep process, starting
from hyperplasia and dysplasia, and finally pro-
gressing to neoplasms (benign and malignant)
[14, 12]. During these steps, multiple geneti-
calterations may occur, including chromosomal
aberrations, DNA mutations, amplification or
deletions and/or epigenetic alterations. Numer-
ous studies have revealed that oncogenes such
as EGFR, ERBB2, HRAS, KRAS, and ¢c-MYC (MYC)
are often activated by overexpression, amplifica-
tion, and/or mutation [1, 13-20]. As with other
carcinomas, telomerase activation is also com-
mon in oral cancers [21, 22]. In addition, muta-
tions of p53 and disruption of the pRB pathway
(p16NK4a.CDK4/cyclin D1-pRB) are frequently
observed [23-27]. Although such genetic
changes have been identified, how they indi-
vidually contribute to oral carcinogenesis has
yet to be clarified in detail.

Recently, we have established in vitro multi-step
carcinogenesis models for cervical cancer and
epithelial ovarian cancer, respectively with and
without HPV16 E6/E7 as transgenes [28, 29].
In the present study, taking advantage of this
background, we could successfully induce tu-
morigenic transformation of normal human
tongue keratinocytes with defined genetic ele-
ments so as to establish in vitro multistep car-
cinogenesis models for both HPV-positive and -
negative OSCCs.

870

Materials and methods
Isolation of human tongue keratinocytes (HTKs)

Tongues were obtained from two tongue muco-
cele patients undergoing cystectomy at Hyogo
College of Medicine Hospital, Japan. The Ethics
Committee of Hyogo College of Medicine and
National Cancer Center approved this study and
the subjects gave informed consent for partici-
pation. The tongues were grossly normal and no
pathological lesions were observed on subse-
quent histological examination. After colla-
genase digestion under aseptic conditions, HTK
cells were obtained by scraping with a surgical
blade and maintained in Epilife (invitrogen,
Carlsbad, CA).

Viral vector construction and viral transduction

Construction of the retroviral expression vectors,
pCLXSN-16E6E7, pCLXSH-TERT, pCMSCVpuro-
MYC, -MYCTs8A, pCMSCVbsd-MYC, -MYCTs8A,
pCMSCVbsd-HRASG12Y, pCMSCVbsd was de-
scribed previously [28-30] Wild type EGFR
(EGFR"T) and a constitutive active form of EGFR
(EGFRd76750; deletion from E746 to A750) gen-
erated by site-directed mutagenesis were simi-
larly recombined with the retroviral vector
pDEST-PQCXIP by the LR reaction (Invitrogen) to
generate pQCXIP-EGFRWT and pQCXIP-EGFRd74s6-
750, The production of recombinant retroviruses
was as described previously [31]. Construction
of lentiviral vectors, CSI-CMV-TERT, CSil-CMV-
cyclin D1, CSII-CMV-CDK4R24¢ and CSII-CMV-
DNp53 and the production of recombinant lenti-
viruses with the vesicular stomatitis virus G gly-
coprotein (VSV-G) were as detailed earlier [29,
32]. Following the addition of recombinant viral
fluid to cells in the presence of 4 mg/mi poly-
brene, infected cells were selected in the pres-
ence of 50 mg/ml of G418, 1 mg/ml of puromy-

.cin, 1 mg/ml of blasticidine-S or 50 mg/ml of

hygromycin-B.

Telomerase activity

Telomerase activity was detected using a non-
radioisotopic method with a TRAPeze telom-
erase detection kit (Intergen, Burlington, MA) as
previously described [33].

Western blot analysis

Western blotting was conducted as described
prviously [33]. Antibodies against cyclin D1

Am J Cancer Res 2011;1(7):869-881
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(clone G124-326), CDK4(clone 97), pl6iNkéa
(clone G175-405; BD Biosciences, Franklin
Lakes, NJ), p53 (clone DO-1; Merck, Darmstadt,
Germany), p21WAF1 (12D1; Oncogene Research
Products, Cambridge, MA), MYC (sc-42), B-actin
(sc-1616; Santa Cruz, CA), HPV16 E6 (clone
47A4)[34], HPV16 E7 (clone 8C9; Invitrogen)
and keratin 14 (AF14; Covance, Princeton, NJ)
were used as probes, and horseradish peroxi-
dase-conjugated anti-mouse, anti-rabbit
(Jackson Immunoresearch Laboratories, West
Grove, PA) or anti-goat (sc-2033; Santa Cruz)
immunoglobulins were employed as secondary
antibodies.

Colony formation in soft agar (anchorage-
independent growth)

Cells were seeded at 5x104 cells per 35-mm

plate (BD Biosciences) in Epilife with 0.4 % aga-

rose. Colonies over 50um in diameter were
counted after a lapse of 3 weeks. Five photo-
graphs of randomly selected areas in each dish
were taken at the magnification of x40. The
numbers of colonies were measured with the
COLONY program (Fujifilm, JAPAN). The experi-
ments were performed in triplicate.

Tumorigenesis in nude mice

All surgical procedures and care administered to
the animals were in accordance with institu-
tional guidelines. Cells were resuspended in
50% Matrigel (BD Biosciences) and injected
subcutaneously into a flank or orthotopically
into female 6 to 7-week old BALB/c nude mice
(Clea Japan Inc., Tokyo, Japan).

Immunohistochemical examination

Formalin-fixed and paraffin-embedded tissue
sections (4 micrometerthick) were deparaf-
finized in xylene and rehydrated through a se-
ries of graded ethanols (100-70%). For antigen
retrieval, slides were immersed in a citrate
buffer (pH6.4) and heated for 15 minutes in a
microwave. The slides were then incubated in
methanol containing 0.3% H202 to inhibit en-
dogenous peroxidase activity. After washing,
primary antibody against keratin 14 (1:500,
SP53, Spring Bioscience, Pleasanton, CA) was
applied for 1 h and binding was detected using
an Envision Kit (Dako Cytomation; K4006).
Color development was achieved with 3, 3-
diaminobenzine (DAB) as chromogen and hema-
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toxylin counterstaining. As a negative control, we
used normal non-immune serum from the same
source as the primary antibody.

Results

Immortalization of HTK cells with or without viral
oncogenes

To establish an in vitro model system for HPV-
positive OSCCs, two independent batches of
primary HTK cells (HTK1 and HTK3T) were
transduced with retroviral vectors expressing
HPV16 E6 and E7 (HTK1-EGET7). HTK3 cells
were transduced with TERT first since HPV16 E6
and E7 are not sufficient to avoid telomere ero-
sion. Pooled populations of these HTK celis
were named HTK1-EGE7 and HTK3-TEBGE7, re-
spectively. Expression of the transgenes was
confirmed by immunoblotting (Figure 1A). As
expected, decreased levels of p53 were ob-
served in these cells (Figure 1A). We have
shown that both telomerase activation and inac-
tivation of the pl6Nk4a/pRB pathway are re-
quired for immortalization of human primary
epithelial cells. Disruption of the pRB pathway,
such as inactivation of p16/INk4a and overexpres-
sion of cyclin D1, are also frequently observed
in OSCCs. In order to establish an in vitro model
system for HPV16-negative OSCCs, a mutant
form of CDK4 (CDK4R24C), which cannot be inac-
tivated by p16, and cyclin D1 as well as TERT
were transduced into HTK cells (HTK1 and
HTK3) with lentiviral vectors (Figure 1B). Pooled
populations of these HTK cells were named
HTK1-K4DT and HTK3-K4DT, respectively. Ex-
pression of the transgenes was confirmed by
immunobilotting (Figure 1B) and the TRAP assay
(Figure 1C). As expected, the combination of
HPV16 EGE7 or CDK4R24C, cyclin D1 and TERT
resulted in extended life span and virtual im-
mortalization of HTK cells (Figure 1D). Both the
primary and immortalized cell lines- expressed
keratin 14, a marker of keratinocytes (data not
shown). HTK1 cells showed normal diploidy and
HTK1-K4DT cells was almost diploid though
HTK3-K4DT cells tended to be tetraploid with
some chromosomal abnormalities.

Combined transduction of HRAS and MYC into
HTK1-K4DT-DNp53 and HTK1-EBE7 cells in-
duces anchorage-independent growth and tu-
mor-forming ability in nude mice.

In HPV-negative OSCCs, overexpression of MYC

Am J Cancer Res 2011;1(7):869-881
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Figure 1. Immortalization of primary human tongue keratinocytes. (A) Two batches of primary human tongue keratino-
cyte (HTK), termed HTK1 and HTK3, were transduced with retroviruses expressing HPV 16 E6 and E7 for the HPV-
positive 0SCC model. After selection, cells were harvested and subjected to SDS-PAGE. Western blotting confirmed
expression of the two transgenes in the resultant cell populations and showed endogenous expression of p53. (B)
HTK1 and HTK3 were infected with lentiviruses expressing mutant CDK4, cyclin D1 and TERT for the HPV-negative
0SCC model. Western blotting confirmed expression of the two transgenes in the resultant cell populations and
showed endogenous expression of p16Nk4a, (C) Telomerase activity of primary and immortalized HTK cells was meas-
ured by the TRAP assay. Hela cells, eight tandem repeats of the telomeric sequence (TSR8) and CHAPS buffer alone
(NC) were used as controls. (D) Growth curves of HTK1 and HTK3 cell lines. Day 0 is the time when the immortalizing
genes (mutant CDK4, cyclin D1 and TERT) or HPV 16 EGE7 were transduced.

and mutation of HRAS and p53 are frequently tumors in nude mice, whereas those without
observed especially in tobacco chewing indi- MYC failed to form tumors (Table 1). HTK1-
viduals for HRAS [35]. Thus, a dominant nega- KADT-HRASG12V-MYC cells, which did not ex-
tive form of p53 (DNp53), HRASG12Y and MYC press a dominant negative form of p53 devel-
were serially transduced into HTK1-K4DT cells. oped tumors less efficiently and with a long la-
Expression of these transgenes together with tent period, while HTK1-K4DT-DNp53 cells with
accumulation of p53 and downregulation of MYC alone did not form tumors (Table 1).
p21WAFL was confirmed by immunoblotting

(Figure 2A). Then we assessed the effects of For the HPV-positive OSCC model, we trans-
oncogenic HRASG12Vand MYC on cell growth. duced HRASG12Y and MYC serially into HTK1-
HTK1-KADT-DNp53 cells with HRASG12V and EGE7 cells and confirmed expression of trans-
MYC grew faster than those with an empty vec- genes by immunoblotting (Figure 2D). HTK1-
tor (Figure 2B), and formed numerous and EGE7 cells expressing HRASG12Vvand MYC or
much larger colonies in soft agar medium than HRASG12V alone grew faster than those with
those with HRASG612V alone, whereas cells with empty vectors (Figure 2E). HTK1-EGE7 cells ex-
empty vector formed no colonies (Figure 2C). pressing HRASG12Y and MYC formed numerous
HTK1-KADT-DNp53 cells with HRAS¢12V and large colonies and those expressing HRAS&12V
MYC or a mutant form of MYC (MYC™84), which alone formed some small colonies, whereas
is resistant to proteosomal degradation, formed those with empty vectors formed no colonies

872 Am J Cancer Res 2011;1(7):869-881
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Figure 2. Anchorage-dependent and -independent growth of HTK1-EGE7-HRASG12-MYC and HTK1-K4DT-DNp53-
HRASG12V-MYC cells. (A) HTK1-KADT cells were serially infected with lentiviruses encoding DNp53 and retroviruses
encoding HRASE12V, MYC or empty vectors (-). After selection, cells were harvested and subjected to SDS-PAGE. West-
ern blots show expression of the three transgenes and suppression of p21WAFL, (B) Growth curves for DNp53-vector,
DNp53-HRASE12Y or DNp53-HRASG12V-MYC expressing HTK1-K4DT cells. HTK1-K4DT-DNp53-HRASG12V cells showed
the fastest growth rate. Cells (2x104) were cultured in triplicate 12-well plates and counted every 3 days. The graphs
illustrate means + s.d. (C) Anchorage independent growth of HTK1-K4DT cells expressing different transgenes. Cells
(5x10%) were seeded in 35-mm plates. After 3 weeks, colonies was counted when sized > 50 pm in diameter. The
experiments were performed in triplicate and the total number of colonies in a 15 mm?2 area was counted. The graphs
illustrate means + s.d. Scale bars, 250 ym. (D) HTK1-E6E7 cells were serially infected with retroviruses encoding
HRASG12v, MYC or empty vectors (-). After selection, cells were harvested and subjected to SDS-PAGE. Western blots
show expression of the two transgenes. (E) Growth curves for vector, HRASG12V or HRASE12V-MYC expressing HTK1-
EBE7 cells. HTK1-E6E7-HRASG12V cells showed the fastest growth rate. Cells were grown as described in (B). (F) An-
chorage independent growth of HTK1-EGE7 cells expressing different transgenes performed as for (C). Scale bars,
250 pm.

(Figure 2F). HTK1-E6GE7- HRASG12Y cells (3/4) as cells induces anchorage-independent growth
well as HTK1-EGE7- HRASG12V-MYC cells formed and tumor-forming ability in nude mice
tumors (8/8) in nude mice, whereas those ex-
pressing MYC alone failed to do so (Table 1). Excluding cases in tobacco chewers, overex-
This is consistent with our previous results that pression. of EGFR or activating mutations of
a combination of EGE7 and oncogenic HRAS EGFR are observed more frequently than acti-
without MYC can confer tumorigenicity on hu- vating mutations in the RAS oncogenes [17,
man cervical keratinocytes and MYC substan- 35]. To determine a role of enhanced EGFR sig-
tially enhances the tumorigenicity. These results naling in the development of OSCCs, wild type
indicate that a combination of oncogenic HRAS EGFR (EGFRWT) or a constitutively active form of
and MYC can cooperately confer anchorage- EGFR (EGFRd746-750) instead of HRAS was trans-
independent growth and tumorigenicity on HTK duced into HTK1-K4DT and HTK1-EGE7 celis as
cells expressing either EGE7 or CDK4/cyclin expected if HRAS and EGFR are acting in the
D1/TERT and DNp53. same pathway. Expression of the transgenes
was confirmed by immunoblotting (Figure 3A in
Combined transduction of a constitutively active HTK1-K4DT and Figure 4A in HTK1-EGEY).
form of EGFR and a degradation-resistant form Total and the phosphorylated form of EGFR in
of MYC into HTK1-K4DT-DNp53 and HTK1-EGE7 HTK1-K4DT-DNp53-EGFRWT cells and HSC2
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Table 1. Summary of data for tumorigenic potential of HTK1 and HTK3 cells with various transgenes

(1x106 cells/site).

Cells No. of tumors/

Sites of injection

Cells No. of tumors/

Sites of injection

HTK1-K4DT-DNp53-HRASE12V

HTK3-K4DT-DNp53-HRASE12Y

vector expl 0/4 vector 0/4
exp 2 0/4 MYCT584 4/4 (3)
MYC 4/4 (3)
MYCT58A 4/4 (4)
HTK1K4DT-DNp53-EGFRWT HTK3-K4DT-DNp53-EGFRW!
vector 0/4 vector 0/4
MYCT58A exp 1 4/4(7) MYCTs8A 4/4 (9)
exp 2 4/4 (10)
HTK1-K4DT-DNp53-EGFRdI746-750 HTK3-K4DT-DNp53-EGFRe746-750
vector 0/4 vector 0/4
MYCT58A 4/4 () MYCT58A 4/4 (4)
HTK1-K4DT-HRASE12Y
vector 0/4
MYC 1/4 (5)
HTK1-K4DT-DNp53-MYC 0/4
HTK1-E6E7-HRASSE12V HTK3-T-E6E7-HRASE:2Y
vector 3/4 (5) vector 0/4
MYC exp 1 4/4 (4) MYCT58A 4/4 (6)
exp 2 4/4 (4)
MYCT58A 4/4 (4)
HTK1-EGE7-EGFRWT HTK3-T-EGE7-EGFRWT
vector 0/4 vector 0/4
MYC 0/4 MYCT58A 0/4
MYCT58A 0/4
HTK1-EGE7-EGFRd746750 HTK3-T-E6E7-EGFRU™6-750
vector 0/4 vector 0/4
MYCT584 4/4 (10) MYCT58 4/4(9)
HTK1-EGE7-MYC 0/4

incidence of tumor formation within 16 weeks of observation period was scored. Number in parentheses indicates
observation period (weeks) when mice were Killed because of the faster growth of one or more tumors in the same
mouse. Some cell lines were repeatedly established. exp 1, 1st experiment; exp 2, 2nd experiment.

(human OSCC cell line with EGFR amplification)
cells were higher than those in vector trans-
duced cells and the phophorylation fevels were
further increased by the addition of EGF. As ex-
pected, the phosphorylation levels of EGFRYT in
EGFR4746-750 expressing cells were much higher
without addition of EGF, indicating ligand-
independent activation of the EGFRd746-750
(Figure 3A, P-EGFR). Exogenous EGFR expres-
sion levels in HTK1-K4DT or HTK1-EGE7 cells
were comparable to that of HSC2.

HTK1-KADT cells expressing EGFRWT or

EGFRd746-750 grew faster than those with an
empty vector (Figure 3B), and additional trans-
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duction of MYCT84 only slightly enhanced prolif-
eration in culture (Figure 3B). HTK1-K4DT-
DNp53 cells expressing EGFRWT or EGFRd746-750
exhibited anchorage-independent growth, en-
hanced by additional MYCTS8 transduction,
whereas those with empty vector formed no
colonies (Figure 3C). HTK1-K4ADT-DNp53 cells
expressing EGFRWT or EGFRd746-750 were able to
form tumors only when MYCT™8 was co-
expressed (Table 1) and those with EGFRd746-750
formed tumors faster than those with EGFRWT
(Table 1).

HTK1-E6GE7 cefls expressing EGFR4746-750 grew
faster than those expressing EGFRWT (Figure

Am J Cancer Res 2011,1(7):869-881
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Figure 3. Anchorage-dependent and -independent growth of HTK1-K4DT-DNp53-EGFRWT (or EGFRd4746-750)-MY(CT58A
cells. (A) HTK1-KADT-DNp53 cells were serially infected with retroviruses expressing EGFRWT, EGFRd746-750 MYCTS8A or
empty vectors (-). After selection, cells were harvested and subjected to SDS-PAGE. Western blots show expression of
transgenes. EGFRd746:750; constitutively active mutant of EGFR. Cells were first starved in medium without bovine pi-
tuitary extract and EGF for 72 hours and some of them were stimulated with EGF for 30 min before harvesting as
indicated. HSC2; human OSCC cell line with EGFR amplification. (B) Growth curves of HTK1-K4DT-DNp53 cells ex-
pressing different transgenes as described in (A). Cells were grown as described in Fig 2(B). (C) Anchorage-
independent growth of HTK1-K4DT-DNp53 cells expressing different transgenes performed as for Fig. 2(C). Scale
bars, 250 pym.
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Figure 4. Anchorage-dependent and -independent growth of HTK1-EGE7-EGFRWT (or
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/ / MYCT8A (Table 1).
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tumors of HTK1-EGE7-
HRASG12V-MYCTs8A  and
HTK1-EGE7-EGFRd746-750-
MYCT58A cells were well
differentiated SCCs with
keratin  pearls. Both
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HRASG12V-MYCT58A  and
HTK1-EGE7-HRASG12V-
MYCTS8A cells were posi-
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£ g “gfg to be carcinomatous in
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Confirmation of the multi-

EGFRA746750)-MYCT=84 cells. (A) HTK1-EGE7 cells were serially infected with retrovi- ~ S{a&€ nature of carcino-
ruses expressing EGFRWT, EGFRd746.750, MYCTS84 or empty vectors (-). After selection, ~§enesis with the HTK3T
cells were harvested and subjected to SDS-PAGE. Western blots show expression of ~ cell line.

transgenes. HSC2; human OSCC cell line with EGFR amplification. (B) Growth curves

of HTK1-E6E7 cells expressing different transgenes as described in (A). Cells were It is possible that addi-
grown as described in Fig 2(B). (C) Anchorage-independent growth of HTK1-K4DT-  tional alterations (genetic
EGE7 cells expressing different transgenes performed as for Fig. 2(C). Scale bars, and/or epigenetic) occur-

250 ym.

4B), and showed increased

pressing EGFRWT showed poor

876

anchorage-
independent growth regardless of the exoge-
nous expression of MYCTS8A though those ex-
anchorage-
independent growth without MYCTs8A (Figure 4

ring during the process of
introducing  oncogenic
genes could contribute to
their tumorigenic phenotype. To address this
possibility, we repeatedly transduced EGFRWT,
EGFRd746-750 or HRASG12V plus MYCTS8 into
HTK3-TEGE7 and HTK3-K4DT-DNp53 cells, an-
other independent batch of HTKs derived from a
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Figure 5. Histopathological findings for tumors derived from HTK1 cells. Histopathology of subcutaneous tumors of
HTK1-EGE7- HRASG12V-MYCT58A, HTK1-EGE7- EGFRU746-750-MYCT58A HTK1-K4DT-DNp53-HRASE12V-MYCT8Aand HTK1-
K4DT-DNp53-EGFRd746-750-MYCT58A cells. The insets show immunohistochemical staining of keratin 14. Scale bars,

200 pym.

different patient. All these cells reproducibly
developed subcutaneous tumors in nude mice,
whereas those transduced with HRASG12V glone
without MYCT58* and carrying empty vectors
failed to form tumors (Table 1). The histological
appearance of HTK3-K4DT-DNp53-HRASG12V-
MYC™8 and HTK1-TEGE7-HRASG12V-MYCT58A
tumors was similar to that of corresponding tu-
mors with HTK1-K4DT and HTK1-EGE7 (data not
shown). These results indicate that the combi-
nation of multiple genetic elements we applied
can reproducibly fully transform HTK cells.

Discussion

Our goal is to develop an appropriate in vitro
model for recapitulating development and pro-
gression of both HPV-positive and -negative hu-
man OSCCs. OSCCs are thought to arise from
basal layer epithelial cells of oral mucosa, which
regenerates stratified epithelium through termi-
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nal differentiation of keratinocytes. The fact that
human tongue keratinocytes (HTKs) were here
obtained from two patients without smoking
histories or cancer, allowed us to explore inter-
individual variation in the tumor formation proc-
ess. In this report, we document establishment
of an in vitro model system for HPV16-positive
and -negative multistep carcinogenesis using .
normal HTKs.

As also shown earlier, overexpression of HPV16
E6 and E7 themselves could immortalize HTKs
but did not support anchorage-independent
growth. We next tried to immortalize HTKs with-
out viral oncogenes to establish an in vitro
model system for HPV-negative multistep car-
cinogenesis. By CDK4 and cyclin D1 transduc-
tion in combination with TERT, we here estab-
lished novel HTK cell lines, termed HTK1-K4DT
and HTK3-K4DT. The pRB pathway is frequently
disrupted in OSCCs by pl6NK4a jnactivation
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and/or abnormal expression of CDK4/cyclinD1
[18, 20, 36, 37]. OSCCs, like many other carci-
nomas, maintain telomere length with telom-
erase activation [21, 22]. Immortality is one of
the important characteristics of malignancy and
ectopic expression of these genes thus could
mimic the events that occur during develop-
ment of OSCCs. Alterations of p53 have been
detected in approximately 50% of OSCCs [23,
36-39] and some authors suggest that p53 al-
terations might represent an early step in the
oral carcinogenesis, especially for HPV-negative
0SCCs.

OSCCs often overexpress the epidermal growth
factor receptor (EGFR) and some of its active
variants or harbor activating mutations in the
RAS oncogene with a rate ranging from 3% to
5% in Western countries and up to 50% in India
and Southeast Asia. Importantly, EGFR muta-
tions and KRAS mutations are mutually exclu-
sively observed in non-small cell lung carcino-
mas[40]. A similar tendency has also been ob-
served in a smaller number of OSCCs [19]. Re-
cently, complications of chewing betel quid in
oral cancer development have been found clini-
cally meaningful and important in India and
Southeast Asia. For example, EGFR amplifica-
tion or a high frequency of mutations in codons
12 and 61 of the HRAS were reported to be as-
sociated with heavy betel quid users [16, 35,
37, 41]. EGFR, a key cancer-driving gene during
OSCC development, belongs to the type | recep-
tor tyrosine kinase (ERBB) subfamily, and ap-
pears more important than other ERBB mem-
bers for oral cancer development [19]. In addi-
tion to gene amplification, activating mutation
of genes in kinase signaling pathways is another
common genetic event during cancer develop-
ment. EGFR and its downstream effectors have
diverse cellular functions, impacting on cell pro-
liferation, differentiation, motility, survival, and
tissue development [42]. The RAS-RAF-MAPK
cascade is particularly active when cancer cells
overexpress EGFR [43]. Schulze and colleagues
have further shown that the majority of RAS-RAF
-MAPK-induced changes in gene expression are
dependent on the status of EGFR [44], highlight-
ing the critical roles of the signal networking
among different oncogenes in cancers [45]. In
addition, Raimondi et al have shown that, in
spite of ras being likely activated in many K14-
expressing squamous epithelia in their animal
system, those animals develop benign tumors
only in the oral mucosa. This suggests that oral
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epithelial cells might be particularly sensitive to
RAS-induced aberrant cell proliferation. Here,
transduction of oncogenic HRAS or wild type
EGFR or mutant EGFR (EGFRY746750) into HTK-
EGE7 and HTK-KADT-DNp53 cells resulted in
enhanced anchorage-independent growth but
no tumor forming ability, except when oncogenic
HRAS was transduced into HTK1-E6E7. There-
fore we tried to define essential genetic altera-
tions that cooperate with HRASG12V or wild type
EGFR or EGFRY748750 to induce a fully trans-
formed phenotype. Amplification and/or overex-
pression of the MYC gene, an oncogene but also
a strong inducer of apoptosis, are found in 26-
40% of all oral cancers [15, 20]. Furthermore,
amplification of MYC is a common finding in
advanced stages, which may suggest a critical
role in progression. In this study, transduction of
wild-type or a mutant MYC strongly enhanced
anchorage-independent growth of HTK-EGE7
and HTK-KADT-DNp53 cells expressing
HRASG12V, EGFRWT, or EGFRd746-750 and resulted
in tumor formation, except when MYC or
MYCTs8A was transduced into HTK-EGE7-EGFRWT
cells (Table 1). In addition, we have focused on
development of an orthotopic model of OSCC
through injecting HTK cell lines into the tongues
of nude mice. HTK1-K4DT-DNp53-HRASG12V-
MYCT58A and HTK1-K4DT-DNp53-EGFRWT-
MYCTs8A cells formed orthotopic tumors (Figure
6A) and showed SCC-like features histopa-
thologically (Figure 6B). Furthermore, one out of
the four tumors yielded regional metastases in
2-3 weeks (data not shown). Further investiga-
tion with the orthotopic model should be useful
to identify genes and other factors involving in
regional metastases.

Human cancer cell lines, even though they are
derived from well-differentiated carcinomas,
rarely mimic the original histology when inocu-
lated into mice. In our study, HTK1-K4DT-
DNp53 cells expressing HRASG12V or EGFR4746-
750 and MYC (HPV-negative model) formed tu-
mors faster than HTK1-EGE7 cells expressing
the same additional oncogenes (HPV-positive
model), and HTKL1-EBE7 cells expressing
EGFRWT and MYC or MYCT58 failed to form tu-
mors unlike the corresponding HTK1-K4DT-
DNp53 cells (Table 1). In addition, isolated sub-
cutaneously xenograft tumors of HTK1-EGE7
cells expressing either HRASG12V plus MYC T58Aor
EGFRa746-750 -MYCT$8A (HPV-positive model)
showed histological - features of well-
differentiated SCCs, but the corresponding
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HTK1-K4DT-DNp53 cells (HPV-negative model)
did not (Figure 5). These differences of tumori-
genicity and histopathology between our HPV-
positive and HPV-negative models might reflect
the favorable outcome associated with HPV in
oropharyngeal cancer [17, 46]. Further efforts
to clarify critical pathways in carcinogenesis
with each histological subtype should help pro-
vide best targets for early detection and effec-
tive molecular therapies.

In summary, we newly immortalized primary
HTK cells with cellular genes (CDK4, cyclin D1
and TERT) or viral oncogenes (HPV16 EGE7).
With these non-tumorigenic cell lines, we have
developed for the first time an in vitro culture
model faithfully recapitulating the development
of HPV-positive and -negative OSCCs with ge-
netically defined elements. Our results provide
evidence that either HRAS mutation or activa-
tion of EGFR in cooperation with MYC overex-
pression is a strong set of drivers sufficient for
transformation of HTKs which have acquired
inactivation of the pRB and p53 pathways and
telomerase activation by either HPV16EGE7 or
equivalent genetic alterations. Our experimen-
tal model should facilitate further studies to
understand genesis of OSCCs and hopefully will
assist in the evaluation of new therapies.
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' Abstract

‘Objective: Dysregulated expression of disintegrin-metal-
loprotease proteins [a  disintegrin ‘and metalloproteases
(ADAMs) and ADAMs with thrombospondin motif (AD-
AMTSs)] has been reported in many types of cancersand is
believed to play an important role in cancerformation and
metastasis. However, little is known about the expression of
ADAMsand ADAMTSs inthe development of human cervical
cancer Methods. Reverse transcriptase polymerase chain
reaction and mmunoblottmg were performed to assess the
expression of several disintegrin- metalloproteases and tis-
sue inhibitors of metalloprotemases (TIMPs) in squamous—
type cervical cancer cells and oncogemcally modified kera-
tinocytes (lmmortahzed human cervical keratmocytes trans-
duced with human papilloma virus-16 E6/E7 proteins with or
without oncogenes). Immunohistochemistry of ‘ADAM-9,
ADAM-10 and TIMP-3 was performed on 31 primary human
cervical tissue specimens of preinvasive and invasive cervical
carcinoma. Results: mRNA levels of ADAM- 9, ADAM- 10
ADAM-12, TIMP-2 and TIMP-3 were upregulated as cervical

cells progressed from dysplastlc to malignant lesions com-
pared to normal cervical cells. These results were corrobo-
rated at the protein level by Western blot analysis and im-
munohistochemistry. Conclusion: The expression of disinte-
grin-metalloproteases and their endogenous regulators was

~ dysregulated during cervical carcinogenesis. The aberrant

expression of ADAMs might contribute to the pathogenesis
of cervical cancer formation and progression. -
Copyright © 2011 S. Karger AG, Basel

Introduction
. &

Cervical carcinoma, a malignant neoplasm of cervix
uteri, is the second-most common cancer in women
worldwide. Every year, more than 550,000 new cases of
cervical cancer are diagnosed, and it contributes to the
deaths of more than 310,000 women, the majority of
Wthh occur in the developing countries [1]. Squamous
cell carcinoma is the most common histological type of
cervical carcinoma, representing about 85-90% of all
cases. Numerous studies have provided evidence that
persistent infection with certain ‘high-risk’ human papil-
loma virus (HPV) strains is one of the initiating factors
in the development of uterine cervical carcinoma [2). The
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