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Abstract

It has been suggested that hyperlipidemia is positively associated with colon carcinogenesis. Statins, 3-
hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors, reduce serum lipid levels. In this study, we
clarified the effects of a novel chemically synthesized statin, pitavastatin, on intestinal polyp formation in
Min mice, and further examined serum lipid and adipocytokine levels, and proinflammatory and
adipocytokine gene levels in intestinal mucosa of Min mice. Treatment with pitavastatin at doses of 20
and 40 ppm decreased the total number of polyps dose-dependently to 85.2% and 65.8% (P < 0.05) of the
untreated value, respectively. Serum levels of total cholesterol and triglyceride were slightly reduced and
those of IL-6, leptin, and MCP-1 were decreased by 40-ppm pitavastatin treatment. mRNA expression levels
of cyclooxygenase-2, IL-6, inducible nitric oxide (iNOS), MCP-1, and Pai-1 were significantly reduced in
intestinal nonpolyp parts by pitavastatin treatment. Among them, iNOS mRNA levels were also reduced in
the intestinal polyps. Moreover, oxidative stress represented by 8-nitroguanosine in the small intestinal
epithelial cells was reduced by pitavastatin treatment. Related to these proinflammatory genes, PPARY
activity was activated in the intestinal nonpolyp parts and in the liver of Min mice with pitavastatin
treatment. These results indicated that pitavastatin has potential benefit for the suppression of intestinal

polyp development. Cancer Prev Res; 4(3); 445-53. ©2011 AACR.

introduction

Epidemiological studies have suggested that mortality
and morbidity of colon cancer are increasing in developed
countries (1, 2). Thus, it is very important to establish
effective methods to prevent colon cancer development.
"Consumption of a high-fat diet is a considerable risk factor
of colon cancer with clear link with hyperlipidemia. Hyper-
lipidemia has also been indicated to be positively asso-
ciated with colon carcinogenesis (3, 4). We have reported
Apc deficient, Min and Apc’®% mice, which developed a
large number of intestinal polyps showed the hyperlipi-
demic state (5-7). Interestingly, improvement of hyperli-
pidemic state by peroxisome proliferator-activated receptor
(PPAR) o and 7y agonists and a selective LPL-inducing
agent, NO-1886, which does not possess PPARs agonistic
activity, suppressed intestinal polyp formation in Min
mice. Thus, it is conceivable that drugs, which effectively
improve hyperlipidemia, could also prevent colon cancer
development.

Authors' Affiliations: 'Cancer Prevention Basic Research Project,
National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo,
Japan; 2School of Food and Nutritional Sciences, University of Shizuoka,
52-1 Yada, Suruga-ku, Shizuoka, Japan

Corresponding Author: Keiji Wakabayashi, School of Food and Nutri-
tional Sciences, University of Shizuoka, 52-1 Yada, Surugaku, Shizuoka,
Japan. Phone: 81-54-264-5835; E-mail: gp1576@u-shizuoka-ken.ac. jp

doi: 10.1158/1940-6207.CAPR-10-0028

©2011 American Association for Cancer Research.

Statins, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-
CoA) reductase inhibitors, are commonly used for the
treatment of hypercholesterolemia (8, 9). Among statins,
pravastatin, lovastatin, and simvastatin are so called the
first-generation statins (10, 11), and fluvastatin is the
second-generation statin {12). Recently, the third-genera-
tion statins, such as atorvastatin and rosuvastatin, were
developed (13, 14), which strongly suppress serum LDL-
cholesterol levels compared with the former generation
statins. The Molecular Epidemiology of Colorectal Cancer
(MECC) study has indicated that use of statins for 5 years or
longer significantly reduced the risk of colorectal cancer by
47% (15). Meanwhile, some epidemiological studies using
the first-generation statins, lovastatin and pravastatin (16,
17), are not fully consistent with above data. One of the
reasons might be the suboptimal administration of the
drug, in which efficacy of statins could not be shown, and
another reason might be the difference of statin generation.
Thus, epidemiological and/or experimental data on third-
generation statins are desired to evaluate its chemopreven-
tive effects on colon cancer.

Previous animal studies have shown that pravastatin and
atorvastatin suppressed 1,2-dimethylhydrazine (DMH) or
azoxymethane (AOM)-induced colon cancer development
in mice and rats, respectively (18, 19). Recent animal
studies have shown that 100-ppm atorvastatin reduced
the incidnce of small intestinal polyp (adenoma) in Min
mice to about 70% of the control group (20). Meanwhile,
10-ppm pitavastatin, a novel third-generation lipophilic
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statin {21), reduced the incidence of colon adenoma or
adenocarcinoma induced by AOM/dextran sodium sulfate
treatment in ICR mice to about 78% of the control group
(22). These results implied that pitavastatin may have a
potent effect against colon tumor formation in rodent.

Pitavastatin may also have several clinical advantages over
other statins. Similar serum triglyceride (TG) levels could be
achieved by doses of pitavastatin (2 mg/d) lower than those
of atorvastatin or rosuvastatin (10 mg/d). Lowering potenti-
ality of pitavastatin on serum LDL-cholesterol is greater than
that of pravastatin and is similar to atorvastatin (23, 24). As
pitavastatin is hardly metabolized by cytochrome P450
compared with other statins, pitavastatin has advantage of
not having unexpected interactions with other drugs.

In addition to the main function of statins, which is
inhibition of the synthesis of mevalonate, statin also sup-
presses inflammation. Statins concomitantly suppress ger-
anylgeranylation of protein, such as the small GTP-binding
proteins RhoA, Ras, Cdc42, and Rac (25,26), which activate
intracellular signaling molecules. Thus, pleiotropic action
of pitavastatin could be involved in the suppression of
cancer development.

In this study, we clarified the suppressive effect of pita-
vastatin on intestinal polyp development in Min mice. The
mechanism involved in the suppressive effect of pitavas-
tatin treatment on intestinal polyp formation in Min mice
was also examined and further discussed.

Materials and Methods

Animals and chemicals

Male C57BL/6J-Apc™™* mice (Min mice) were purchased
from The Jackson Laboratory at 6 weeks of age and geno-
typed as previously reported (27). Hetérozygotes of the Min
strain and wild-type (C57BL/6]) mice were acclimated to
laboratory conditions for 1 week. Four or five mice were
housed per plastic cage with sterilized softwood chips as
bedding in a barrier-sustained animal room at 24 £ 2°Cand
55% humidity on a 12-hour light/dark cycle. The pitavas-
tatin, (+)-monocalcium bis{(3R,5S,6E)-7-[2-cyclopropyl-
4 -(4-fluorophenyl)-3-quinolyl]-3,5-dihydroxy-6-hep-
tenoate} (CsoHasCaF,N2Og, MW 880.98), was kindly pro-
vided by Kowa Pharmaceutical Co., Ltd. Pitavastatin was
well mixed at the concentrations of 20 and 40 ppm in AIN-
76A powdered basal diet (CLEA).

Animal Experimental Schedule

To investigate the effects of pitavastatin on intestinal
polyp formation, male Min mice at 6 weeks of age were
given 0, 20, 40 ppm of pitavastatin in the diet for 14 weeks.
Min mice were divided into groups of 20. With 20 ppm of
pitavastatin, 4 mice died during the experiment. Food and
water were available ad libitum. The animals were observed
daily for health appearance and mortality. Body weights
and food consumption were measured weekly. Animals
were anesthetized with ether and sacrificed, and blood
samples were collected from the caudal vena cava. Serum
levels of TG and total cholesterol were measured as

reported previously (6). The experiments were carried
out according to the "Guidelines for Animal Experiments
in the National Cancer Center" and were approved by the
Institutional Ethics Review Committee for Animal Experi-
mentation in the National Cancer Center.

The intestinal tract was removed and separated into the
small intestine, cecum, and colon. The small intestine was
divided into the proximal segment (4 cm in length), and
then the proximal (middle) and distal halves of the remain-
der. Polyps in the proximal segments were counted and all
polyps were picked up under a stereoscopic microscope
and the remaining intestinal mucosa (nonpolyp part) was
removed by scraping, and then both stored at —80°C for
the further real-time PCR analysis. Other segments were
opened longitudinally and fixed flat between sheets of filter
paper in 10% buffered formalin. The numbers and sizes of
polyps and their distributions in the intestine were assessed
with a stereoscopic microscope (6). A part of liver, femoral
muscle, visceral fat, and right kidney were kept in 10%
buffered formalin, and residues of liver, femoral muscle,
visceral fat, and left kidney were frozen by liquid nitrogen
and then stored at —80°C.

Determination of Serum Adipocytokine Levels

Serum samples from 20-week-old male Min mice with or
without pitavastatin were measured for serum concentra-
tions of adiponectin (R&D Systems), leptin (B-Bridge Inter-
national, inc.), Pai-1 (Innovative) by an enzyme
immunoassay and IL-1B, 1L-6, MCP-1, TNFo, VEGF were
determined by using Procarta Cytokine Assay mouse (Affy-
metrix, inc.) according to the manufacturer’s protocol.

Immunochistochemical Staining

The middle segments of the small intestines were fixed,
embedded, and sectioned as Swiss rolls for further immu-
nohistochemical examination with the avidin-biotin com-
plex immunoperoxidase technique. Polyclonal goat anti-
COX-2 and anti-MCP-1 antibody (Santa Cruz Biotechnol-
ogy), polyclonal rabbit anti-Pai-1 antibody (Santa Cruz
Biotechnology), polyclonal rabbit anti-PPARy antibody
(Cell Signaling), monoclonal mouse anti-iNOS antibody,
and anti-nitrotyrosin antibody (Santa Cruz Biotechnology)
were used at 100x dilution. Polyclonal rabbit anti-8-nitro-
guanosine antibody (Cosmo Bio Co., Ltd.) and polyclonal
goat anti-IL-6 antibody (Santa Cruz Biotechnology) were
used at 50x dilution. As the secondary antibody, biotiny-’
lated anti-goat, -rabbit, and -mouse IgG (Vector Labora-
tories) were employed at 200x dilution. Staining was done
using avidin biotin reagents (Vectastain ABC reagents;
Vector Laboratories), 3,3’-diaminobenzidine and hydro-
gen peroxide, and the sections were counterstained with
hematoxylin to facilitate orientation. As a negative control,
consecutive sections were immunostained without expo-
sure to the primary antibody.

Real-time PCR Analysis
Polyps and nonpolyp parts from proximal segments of
small intestine of Min mice were rapidly deep-frozen in
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Table 1. Number of intestinal polyps/mouse in Min mice with or without pitavastatin treatment

Small intestine

Pitavastatin (ppm) No. of mice Proximal Middle Distal Colon Total

0 20 46 £+ 12 19.2 52 462 + 7.2 06 + 04 705 4+ 133
20 16 54 4+ 18 133 4+ 22 404 + 66 08 + 03 601 =+ 101
40 20 51 + 15 134 + 32 274 + 417 05 + 03 464 <+ 80*

Data are mean £ SE

*, ** Significantly different from the pitavastatin untreated group at P < 0.05, P < 0.01.

liquid nitrogen and stored at —80°C. Total RNA was iso-
lated from tissues by using Isogen (Nippon Gene), treated
with DNase (Invitrogen) and 3-ug aliquots in a final
volume of 20 pL were used for synthesis of cDNA using
an Omniscript RT Kit (Qiagen) and an oligo (dT) primer.
Real-time PCR was carried out using a DNA Engine Opti-
con 2 (M] Japan) with SYBR Green Real-time PCR Master
Mix (Toyobo) according to the manufacturer’s instructions.
Primers for mouse adiponectin (5'primer-AGGATGCTAC-
TGTTGCAAGCTICTC, 3'primer-CAGTCAGTTGGTATCAT-
GGTAGAG), COX-2 (5'primer- AGAAGGAAATGGCTGCA-

GAA,  3'primer-GCTCGGCITCCAGTATTGAG), iNOS
(5'primer-CCGGCAAACCCAAGGTCTACGTT,  3'primer-

CACATCCCGAGCCATGCGCACATCT), IL-6 (5'primer-
ACAACCACGGCCITCCCTACIT, 3'primer-CACGATITC-
CCAGAGAACATGTG), MCP-1 (5'primer-CCACTCACCT-
GCTGCTACTCAT, 3'primer- TGGTGATCCTCTTGTAGCT-
CICC), Pai-1 (5primer-GACACCCTCAGCATGITCATC,
3'primer- GACTGTACAAATCACGITGGGA), and GAPDH
(5'primer-TTGTCTCCTGCGACTTCA, 3'primer-CACCACC-
CTGTTGCTGTA) were employed (28-31). To assess the
specificity of each primer set, amplicons generated from
the PCR reaction were analyzed for melting curves and also
by electrophoresis in 2% agarose gels. Standard curves for
absolute quantification were obtained with plasmids con-
taining the various amplicons. From each plasmid a 10-fold
dilution series was measured in duplicate. Quantification
and generation of standard curves was carried out using a
DNA Engine Opticon 2 (M] Japan).

PPARYy Activity in Intestinal Mucosa and Liver

Nuclear extracts containing PPARY from nonpolyp parts
of intestinal mucosa and liver (50 mg each) of mice with or
without 40-ppm pitavastatin treatment were prepared
using NE-PER Nuclear and Cytoplasmic Extraction
Reagents (PIERCE Biotechnology). PPARy activation by
pitavastatin treatment was assayed using an ELISA-based
transactivation TransAM PPARy kit (Active Motif) follow-
ing the manufacturer’s protocol.

Statistical Analysis

All the results are expressed as mean + standard errors
(SE) values, with statistical analysis using Dunnett’s test
and PPARy activity in intestinal nonpolyp parts and liver

were performed with Student’s t-test. Differences were
considered to be statistically significant at P < 0.05.

Results

Suppression of intestinal polyp formation in Min
mice by pitavastatin treatment

Treatment with pitavastatin at doses of 20 and 40 ppm
for 14 weeks did not affect body weights or health appear-
ance of Min mice throughout the experimental period.
Average daily food intake did not differ among the groups,
being 2.39 + 0.37 (mean + SE), 2.49 + 0.39, and 2.47 +
0.25 g per mouse per day for the 0, 20, and 40-ppm groups
of Min mice, respectively. No changes were observed in the
liver, heart, kidney, and thymus weights that might have
been attributable to toxicity.

Table 1 summarizes data on the number and distribution
of intestinal polyps in the untreated and pitavastatin-treated
groups. Almost all polyps developed in the small intestine,
with only a few in the colon as reported previously (6). The

treatment with pitavastatin at a dose of 40 ppm significantly -

reduced the total number of polyps to 65.8% (P < 0.05) of
the value in the untreated group. Strong suppression of
intestinal polyp development was observed at the distal
parts of small intestine, with 41% reduction (P<0.01) at 40
ppm. The maximum number of polyps was observed in the
range of size from 0.5 mimn to 2.5 mm in diameter. Treatment
with 40-ppm pitavastatin significantly reduced the numbers
of polyps ranging from 1.5 mm to 2.0 mm (P < 0.05 vs. 0
ppmy; Fig. 1A). Small-size polyps (<2.0 mm) were mainly
distributed in distal parts of the small intestine (Fig. 1B). The
group treated with 40-ppm pitavastatin significantly
reduced the number of small-size polyps (21.6 + 1.9/
mouse, P <0.01) in distal part compared with the untreated
group (33.9 £ 2.4/mouse; Fig. 1B). The number of large-
size polyps (>2.0 mm) in distal parts of the untreated group
was 11.9 + 3.5/mouse, and the number in 40-ppm pita-
vastatin-treated group was decreased to 5.4 £ 1.6/mouse
(P < 0.05; Fig. 1C).

Serum lipid and adipocytokine levels in Min mice with
pitavastatin treatment

Consistent with our previous reports (5-7), Min mice fed
with the basal diet at 20 weeks of age were in the
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Figure 1. Effect of pitavastatin on
the intestinal polyp size
distribution in Min mice. Min mice
were fed with a basal diet (open
box) or a diet containing 20 ppm
(gray box), 40-ppm (black box)
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hypertriglyceridemic state, with a TG level of 285.3 £ 64.3
mg/dL (mean + SE). On the other hand, the TG level in
wild-type mice was 32.7 &+ 4.2 mg/dL. Treatment with 20
and 40-ppm pitavastatin slightly decreased serum levels of
TG to 277.4 + 68.1 mg/dL and 242.8 + 49.9 mg/dL,
respectively. However, these changes were not statistically
significant. The level of total cholesterol had tendency to
decrease to approximately 8%-9% of untreated group level
and it did not seem to be influenced by dosage.

Serum concentrations of adiponectin, 1L-1B, IL-6, leptin,
MCP-1, TNFq, Pai-1, and VEGF were also measured to
evaluate systemic effects of pitavastatin. Among the adipo-
cytokines, IL-6, leptin, and MCP-1 were reduced signifi-
cantly from 4.5 to 1.1 pg/mL, 2.5 to 1.4 ng/mL, and 12.1 to
7.7 pg/mlL, respectively (Table 2).

COX-2, iNOS and adipocytokine mRNA levels in
intestinal polyps and nonpolyp parts of Min mice
treated with pitavastatin

To clarify the mechanisms of suppression on the devel-
opment of intestinal polyps by pitavastatin treatment,
mRNA expressions of COX-2, iNOS, and several adipocy-

tokines in intestinal polyps and nonpolyp parts were
investigated. Real-time PCR revealed that treatment with
20 and 40-ppm pitavastatin for 14 weeks effectively sup-
pressed COX-2, iNOS, IL-6, MCP-1, and Pai-1 mRNA levels
in intestinal nonpolyp parts of Min mice (Fig. 2A and C).
Treatment with 20-ppm pitavastatin reduced COX-2, iNOS,
IL-6, MCP-1, and Pai-1 mRNA levels to 15% (P < 0.05),
36% (P < 0.05), 36% (P < 0.05), 27%, and 73% of the
untreated value, respectively, and 40 -ppm pitavastatin
significantly reduced to 9% (P < 0.01), 22% (P < 0.01),
23% (P < 0.01), 15% (P < 0.05), and 18% (P < 0.05),
respectively. Another adipocytokine, adiponectin, sus-
tained basal mRNA level of wild-type in intestinal non-
polyp parts (data not shown). As shown in Figure 2B,
mRNA expression levels of COX-2 were higher in polyp
than in nonpolyp parts. Treatment with 20 and 40-ppm
pitavastatin slightly suppressed mRNA levels of COX-2 in
the polyps, but significantly suppressed its mRNA levels in
nonpolyp parts.Meanwhile, treatment with 20 ppm of
pitavastatin significantly suppressed iINOS mRNA levels
in nonpolyp parts, and 40-ppm pitavastatin significantly
suppressed both polyp and nonpolyp parts {Fig. 2C).
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Table 2. Serum adipocytokine levels in Min mice with 40 ppm or without pitavastatin treatment

Pitavastatin Adiponectin IL-1 IL-6 Leptin MCP-1 Pai-1 TNFo VEGF
{ppm) (ng/mL) {pg/mL) (pg/mL) {ng/mL) (pg/mL) (ng/mL) (pg/mL) (pg/ml)

0 12.20 £ 0.89 35.80 + 8.00 4.51 + 1.18 2.47 + 1.80* 12.10 + 1.30* 4.04 241 590 + 3.64 11.20 + 1.51
40 13.90 £ 0.91 20.30+6.20 1.11 +£ 0.66* 1.38 + 0.38* 7.66 + 1.27* 3.32 +0.43 6.03 £2.62 8.90 +1.20

Data are mean + SE (n = 3~6)
* Significantly different from the pitavastatin untreated group at P < 0.05.

Evaluation of nitrative stress in the intestinal polyp in
Min mice treated with pitavastatin.

To evaluate the effects of iINOS overexpression as a
nitrative stress in intestinal polyp in Min mice, localization
of INOS and the resultant nitration reaction were examined
by immunohistochemistry using an anti-nitrotyrosin anti-
body and anti-8-nitroguanosine antibody. Nitrotyrosin
was observed mainly in the stroma cells and 8-nitrogua-
nosine was observed mainly in the cytoplasm of epithelial
cells. Both nitrotyrosin and 8-nitroguanosine were weakly
suppressed by 40-ppm pitavastatin treatment (Fig. 3A-F).
In addition, localization and expression of COX-2 (Fig. 3G
and H), 1L-6, MCP-1, Pai-1, and PPARy in the intestinal

polyps were examined by immunohistochemistry. COX-2
was observed mainly in the stroma cells and IL-6, MCP-1,
Pai-1, and PPARy were observed mainly in the cytoplasm of
epithelial cells without being affected by 40 ppm-pitavas-
tatin treatment (Supplemental Fig. 1).

Effect of pitavastatin on PPARy-DNA binding activity
in intestinal nonpolyp parts and liver

Statins are reported to suppress some inflammatory
adipocytokines through the PPARY activation (32). Thus,
we further evaluated the effect of pitavastatin on PPARy
activation in nonpolyp parts of the small intestine and
liver of Min mice. Treatment with pitavastatin increased
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Figure 3. Modulation of mucosal
oxidative/nitrosative stress by
pitavastatin in Min mice.
Immunohistochemical staining of
iNOS (A and B), nitrotyrosine (C
and D), 8-nitroganosine (E and F)
and COX-2 (G and H), protein
treated with (B, D, F and H) or
without 40-ppm pitavastatin (A, C,
E, and G}, in Min mice. Bars
represent 500 um.

PPARY-DNA binding activity in the intestinal nonpolyp
parts and the liver at the dose of 40 ppm (Fig. 4A and B).

Discussion

In this study, it was showed that the treatment with
pitavastatin suppressed intestinal polyp formation in Min

mice with slight reduction of serum levels of total choles-
terol and TG. The antiinflammatory effects were also
observed in pitavastatin-treated Min mice, such as down
regulation of COX-2, iNOS, and some adipocytokines
including proinflammatory cytokines (IL-6, MCP-1, and
Pai-1YmRNA  levels. Moreover, guanosine nitration
induced by reactive nitrogen oxides could be an important
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Figure 4. Changes of PPARy-DNA
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binding activity by pitavastatin
treatment in nonpolyp parts of the
small intestinal and liver samples
of Min mice. Nuclear fraction of
small intestinal mucosa celis (A),
and liver cells (B), were isolated
and analyzed for PPARy-DNA
binding activity as described in
Materials and Methods. Data are
mean + SE, n =9, 10. *P < 0.05
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mediator of nitrative stress in the pathogenesis of intestinal
polyp development in Min mice, and was reduced by
pitavastatin treatment.

To date, lipid-lowering effects of statins have not been
investigated in Apc-deficient mice model, which feature a
hyperlipidemic state. Thus, we examined the effect of
pitavastatin on serum lipid levels in Min mice and obtained
a result of slight reduction. This result is similar to those
shown in other rodent hyperlipidemic models. It has been
shown that cholesterol synthesis enzymes were remarkably
induced by feedback regulation in rodents (33), and a
de novo cholesterol synthesis experiment by injection of
'*C-acetic acid showed that pitavastatin potently inhibits
de novo cholesterol synthesis, without affecting serum lipids
levels (34, 35). Taking these into consideration, HMG-CoA
reductase activity might be inhibited by pitavastatin treat-
ment in this study. .

It has been reported that certain statins are able to exert
antiinflammatory activities. Simvastatin inhibits proin-
flammatory gene expression by blocking nuclear factor
kappa B {NFkB) signaling in intestinal epithelial cells,
and attenuates dextran sodium sulfate-induced acute mur-
ine colitis (36). It has also been reported that pitavastatin
inhibits NFxB activation and decreases IL-6 in human
mammary carcinoma cells (37). Moreover, pitavastatin
suppressed colitis-related colon carcinogenesis through
modulation of mucosal inflammation with reduced nitro-
tyrosine-positivity (22). In this study, we have shown that
clear downregulation of mRNA expression levels of COX-2,
iNQOS, and some adipocytokines (IL-6, MCP-1, and Pai-1)
in the nonpolyp parts of the intestine by pitavastatin
treatment, and significant reduction of iNOS mRNA level
was observed in the polyp parts. These expression level
changes of COX-2, iNOS, and adipocytokines, especially
iNOS, could be associated with intestinal polyp develop-
ment in Min mice. Indeed, it has been reported that iNOS
inhibition, Pai-1 inhibition, COX-2 inhibition, and IL-6
knock out suppressed intestinal polyp development in Min
mice (31, 38, 39, 40). It has also been reported that 100-
ppm atorvastatin treatment in Min mice slightly, but not
significantly, reduced the activity and expression levels of
COX-2 in the intestinal polyp (20). Expression of COX-2

was higher in polyp tissue than in nonpolyp parts, which
may result in more resistance to pitavastatin’s effects. INOS-
dependent NO overproduction resulted in a nitration
reaction, which takes place not only in tyrosine moieties
of proteins but also in the nucleotide base guanosine,
including RNA (41), and may account for the NO-induced
cytotoxicity.

To further investigate the mechanisms of suppression of
these proinflammatory genes by pitavastatin treatment, we
focused on the levels of serum adipocytokines, including
leptin, and activity of PPARy, a member of the nuclear
receptor superfamily. PPARy, activated by statins (32),
suppresses proinflammation gene expression (42). This
study showed that pitavastatin treatment decreased serum
leptin levels and increased PPARY activity in the intestinal
mucosa and the liver. It has been shown that simvastatin
suppressed leptin expression in 3T3-L1 cells (43). More-
over, leptin induces iNOS and NO production (44), sug-
gesting the interactions between leptin and NO. PPARy
activity induced by 40-ppm pitavastatin treatment might
not be adequate to explain the reduction of adipocytokine
levels by the same dose of pitavastatin treatment. As men-
tioned previously, NFxB signaling or other signaling may
be additionally playing a role in the suppression of proin-
flammatory genes by pitavastatin treatment. In our pre-
vious study, a PPARy ligand, pioglitazone, and an
antiinflammatory drug, indomethacin, reduced intestinal
polyps in Min mice (6, 45). Thus, it is assumed that PPAR
activation and antiinflarnmatory activities of pitavastatin
contribute, to some extent, to reduction of the develop-
ment of intestinal polyps.

To explain the specific effect of pitavastatin on suppres-
sion of polyp development of the distal part in the small
intestine, we investigated the expression levels of COX-2,
IL-6; MCP-1, Pai-1, and PPARy in the immunohistological
study of distal and middle parts of the small intestine.
However, the data did not show clear difference between
the parts {(data not shown). Further investigation is needed
to clarify the differences between the distal and middle
parts.

In conclusion, pitavastatin has potential benefit for
suppression of intestinal polyp development. Thus,

www.aacrjournals.org

Gancer Prev Res; 4(3) March 2011

Downloaded from cancerpreventionresearch.aacrjournals.org on May 9, 2012
Copyright © 2011 American Association for Cancer Research



452

Published OnlineFirst January 13, 2011; DOI:10.1158/1940-6207.CAPR-10-0028

Teraoka et al.

pitavastatin might be a candidate for chemopreventive
agent for human colon cancer.
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