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tance in these tumors.3® As the amounts of each clinical
specimen were limited, we would like to perform further
analyses in future studies should sufficient amounts of spec-
imens become available.

Recent studies indicated that multiple resistance factors
can be induced simultaneously in a single cancer. For exam-
ple, Qi et al.3! reported the simultaneous occurrence of Met
mutation and activation of the EGFR pathway by ligand
overexpression, similar to T790M mutation and HGF over-
expression in EGFR mutant lung cancer, which caused resis-
tance to Met-TKIs in gastric cancer. Katayama et al.3? also
reported that ALK gene amplification and gatekeeper muta-
tion in ALK occurred simultaneously and conferred resistance
to ALK inhibitors in EML4-ALK lung cancer. In this study,
T790M secondary mutation and the high HGF expression
level were simultaneously detected at high incidence (50%)
in tumors with acquired resistance. Irreversible EGFR-TKIs
were thought to have potential to control acquired resis-
tance caused by T790M secondary mutation, but clinical
responses were rarely observed in clinical trials.33:34 We
recently found that HGF induces resistance to not only
reversible EGFR-TKIs but also irreversible EGFR-TKIs
by activating the MET/PI3K/Akt pathway in EGFR mutant
lung cancer cells with or without T790M secondary mu-
tation.26 Taken together, these observations suggest that
HGF would be simultaneously expressed with T790M
secondary mutation in tumors with acquired resistance and
reduce the sensitivity to irreversible EGFR-TKIs in EGFR
mutant lung cancer patients.

MET amplification has been detected in ~20% of
tumors with acquired resistance to EGFR-TKIs in EGFR
mutant lung cancer,'31617 while the incidence reported in
Japanese patients is rare.!18 Here, we detected MET ampli-
fication in two tumors (9%) with acquired resistance, sug-
gesting that MET amplification can be detected in a signifi-
cant proportion of tumors with acquired resistance even in
Japanese patients. One case with high-level HGF expression
and MET amplification (KZ-1) was treated with gefitinib and
PFS was 254 days. The other case with low HGF and MET
amplification (SG4) was treated with erlotinib and PFS was
60 days (Table 3). Although it is not possible to make
definitive conclusions based on the data from only these two
cases, the shorter PFS in the former case tentatively supports
the observation that HGF accelerates expansion of preexist-
ing clones with MET amplification.!® Notably, simultaneous
expression of these two factors was also detected in one
tumor with intrinsic resistance (nonresponder). However, the
mechanism by which HGF is induced in EGFR mutant lung
cancer is still not well defined. Further examinations are
warranted to elucidate the interaction between HGF expres-
sion and MET amplification in EGFR mutant lung cancer.

Among 68 resistant tumors, high-level HGF expres-
sion, T790M secondary mutation, and MET amplification
were not detected in one tumor with acquired resistance and
31 tumors with intrinsic resistance, indicating the involve-
ment of other mechanisms of resistance in these tumors.
EGFR D761Y secondary mutation in exon 20 was detected in
two tumors from the same patient.2* EGFR D761Y mutation

was originally identified in recurrent brain metastasis and was
shown to induce intermediate-grade resistance to EGFR-
TKIs.35 In addition, rare secondary mutations (other than
T790M and D761Y) or a preexisting resistance mutation in a
minority of clones may also be involved in intrinsic resis-
tance. Moreover, it was recently reported that a subpopulation
of cancer cells that transiently exhibit a distinct phenotype
characterized by engagement of IGF-1R activity, hypersen-
sitivity to HDAC inhibition, and altered chromatin showed an
intrinsic ability to tolerate exposure to EGFR-TKI.?¢ Minor
secondary mutations, a preexisting resistance mutation in a
minority of clones, or chromatin-mediated drug resistance
mechanisms may be involved in resistant tumors without
high HGF expression, T790M secondary mutation, and
MET amplification.

To overcome the HGF-induced resistance to EGFR-
TKI in EGFR mutant lung cancer, double blockade of the
EGFR pathway and HGF-MET pathway is therefore theoret-
ically necessary.!41627 To inhibit mutant EGFR with or
without T790M secondary mutation, EGFR mutant-specific
inhibitors were developed in addition to irreversible EGFR-
TKIs.37 To inhibit HGF-MET signaling, several inhibitors,
including anti-HGF antibody, NK4 (natural antagonist of
MET), and MET-TKIs, were developed.1¢-25-27 Further stud-
ies are essential to determine optimal combined therapy with
best efficacy and safety. In addition, a prospective study is
required to determine whether immunohistochemical detec-
tion of HGF would be sufficiently reliable to identify patients
with HGF-induced resistance to EGFR-TKIs. As levels of
HGF in peripheral blood are correlated with clinical outcome
to EGFR-TKIs in patients with non-small cell lung can-
cer,383% such noninvasive methods may facilitate individual
therapy for overcoming HGF-induced resistance to EGFR-
TKIs in EGFR mutant lung cancer patients.

Recent studies indicated at least three important roles of
HGF in EGFR-TKI resistance in EGFR mutant lung cancer.
First, HGF induces resistance to reversible EGFR-TKIs, ge-
fitinib, and erlotinib, by restoring MET/Gab1/PI3K/Akt path-
ways.!416 Second, HGF accelerates expansion of preexisting
MET-amplified cancer cells and facilitates MET amplifica-
tion-mediated resistance during EGFR-TKI treatment.!®
Third, after acquiring resistance to reversible EGFR-TKIs,
HGF induces resistance of lung cancer cells with T790M
secondary mutation to irreversible EGFR-TKIs.?¢ Here, we
detected high-level HGF expression frequently in tumors
with intrinsic and acquired resistance to EGFR-TKIs in
EGFR mutant lung cancer in Japanese patients. These find-
ings indicate the value of HGF as a therapeutic target for
EGFR-TKI-resistant EGFR mutant lung cancer. Therefore,
combined therapy with EGFR-TKIs and HGF-MET inhibi-
tors in patients with HGF-induced resistance may improve
the clinical outcome of EGFR mutant lung cancer.
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Abstract

Purpose: Hepatocyte growth factor (HGF) induces resistance to reversible and irreversible epidermal
growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) in EGFR mutant lung cancer cells by
activating Met and the downstream phosphoinositide 3-kinase (PI3K)/Akt pathway. Moreover, con-
tinuous exposure to HGF accelerates the emergence of EGFR-TKI-resistant clones. We assayed whether a
new Met kinase inhibitor, E7050, which is currently being evaluated in clinical trials, could overcome
these three mechanisms of resistance to EGFR-TKIs.

Experimental Design: The effects of E7050 on HGF-induced resistance to reversible (gefitinib),
irreversible (BIBW2992), and mutant-selective (WZ4002) EGFR-TKIs were determined using the EGFR
mutanthuman lung cancer cell lines PC-9 and HCC827 with an exon 19 deletion and H1975 with an T790M
secondary mutation. PC-9 cells were mixed with HGF-producing fibroblasts, MRC-5 cells, and subcuta-
neously inoculated into severe combined immunodeficient mice, and the therapeutic effects of E7050 plus
gefitinib were assayed.

Results: E7050 circumvented resistance to all of the reversible, irreversible, and mutant-selective EGFR-
TKIs induced by exogenous and/or endogenous HGF in EGFR mutant lung cancer cell lines, by blocking the
Met/Gab1/PI3K/Akt pathway in vitro. E7050 also prevented the emergence of gefitinib-resistant HCC827
cells induced by continuous exposure to HGF. In the in vivo model, E7050 plus gefitinib resulted in marked
regression of tumor growth associated with inhibition of Akt phosphorylation in cancer cells.

Conclusions: A new Met kinase inhibitor, E7050, reverses the three HGF-induced mechanisms of
gefitinib resistance, suggesting that E7050 may overcome HGF-induced resistance to gefitinib and next-

generation EGFR-TKIs. Clin Cancer Res; 18(6); 1663-71. ©2012 AACR.

Introduction

The reversible epidermal growth factor receptor (EGFR)-
tyrosine kinase inhibitors (TKI) gefitinib and erlotinib
show dramatic therapeutic efficacy in patients with EGFR-
activating mutations, such as in-frame deletions of exon 19
and the 1.858 point mutation in exon 21 (1, 2). Recent
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clinical trials have shown that these TKls induced much
higher response rates and longer progression-free survival
than standard first-line cytotoxic chemotherapy in patients
with EGFR mutant lung cancer (3, 4). Almost all patients,
however, develop acquired resistance to EGFR-TKIs after
varying periods of time (5). In addition, 20% to 30%
of patients with EGFR-activating mutations show intrinsic
resistance to EGFR-TKIs (5). Therefore, intrinsic and acquir-
ed resistances to EGFR-TKIs are major problems in the
management of EGFR mutant lung cancer.

Three clinically relevant mechanisms have been report-
ed to induce acquired resistance to EGFR-TKIs in EGFR
mutant lung cancer—EGFR T790M secondary mutation
(6, 7), Met gene amplification (8), and hepatocyte growth
factor (HGF) overexpression (9). We found that HGF
overexpression is involved not only in acquired but in
intrinsic resistance to EGFR-TKIs (9). HGF has been
shown to play at least 3 important roles in EGFR-TKI
resistance in EGFR mutant lung cancer. First, HGF in-
duces resistance to the reversible EGFR-TKIs gefitinib
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Translational Relevance

Hepatoqzte growth factor (HGF) is mvolved inat least
three important steps of epxderrnal growth factor recep-
k'tor—tyrosme kinase inhibitor (EGFR TKI) resistance in
- EGFR mutant lung cancer, mducmg resistance to revers-
ible EGFR-TKIs by restoring Met/Gabl/PBK/Akt path-
ways; 1nducmg resistance to next-generation EGFR-TKIs.
(1rrever31b]e TKI and mutant—selecuve EGFR-TKI), and
accelerating thee emergence of EGFR-TKI-tesistant clones
by continuous exposure to HGF. Therefore, HGF may be
an ldeal target for overcommg EGFR TKIL resmtance in
: EGFR mutant lung cancer..

In preclinical expenments, we have tested whether a
new Met kinase inhibitor, E7050, whlch is currently
under evaluation in clinical trials, could overcome these
three HGF—mduced 'EGFR-TKI res1stance ‘mechanisms.
‘Our findings suggest that E7050 may be useful for
overcoming HGF-mduced resistance to geﬁﬂmb and
next- generatwn EGFR TKIs in EGFR mutant lung cancer.

and erlotinib by restoring MetGab1/PI3K/Akt pathways
(9, 10). Second, continuous exposure to HGF accelerates
the expansion of preexisting Met-amplified cancer cells
and facilitates Met amplification-mediated resistance
during EGFR-TKI treatment (10). Third, after lung cancer
cells acquire resistance to reversible EGFR-TKIs, HGF
induces the resistance of cells with T790M secondary
mutation to irreversible EGFR-TKIs {11). These findings
indicate that HGF is an ideal target for overcoming EGFR-
TKI resistance in EGFR mutant lung cancer.

There are several possible strategies for inhibiting HGF-
Met signaling, including anti-HGF neutralizing antibody,
HGF antagonist (NK4), Met tyrosine kinase inhibitors, and
inhibitors of downstream molecules, such as phosphoino-
sitide 3-kinase (PI3K), Akt, and mTOR (12). Previously, we
showed that anti-HGF antibody (13), NK4 (13), and PI3K
inhibitors (14) were effective in overcoming HGF-induced
gefitinib resistance. Many Met-TKIs have therefore been
developed and are expected to reverse HGF-induced resis-
tance to EGFR-TKIs (10, 15).

E7050 is an orally active Met-TKI (16) that has been
shown to inhibit the phosphorylation of Met, including
amplified Met, and to suppress the growth of several types of
cancer cells with Met amplification. On the basis of favor-
able preclinical data, a phase I clinical trial of E7050 is
currently in progress. We have assessed whether E7050 can
overcome the 3 HGF-induced resistance mechanisms to
EGFR-TKIs.

Materials and Methods

Cell culture

The EGFR mutant human lung adenocarcinoma cell
lines PC-9 and HCC827 were purchased from Immuno-
Biological Laboratories Co. and the American Type Culture

Collection, respectively. The human embiyonic lung fibro-
blast cell line MRC-5 was purchased from Health Science
Research Resources Bank. MRC-5 (P 30-35) cells were
maintained in Dulbecco’s modified Eagle’s medium with
10% FBS. PC-9 and HCCB827 cells were maintained in
RPMI-1640 medium with 10% FBS.

Reagents

E7050 was synthesized by Eisai Co., Ltd (16). Gefitinib
was obtained from AstraZeneca. The irreversible EGFR-TKI,
BIBW2992, and the mutant-selective EGFR-TKI, WZ4002,
were purchased from Selleck. Recombinant HGF and anti-
human HGF antibody were prepared as described (17).

Cell growth assay

Cell growth was measured using the MTT dye reduction
method (18). Tumor cells were plated at a density of 2 x
10% cells/100 pl/well into 96-well plates in RPMI-1640
medium with 10% FBS. After 24-hour incubation, various
reagents were added to each well, and the cells incubated for
a further 72 hours, followed by the addition of 50 uL of MTT
solution (2 mg/mL; Sigma) to each well and further incu-
bation for 2 hours. The media containing MTT solution
were removed, and the dark blue crystals were dissolved
by adding 100 pL of dimethyl sulfoxide. The absorbance of
each well was measured with a microplate reader at test and
reference wavelengths of 550 and 630 nm, respectively.
The percentage of growth is shown relative to untreated
controls. Each reagent and concentration was tested at least
in triplicate during each experiment, and each experiment
was conducted at least 3 times.

Antibodies and Western blotting

Cells were lysed in cell lysis buffer containing phospha-
tase and proteinase inhibitor cocktails {Sigma), and protein
concentrations were determined using a BCA Protein Assay
Kit (Pierce Biotechnology). For the detection of phosphor-
ylated Met in subcutaneous tumors, 10 mg tumor lysates
were immunoprecipitated with anti-Met (25H2) antibody.
Total protein (40 pg per lane) was resolved by SDS-PAGE,
and the proteins were transferred onto polyvinylidene
difluoride membranes (Bio-Rad). After washing 4 times,
the membranes were incubated with Blocking One (Nacalai
Tesque Inc.) for 1 hour at room temperature, followed
by overnight incubation at 4°C with primary antibodies to
Met (25H2), phospho-Met (Y1234/Y1235; 3D7), phospho
EGFR (Y1068), ErbB3 (1B2), phospho-ErbB3 (Tyr1289;
21D3), Gab1 (#3232), phospho-Gab1 (Y627; C32H2), Akt,
and phospho-Akt (Serd473; 736E11; 1:1,000 each; Cell
Signaling Technology); and anti-human EGFR (1 pg/mlL)
antibody (R&D Systems). After washing 3 times, the mem-
branes were incubated for 1 hour at room temperature with
species-specific horseradish peroxidase-conjugated sec-
ondary antibodies. Immunoreactive bands were visualized
using SuperSignal West Dura Extended Duration Substrate
Enhanced Chemiluminescent Substrate (Pierce Biotechno-
logy). Each experiment was conducted at least 3 times
independently.
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HGF production

Cells (2 x 10%) were cultured in RPMI-1640 medium
with 10% FBS for 24 hours, washed with PBS, and
incubated for 48 hours in 2 mL of the same medium.
The culture medium was harvested and centrifuged, and
the supernatant was stored at —70°C until analysis. HGF
concentrations were measured by IMMUNIS HGF EIA
(Institute of Immunology, Tokyo, Japan), with a detec-
tion limit of 100 pg/mlL, according to the manufacturer’s
instructions. All culture supernatants were tested in dupli-
cate. Color intensity was measured at 450 nm using a
spectrophotometric plate reader. Growth factor concen-
trations were determined by comparison with standard
curves.

HGF gene transfection

One day before transfection, aliquots of 1 x 10° HCC827
cells in 1 mL of antibiotic-free medium were plated on 6-
well plates. Full-length HGF ¢DNA cloned into the
BCMGSneo expression vector (19) was transfected using
Lipofectamine 2000 in accordance with the manufacturer’s
instructions. After 24-hour incubation, the cells were
washed with PBS and incubated for an additional 72 hours
in antibiotic-containing medium, followed by selection in
G418 sulfate (Calbiochem). After limiting dilution, HGF-
producing cells, HCC827/HGF, were established. HGF pro-
duction by HCC827/HGF cells was confirmed by ELISA.

RNA interference assay

Duplexed Stealth RNAIi (Invitrogen) against MET, ErbB3,
and Gabl, and Stealth RNAi Negative Control Low GC
Duplex #3 (Invitrogen) were used for RNA interference
assays. One day before transfection, aliquots of 2 x 10*
tumor cells in 400 pL of antibiotic-free medium were plated
on 24-well plates. After incubation for 24 hours, the cells
were transfected with siRNA (50 pmol) or scrambled RNA
using Lipofectamine 2000 (1 pL) in accordance with the
manufacturer’s instructions. After 24-hour incubation, the
cells were washed with PBS and incubated with or without
various reagents for an additional 72 hours in antibiotic-
containing medium. Cell growth was measured using a Cell
Counting Kit-8 (Dojin) in accordance with the manufac-
turer’s instructions. Knockdown of MET, ErbB3, Gab1, and,
Shcl was confirmed by Western blotting. Each reagent and
concentration was tested at least in triplicate during each
experiment, and each experiment was conducted at least 3
times.

Detection of Met amplification

Cell block sections (4-pum thick) were subjected to dual-
color FISH using a MET/CEP7 probe cocktail (Kreatech
Diagnostics) according to the manufacturer’s instructions.
Staining was evaluated as described (20).

Xenograft studies in SCID mice

Suspensions of PC-9 cells (5 x 10°) mixed with MRC-5
cells (5 x 10°) were injected subcutaneously into the backs
of 5-week-old female severe combined immunodeficient

(SCID) mice (Clea), as described (13). After 4 days {tumor
diameter >5 mm), mice were randomly allocated into
groups of 6 animals, each to receive E7050 (50 mg/kg/d)
and/or gefitinib (25 mg/kg/d) by oral gavage. Tumor vol-
ume was calculated as mm?® = width? x length/2. All animal
experiments were carried out in compliance with the Guide-
lines for the Institute for Experimental Animals, Kanazawa
University Advanced Science Research Center (Approval
number: AP-081088).

Immunohistochemistry

Frozen sections (5-um thick) of xenograft tumors were
fixed with cold acetone and washed with PBS. After blocking
endogenous peroxidase activity with 3% aqueous H,0,
solution for 10 minutes, the sections were incubated with
5% normal horse serum, followed by overnight incubation
at 4°C with anti-phospho-Akt antibody (Ser473; 736E11,
1:100 dilution). The sections were washed with PBS, incu-
bated with biotin-conjugated anti-rabbit IgG (1:200 dilu-
tion) for 30 minutes at room temperature, and incubated
for 30 minutes with avidin-biotin-peroxidase complex
(ABC) using a Vectastain ABC Kit (Vector Laboratories).
Staining was detected using the DAB (3,3’-diaminobenzi-
dine tetrahydrochloride) Liquid System (DakoCytoma-
tion). Samples from which primary antibodies had been
omitted served as negative controls.

Statistical analysis

Between-group differences were analyzed by one-way
ANOVA, with P values less than 0.05 for overall compar-
isons tested by post hoc pairwise comparisons using the
Newman-Keuls multiple comparison test. All statistical
analyses were carried out using GraphPad Prism Ver.
4.01 (GraphPad Software, Inc.).

Resulis

E7050 reverses resistance to EGFR-TKIs induced by
exogenous HGF

PC-9 and HCC827 cells were highly sensitive to gefitinib
(Fig. 1A), whereas exogenously added HGF induced resis-
tance to gefitinib in both cell lines (9, 13, 14). Although
E7050 did not affect the growth of PC-9 or HCC827 cells at
concentrations less than 3 pmol/L, the combination of
E7050 with gefitinib reversed HGF-induced resistance
of both cell lines in a concentration-dependent manner
(Fig. 1B).

We previously reported that stromal fibroblasts are a

source of exogenous HGF for EGFR-TKI naive non-small

cell lung carcinoma (NSCLC) and that fibroblast-derived
HGF induces resistance to gefitinib and erlotinib in PC-9
and HCCB827 cells (13). Although E7050 had no effect
on the growth or production of HGF or VEGF by MRC-5
cells (HGF-high producing fibroblasts) or PC-9 cells (data
not shown), it reversed the gefitinib resistance of PC-9 cells
induced by coculturing with MRC-5 cells (Fig. 1C), indi-
cating that E7050 can reverse the EGFR-TKI resistance
induced by exogenous HGF in vitro.
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E7050 reverses resistance to EGFR-TKIs induced by
endogenous HGF

We have shown that HGF is present in tumor cells of
NSCLC patients with acquired resistance to EGFR-TKIs,
and that transient HGF gene transfection into PC-9
cells resulted in resistance to EGFR-TKIs (9). We therefore
generated a stable HGF gene transfectant in HCC827
cells (HCC827/HGF) and assessed the effects of conti-
nuously produced endogenous HGF. HCC827/HGEF, but
not HCC827 or the vector control HCC827/Vec, cells
secreted high levels of HGF and became resistant to
gefitinib (Fig. 2A and B). Anti-HGF antibody reversed
the gefitinib resistance of HCC827/HGF cells (Supple-
mentary Fig. S1), indicating that endogenously produced
HGF induced gefitinib resistance in this cell line.
Although the combination of E7050 plus gefitinib suc-
cessfully reversed the resistance of HCC827/HGF cells,
E7050 alone did not inhibit the proliferation of HCC827/
HGF cells (Fig. 2B).

Using Western blotting, we examined the effects
of E7050 on signal transduction in HCC827/Vec and
HCC827/HGF cells. We found that gefitinib inhibited
the phosphorylation of EGFR and ErbB3 in HCC827/Vec
cells, thereby inhibiting the phosphorylation of Akt and
ERK1/2. However, gefitinib failed to inhibit phospho-
rylation of Akt in the presence of HGF. E7050 suppressed
the constitutive phosphorylation of Met, but not of
EGFR, ErbB3, and downstream Akt and ERK1/2. Whereas
HGF stimulated the phosphorylation of Met, E7050 plus
gefitinib inhibited this HGF-induced Met phosphory-
lation and strongly suppressed the phosphorylation of
Gab1, Akt, and ERK1/2 (Fig. 2C).

The amount of Met protein was decreased in HCC827/
HGF cells, compared with HCC827/Vec cells. This could
be a result of Met downregulation by persistent HGF
stimulation, as also observed in a previous report (21). In
contrast, the degree of Met phosphorylation was higher
in HCC827/HGF than in HCCB827/Vec cells. Gefitinib
inhibited the phosphorylation of EGFR and ErbB3, but
not of Akt in HCC827/HGF cells. The combination of
E7050 and gefitinib inhibited the phosphorylation of both
Met and Akt (Fig. 2C). These results suggested that E7050
reversed HGF-induced gefitinib resistance by inhibiting
the Met/Gab1/PI3K/Akt pathway.

To confirm that the E7050 reversal of gefitinib resis-
tance in HCC827/HGF cells was due to the inhibition of
Met/Gab1, we transfected cells with siRNA specific for Met
or Gabl. Transfection of ErbB3, Met, or Gabl siRNA suc-
cessfully knocked down the expression of the correspond-
ing protein (Fig. 2D). Although scrambled or ErbB3 siRNA
did not reverse the gefitinib resistance of HCC827/HGF
cells, siRNAs for Met and Gabl sensitized these cells to
gefitinib (Fig. 2D), indicating that E7050 reverses gefitinib
resistance in HCC827/HGF cells by inhibiting the Met/
Gab1 pathway.

E7050 reverses HGF-induced resistance to next-
generation EGFR-TKIs in H1975 cells

Next-generation EGFR-TKIs, irreversible TKis (22-24),
and mutant EGFR-selective TKIs (25) have been developed
to treat gefitinib-resistant tumors caused by the EGFR
T790M secondary mutation. H1975 cells with the EGFR
mutations L858R and T790M mutations were resistant to
reversible EGFR-TKIs, gefitinib, and erlotinib (data not
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shown), but were sensitive to BIBW2992, an irreversible
EGFR-TKI, and WZ4002, a mutant-selective EGFR-TKI
(Fig. 3). HGF markedly induced resistance to BIBW2992
and WZ4002, whereas E7050 efficiently reversed the HGF-
induced resistance to both BIBW2992 and WZ4002. These
results indicated that E7050 can overcome HGF-induced
resistance not only to gefitinib but to next-generation
EGFR-TKIs, including irreversible and mutant-selective
EGFR-TKIs.

E7050 prevents emergence of gefitinib-resistant
HCC827 cells induced by continuous exposure to HGF

As HGF has been reported to accelerate the expansion of
preexisting Met-amplified HCC827 cells and to facilitate
Met amplification-mediated resistance during EGFR-TKI
treatment (10), we examined the effects of E7050 on these
phenomena. Although HCC827 cells did not produce via-
ble colonies after 30 days of continuous exposure to gefi-
tinib alone (Fig. 4A and B), these cells produced many
colonies after exposure to both HGF and gefitinib. In
contrast to previous findings (10), the percentage of cells
with Met amplification was not increased when compared
with parental HCC827 cells. The reason for this discrepancy
remains unclear. Western blot analyses revealed that
although the resultant cells expressed the same level of Met
and Gab1 proteins compared with parental HCC827 cells,
they expressed much higher levels of phosphorylated Met
and Gab1 (Supplementary Fig. S2).

Importantly, E7050 prevented the emergence of viable
clones even under conditions of continuous exposure to
gefitinib and HGF (Fig. 4B). These results suggested the
potential of E7050 to abrogate the effects resulting from
continuous exposure to HGF.

E7050 circumvents HGF-induced resistance when
combined with gefitinib in vivo

To investigate the therapeutic efficacy of E7050 in vivo,
we used the gefitinib resistance model previously
described (13). We mixed PC-9 cells with the HGF-high
producing fibroblast cell line, MRC-5, and inoculated
SCID mice subcutaneously with this mixture. Oral treat-
ment with gefitinib and/or E7050 was started after the
establishment of solid tumors on day 4. Consistent with
previous observations, we found that treatment with
gefitinib alone prevented the enlargement of tumors
produced by the mixture of PC-9 and MRC-5 cells, but
did not cause tumor regression. As gefitinib induces
shrinkage of PC-9 tumors (13, 14), our results suggested
that MRC-5 cells induced gefitinib resistance in vivo.
Under these experimental conditions, treatment with
E7050 alone did not inhibit tumor growth, whereas the
combination of E7050 and gefitinib induced marked
tumor regression (Fig. 5A and B).

To confirm that E7050 inhibits Met/PI3K/Akt signaling
in vivo, we assessed expression of phosphorylated Met
and Akt in the xenograft tumors. Immunoprecipitation
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Figure 3. E7050 reverses HGF-induced resistance to next-generation
EGFR-TKIs in H1975 cells. H1975 cells were incubated for 72 hours
with various concentrations of BIBW2992 (A), an irreversible EGFR-TKI,
and WZ4002 (B), a mutant-selective EGFR-TKI, in the presence or
absence of HGF (20 ng/mL) and/or E7050 (1 umol/L). Cell growth was
determined by MTT assays. Bars indicate SD.

revealed that phosphorylated Met was detected in control
tumors and gefitinib-treated tumors, but not in tumors
treated with E7050 monotherapy or E7050 plus gefitinib
(Fig. 5C), indicating efficacy of E7050 as a Met kinase
inhibitor. Moreover, we observed higher levels of phos-
phorylated Akt in control cancer cells, with this phos-
phorylation slightly decreased by either E7050 or gefi-
tinib alone and markedly inhibited by the combination
of E7050 and gefitinib (Fig. 5D). In addition, there
were no discernible differences in HGF concentrations
between control and treated groups, when HGF protein
concentrations were determined by EIA using lysates
of tumors obtained after 5 days of treatment (Supple-
mentary Fig. S3). These results suggested that E7050
overcame the gefitinib resistance associated with inhibi-
tion of the Met/Akt pathway.

Discussion
HGF is a multifunctional cytokine that can be produced

not only by cancer cells but also by stromal cells, such as
fibroblasts. The HGF receptor, Met, and EGFR interact

with each other and mediate redundant signaling (26).
Elevated serum concentrations of EGFR ligands and HGF
were detected in patients with NSCLC, and HGF expres-
sion has been associated with poor prognosis in patients
resected for NSCLC (27, 28). Although the role of HGF in
EGFR mutant lung cancer remained unclear, we observed
HGF-induced EGFR-TKI resistance in EGFR mutant lung
cancers (9). Moreover, many studies have shown the
important roles of HGF in sensitivity to molecular tar-
geted drugs. Our observations with regard to EGFR-TKI in
lung cancer were confirmed by subsequent studies
(10, 29), and the concentrations of HGF in peripheral
blood were found to be inversely correlated with clinical
responses to EGFR-TKIs, in both EGFR mutant and wild-
type lung cancer (30, 31). HGF was also found to cause
Tesistance to sunitinib, a multikinase inhibitor, in renal
cell carcinoma by compensating for inhibited angiogen-
esis (32). Taken together, these findings indicate the
importance of HGF as a therapeutic target for drug resis-
tance in cancer.

We have shown here that a new Met-TKI, E7050,
reversed 3 HGF-induced resistance mechanisms in EGFR
mutant lung cancer. First, E7050 reversed HGF-induced
gefitinib resistance by inhibiting Met phosphorylation
and thereby suppressing the downstream PI3K/Akt path-
way. Second, E7050 inhibited the HGF-induced resis-
tance to next-generation EGFR-TKIs, irreversible EGFR-
TKls, and mutant-selective EGFR-TKIs. Third, E7050 pre-
vented the emergence of resistant clones induced by
continuous exposure to HGF.

An interaction between HGF and Met amplification has
been associated with EGFR-TKI resistance in lung cancer
(10). In the presence of gefitinib, continuous exposure to
HGF accelerated the expansion of preexisting Met amplified
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Figure 4. E7050 prevents the emergence of gefitinib-resistant HCC827
cells with amplified Met induced by continuous exposure to HGF. A,
HCC827 cells were incubated with or without gefitinib (1 umol/L), HGF (20
ng/mL), and/or E7050 (1 umol/L), changing the medium every 3 days.
After 30 days, viable colonies were stained with crystal vioiet. B,
Representative cultures.
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HCC827 cells. Unexpectedly, when we cultured HCC827
cells with gefitinib and HGF for 30 days, we found that the
percentage of cells with Met amplification was not
increased. The reason we failed to detect expansion of clones
with Met amplification, however, remains unclear. Trans-
fection of the HGF gene into HCC827 cells produced
HCC827/HGF cells, which constitutively produce HGF.
These cells, however, were selected in the presence of
geneticin but not gefitinib, with several clones showing
amplification of Met (data not shown). Therefore, this
phenomenon may be unique to a population of EGFR
mutant lung cancer cells observed only under selection
pressure with gefitinib plus an as yet unknown concentra-
tion of HGF.

Met was shown to be constitutively phosphorylated in
human lung cancer cell lines, with the degree of phosphor-
ylation not always correlated with susceptibility to EGFR-
TKIs (33). Indeed, previous studies reported that the level of
Met phosphorylation was higher in HCC827 cells than in
other EGFR mutant cell lines (9, 10, 13, 29). Similar to these
results, we also observed that the level of Met phosphory-
lation was higher in HCC827 cells than in PC-9 and Ma-1
cells (Supplementary Fig. $4). Although the bands for pMet
in our study seem to be weaker than those in a previous
study (34), ours and previous studies constantly showed
that Met phosphorylation in HCC827 cells was higher than
that in other EGFR mutant cells. Although the difference in
the intensity of pMet bands between our study and the
previous is unclear, it might be due to minor differences in

experimental conditions, including the exposure time at
Western blot and the cell culture conditions. With regard to
HGF-triggered EGFR-TKI resistance, previous studies also
support our findings that although HCC827 cells were
highly sensitive to EGFR-TKIs, further Met activation or
phosphorylation resulted in inducing resistance to EGFR-
TKIs (10, 29, 35). We confirmed that knockdown of Met by
siRNA canceled HGF-induced resistance in HCC827 cells
(9). Moreover, it was reported that Met amplification
resulted in increased level of Met phosphorylation and
caused resistance to EGFR-TKIs in HCC827 cells (8). This
accumulating evidence indicates that constitutive Met phos-
phorylation is insufficient and further activation by HGF or
Met amplification may be necessary to induce EGFR-TKI
resistance in HCC827 cells. Therefore, there may be a
threshold level for Met phosphorylation to sufficiently
cause EGFR-TKI resistance.

E7050 inhibits both Met and VEGFR2 kinases (16).
In vitro, PC-9 and HCC827 cells express little VEGFR2 (data
not shown). E7050 did not significantly inhibit the growth
of these cell lines, and the anti-VEGF antibody bevacizumab
did not augment the susceptibility of these cell lines to
gefitinib (data not shown). These results suggest that the
in vitro antitumor effects of E7050, when combined with
gefitinib and HGF, may be largely due to Met inhibition.
In vivo, we found that very high concentrations of HGF,
obtained by HGF gene transfection into cancer cells,
increased intratumor vessel density (submitted for publi-
cation elsewhere). However, HGF concentrations were
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lower in our xenograft model of mixed PC-9 and MRC-5
cells (fibroblasts) than in xenograft tumors produced by
HGF gene-transfected lung cancer cells. We observed no
difference in intratumor vessel density between tumors
induced by PC-9 cells alone and tumors induced by PC-9
and MRC-5 cells (Supplementary Fig. S5). In addition,
E7050 did not affect significantly the vessel density in
tumors induced by PC-9 and MRC-5 cells. Collectively,
these observations suggest that the antitumor effects of
E7050 in this resistance model may not be predominantly
due to angiogenesis inhibition.

The secondary T790M mutation in EGFR is the most
prominent mechanism of acquired resistance to EGFR-TKIs
in EGFR mutant lung cancer, with this mutation detected in
about 50% of these patients (4). The T790M mutation
increases the affinity of EGFR for ATP, decreasing the bind-
ing of EGFR to EGFR-TKIs and inducing resistance to the
latter agents (36). EGFR mutant lung cancer cells with the
T790M secondary mutation, however, remain susceptible
to EGFR-mediating signaling and are thought to be man-
ageable by inhibition of EGFR-mediated signaling (37).
Preclinical studies have shown that next-generation
EGFR-TKIs, irreversible TKIs, and mutant EGFR-selective
TKIs have activity against gefitinib-resistant tumors with
EGFR T790M secondary mutation (21-23). However, sev-
eral irreversible EGFR-TKIs, including BIBW2992 (38) and
HKI-272 (39), failed to meet primary endpoints in clinical
trials of patients with EGFR-TKI-refractory lung cancer.
High concentrations of HGF have been frequently detected
in tumors with EGFR-T790M secondary mutations showing
acquired resistance (10, 40, 41). In addition, we found
previously (11) and confirmed here that HGF induces
resistance to irreversible EGFR-TKIs in EGFR mutant lung
cancer cells. Taken together, these observations suggest that
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9 Abstract
10 Purpose: Cancer cell microenvironments, including host cells, can critically affect cancer cell behaviors,
11 including drug sensitivity. Although crizotinib, a dual tyrosine kinase inhibitor (TKI) of ALK and Met, shows
12 dramatic effect against EML4-ALK lung cancer cells, these cells can acquire resistance to crizotinib by several
13 mechanisms, including ALK amplification and gatekeeper mutation. We determined whether microenvi-
14 ronmental factors trigger ALK inhibitor resistance in EML4-ALK lung cancer cells.
15 Experimental Design: We tested the effects of ligands produced by endothelial cells and fibroblasts, and
16 the cells themselves, on the susceptibility of EML4-ALK lung cancer cell lines to crizotinib and TAE684, a
17 selective ALK inhibitor active against cells with ALK amplification and gatekeeper mutations, both in vitro
18 and in vive.
19 Results: EML4-ALK lung cancer cells were highly sensitive to ALK inhibitors. EGF receptor (EGFR)
20 ligands, such as EGF, TGF-0, and HB-EGF, activated EGFR and triggered resistance to crizotinib and TAE684
21 by transducing bypass survival signaling through Erk1/2 and Akt. Hepatocyte growth factor (HGF) activated
22 Met/Gab1 and triggered resistance to TAE684, but not crizotinib, which inhibits Met. Endothelial cells and
23 fibroblasts, which produce the EGFR ligands and HGF, respectively, decreased the sensitivity of EML4-ALK
24 Iung cancer cells to crizotinib and TAE684, respectively. EGFR-TKIs resensitized these cells to crizotinib and
25 Met-TKI to TAEG84 even in the presence of EGFR ligands and HGF, respectively.
26 Conclusions: Paracrine receptor activation by ligands from the microenvironment may trigger resistance
27 to ALK inhibitors in EML4-ALK lung cancer cells, suggesting that receptor ligands from microenvironment
28 may be additional targets during treatment with ALK inhibitors. Clin Cancer Res; 1-11. ©2012 AACR.
30
31
32 Introduction smokers (<15 pack-years) than in heavier smokers (2, 3). 40
33 ALK fusion with EML4 in non-small cell lung cancer ALK kina?e inhibitors sbow dramaFic faffects against lung 41
34 (NSCLC) was first detected in 2007 (1), with 3% to 7% of cancers Wlﬂ'l EMI@’A“F invitro and in viwo (Sf’ 4). h‘] a I‘Jh‘ase 42
35 unselected NSCLCs having this fusion gene (1-4). EMLA4- I-11 trial with crizotinib, a dual tyrosine kinase inhibitor 43
36 ALK lung cancer is more frequently observed in patients (TKID) ofAIjK and {\det, the overall response rate was 47 of 82 44
37 with adenocarcinoma than with other histologies, in young (57%) patients Wlt}{ EML4-ALK-positive tumors (5). How- 45
38 adults than in older patients, and in never-smokers or light ever, almost all patients who show a marked response to 46
ALK-TKIs acquire resistance to these agents after varying 47
periods of time (6, 7). Secondary mutations, including the 48
R gatekeeper L1196M mutation and others (F1174L, C1156Y, 49
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Translatlonal Relevance .

Although cnzounlb a dual nhlbltor of ALK and Met, :
shows dramatic. effects ‘against EML4- ALK lung cancer
cells, these cells can acquire resistance by several
mechamsms, mcludmg ALK amphﬁcatlo' and gatekeep-
er mutation, Selective ALK inhibitors may overcome
crizotinib resistance due to these mechamsms, b t these ;
cells may become remstant to. these InhlbltOI‘S :

We show here that EGF recepfor hgands produced by .
endothehal cells can cause EM Klung cancer cells to
become resistant to cnzoumb d,selectlve ALK inhibi-
tors, by triggering bypass survival s:gna]s ,By contrast,
hepatocyte. growth: factor roduced by ﬁbmblasts can.
induce resistance to selective ALK 1nh1b"t S, 1
crizotinib., Because endotheha] cells and ﬁbroblasts are

" components of the Imicroenvironment, our ﬁndmgs
raise clinical quesnons about the class of ALK inhibitors
more beneﬁaal for EML4 ALK lung cancer ‘p , ents ;
Moreover, our results prowde a‘ratlonale for targenng
receptor hgands in the mlcroenvuonment for morek'
successful treatment Wlth ALK 1nh1b1tors ¥

Most human cancers are composed of cancer cells that
coexist with a variety of extracellular matrix components
and cell types, including fibroblasts, endothelial cells, and
immune cells, which collectively form the tumor microen-
vironment (13). This microenvironment can influence the
growth, survival, invasiveness, metastatic ability, and drug
sensitivity of cancer cells within these tumors (14). Para-
crine signaling between cancer cells and host cells in the
microenvironment, mediated by cytokines, chemokines,
growth factors, and other signaling molecules, plays a
critical role in tumor growth (15). As receptors for these
factors, the EGFR family of receptors and Met are of par-
ticular interestin lung cancer (16). The EGFR family consists
of at least 4 receptor tyrosine kinases, including EGFR
(ErbB1), Her2/neu (ErbB2), HER3 (ErbB3), and HER4
(ErbB4). To date, 7 ligands for EGFR have been identified:
EGF, TGF-0; heparin-binding EGF-like growth factor (HB-
EGF); amphiregulin; betacellurin; epiregulin; and epigen
(17). By contrast, Met is the only specific receptor for
hepatocyte growth factor (HGF) and HGF binds only to
Met (18). Many lung cancer cells express EGFR and Met,
with these cells and others in their microenvironment
expressing their ligands (19, 20), suggesting that these
receptors and ligands modulate the sensitivity of cancer
cells to molecular targeted drugs in their microenviron-
ment. We previously showed that fibroblast-derived HGF
induces EGFR-TKI resistance in EGFR-mutant lung cancer
cells by activating Met and downstream pathways (21, 22).
IHowever, the role of the microenvironment in the sensi-
tivity of EML4-ALK lung cancer cells to ALK-TKIs has not
been determined. We therefore examined whether factors in
the microenvironment of EML4-ALK lung cancer cells trig-
ger their resistance to crizotinib and TAE684, a selective ALK

inhibitor, as well as clarifying their underlying mechanisms
of action.

Materials and Methods

Cell culture

The H2228 human lung adenocarcinoma cell line, with
the EML4-ALK fusion protein variant3 {(E6;A20), the umbil-
ical vein endothelial cell line human umbilical vein endo-
thelial cells (HUVEC) and the human bronchial epithelial
cell line BEAS-2B, transformed with $V40 virus, were pur-
chased from the American Type Culture Collection. The
H3122 human lung adenocarcinoma cell line, with the
EML4-ALK fusion protein variantl (E13;A20), was kindly
provided by Dr. Jeffrey A. Engelman of the Massachusetts
General Hospital Cancer Center, Boston, MA (3). The
MANA2 mouse lung adenocarcinoma cell line was estab-
lished in Jichi Medical University from a tumor nodule
developed in a transgenic mouse expressing EML4-ALK
variant 1 (E13;A20) (23). The MRC-5 and IMR-90 lung
embryonic fibroblast cell lines were obtained from RIKEN
Cell Bank. The human dermal microvessel endothelial cell
line HMVEC was purchased from Kurabo. The monocytic
leukemia cell line U937 was purchased from Health Science
Research Resources Bank. H2228 cells were cultured in
RPMI-1640 medium, MANA2 cells were cultured in
DMEM/F124-GlutaMAX-1, and MRC-5 (P 25-30) cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM)
medium, supplemented with 5% fetal bovine serum,
penicillin (100 U/mL), and streptomycin (50 pg/ml), in
a humidified CO, incubator at 37°C. HMVECs and
HUVECs were maintained in HuMedia-MvG with growth
supplements (Kurabo) and used for in vitro assays at
passages 2 to 5 and 2 to 4, respectively. BEAS-2B cells
were maintained in LHC9/RPMI-1640 medium, as
described (24), and used for in vitro assays at passages
42 to 46. Macrophage differentiation of U937 cells was
induced by incubation in RPMI-1640 medium containing
10 ng/mL phorbol 12-myristate 13-acetate (Sigma Chem-
ical Co.; ref. 25) for 5 days, with floating cells removed by
rinsing with PBS, as described (26). Differentiated U937
cells (PMA-U937 cells) attached to the dishes were used
for in vitro assays at passages 6 to 8. All cells were passaged
for less than 3 months before renewal from frozen, early-
passage stocks obtained from the indicated sources. Cells
were regularly screened for Mycoplasma using a MycoAlert
Mycoplasma Detection Kit (Lonza).

Reagents

TAEG84, crizotinib, BIBW2992, and WZ4002 were pur-
chased from Seleck Chemicals. Erlotinib hydrochloride was
obtained from Chugai Pharmaceutical Co., Ltd. The anti-
human EGFR antibody cetuximab was obtained from
Merck Serono. E7050 was synthesized by Eizai Co., Ltd.
(27). Goat anti-human HGF antibody, control goat IgG,
recombinant EGF, TGF-0, HB-EGF, IGF-1, and PDGF-AA
were purchased from R&D Systems. Recombinant HGF was
prepared as described (28).
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Ligands Trigger ALK Inhibitor Resistance

Cell growth assay

Cell proliferation was measured using the MTTdye reduc-
tion method (17). Tumor cells at 80% confluence were
harvested, seeded at 2 x 10 cells per well in 96-well plates,
and incubated in appropriate medium for 24 hours. Several
concentrations of TAE684, crizotinib, erlotinib, BIBW2992,
WZ4002, E7050, cetuximab, anti-HGF antibody, and/or
EGF, TGF-o, HB-EGF, IGF-1, PDGF-AA, and HGF were
added to each well, and incubation was continued for a
further 72 hours. To each well was added 50 pL MTT (2 mg/
ml; Sigma), followed by incubation for 2 hours at 37°C.
The media were removed and the dark blue crystals in each
well were dissolved in 100 pL of dimethyl sulfoxide
(DMSO). Absorbance was measured with an MTP-120
Microplate reader (Corona Electric) at test and reference
wavelengths of 550 and 630 nm, respectively. The percent-
age growth was calculated relative to untreated controls.
Fach assay was carried out at least in triplicate, with results
based on 3 independent experiments.

Apoptosis assay

H2228 and H3122 cells {3 x 10° cells) were seeded in 96-
well, white-walled plates and incubated overnight. The cells
were treated with crizotinib (1 pmol/L) or vehicle (DMSO)
for 48 hours. Cellular apoptosis was determined by mea-
suring caspase-3/7 activity using a luminometric Caspase-
Glo 3/7 assay (Promega) according to the manufacturer’s
protocol, with luminescence intensity measured using a
Fluoroskan Ascent FL plate reader (Thermo Scientific).
Cellular apoptosis was expressed relative to DMSO-treated
control cells.

RNA interference

Duplexed Stealth RNAi (Invitrogen) against EGFR, Met,
ErbB3, Gabl, ALK, and Stealth RNAi-negative control low
GC Duplex #3 (Invitrogen) were used for RNA interference
(RNAI) assays. Briefly, aliquots of 1 x 107 cells in 2 mL of
antibiotic-free medium were plated into each well of a 6-
well plate and incubated at 37°C for 24 hours. The cells were
transfected with siRNA (250 pmol) or scrambled RNA using
Lipofectamine 2000 (5 uL) in accordance with the manu-
facturer’s instructions (Invitrogen). After 24 hours, the cells
were washed twice with PBS and incubated with or without
crizotinib (100 nmol/L), TAE684 (100 nmol/L), recombi-
nant human EGF (100 ng/mL), TGF-o (100 ng/mL}), HB-
EGF (10 ng/mL), or HGF (50 ng/mL) for an additional 48
hours in antibiotic-containing medium. These tumor cells
were then used for cell proliferation assays, with EGFR, Met,
ErbB3, Gabl, and ALK knockdowns (#1, #2) confirmed by
Western blotting.

The siRNA target sequences were as follows: EGFR, 5'-
CGGAATAGGTATTGGTGAATITAAA-3' and 5'-UUUAAA-
UUCACCAAUACCUAUUCCG-3/, Met, 5'-UCCAGAAGAU-
CAGUUUCCUAAUUCA-3' and 5-UGAAUUAGGAAACU-
GAUCUUCUGGA-3/, ErbB3, 5'-GGCCAUGAAUGAAUU-
CUCUACUCUA-3" and 5-UAGAGUAGAGAAUUCAUU-
CAUGGCC-3/, Gabl, 5'-UAGAGUAGCAGAGGAUGAAU-
CUGCC-3' and 5-GGCAGAUUCAUCCUCUGCUACUC-

UA-3/, ALK #1, 5'-UCAUUAUCCGGUAUACAGGCCCA-
GG-3' and 5-CCUGGGCCUGUAUACCGGAUAAUGA-3/,
and ALK #2, 5-AAAGCUGCACUCCAGACCAUAUCGG-3'
and 5-CCGAUAUGGUCUGGAGUGCAGCUUU-3'. Each
assay was carried out at least in triplicate, with 3 indepen-
dent experiments conducted.

Western blotting

SDS polyacrylamide gels (Bio-Rad) were loaded with 40
ug total protein per lane; following electrophoresis, the
proteins were transferred onto polyvinylidene difluoride
membranes (Bio-Rad), which were incubated with Blocking
One (Nacalai Tesque) for 1 hour at room temperature,
followed by overnight incubation at 4°C with anti-ALK
(C26G7), anti-phospho-ALK (Tyr1604), anti-phospho-
EGFR (Tyr1068), anti-STAT-3(79D7), anti-phospho-
STAT-3 (Y705), anti-Akt, anti-phospho-Akt (Ser473),
anti-ErtbB4 (111B2), anti-phospho-ErbB4 (Tyr1284),
anti-Met (25H2), anti-phospho-Met (Y1234/Y1235)
(3D7), anti-Gab1l (#3232), anti-phospho-Gab1 (Tyr627)
(C32H2), anti-ErbB3  (1B2), anti~phospho-ErbB3
(Tyr1289) (21D3), or anti-B-actin (13E5) antibodies
(1:1,000 dilution each; Cell Signaling Technology), or with
anti-human EGFR (1 pg/mL), anti-human/mouse/rat extra-
cellular signal-regulated kinase (Erk)1/Erk2 (0.2 pg/mL)}, or
anti-phospho-Erk1/Erk2 (T202/Y204) (0.1 ug/mL} antibo-
dies (R&D Systems). After washing 3 times, the membranes
were incubated for 1 hour at room temperature with sec-
ondary Ab (horseradish peroxidase-conjugated species-
specific Ab). Immunoreactive bands were visualized with
SuperSignal West Dura Extended Duration Substrate
Enhanced Chemiluminescent Substrate (Pierce). Each
experiment was carried out at least 3 times independently.

HGF, EGF, TGF-o, and HB-EGF production in cell
culture supernatant

Cells (2 x 10°) were cultured in 2 mL of RPMI-1640 or
DMEM with 5% FBS for 24 hours. The cells were washed
with PBS and incubated for 48 hours in RPMI-1640 or
DMEM with 5% FBS. The culture medium was harvested
and centrifuged, and the supernatant was stored at —70°C
until analysis. HGF (Immunis HGF EIA; B-Bridge Interna-
tional), EGF, TGF-t, and HB-EGF (Quantikine ELISA kits;
R&D Systems) were assayed by ELISA, in accordance with
the manufacturer’s procedures. All samples were run in
triplicate. Color intensity was measured at 450 nm with a
spectrophotometric plate reader. Growth factor concentra-
tions were determined by comparison with standard curves.
The detection limits for HGF, EGF, TGF-ol, and HB-EGF were
0.1 ng/mL, 3.9 pg/mL, 15.6 pg/mL, and 31.2 pg/ml,
respectively.

Coculture of lung cancer cells with fibroblasts or
endothelial cells

Cells were cocultured in Transwell Collagen-Coated
chambers separated by an 8-um (BD Biosciences, Erembo-
degem) or 3-um (Corning Costar) pore size filter. Tumor
cells (8 x 10° cells/800 pL) with or without TAE684

Wwww.aacrjournals.org

Clin Cancer Res; 2012

— 134 —

212
213
214
215
216
217

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

261
262
263
264
265
266



269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

284
285
286
287
288
289
290
291
292
293
294
295
296

297
298
299
300
301
302
303

304
305
306
307
308

309
310
311

312
313
314
315
316
317
318
319
320
321

Yamada et al.

(100 nmol/L) or crizotinib (100 nmol/L) in the lower
chamber were cocultured with MRC-5 (1 x 10* cells/300
pL) or HMVEC (1 x 10* cells/300 uL) cells, with or without
2 hours of pretreatment with anti-human HGF antibody (2
ug/mL) or cetuximab (2 pg/mL) in the upper chamber for
72 hours. The upper chamber was then removed, 200 uL of
MTT solution (2 mg/mL; Sigma) was added to each well and
the cells were incubated for 2 hours at 37°C. The media were
removed and the dark blue crystals in each well were
dissolved in 400 puL of DMSO. Absorbance was measured
with an MTP-120 Microplate reader (Corona Electric) at test
and reference wavelengths of 550 and 630 nm, respectively.
The percentage growth was measured relative to untreated
controls. All samples were assayed at least in triplicate, with
each experiment conducted 3 times independently.

Xenograft studies in SCID mice

Suspensions of H2228 cells (5 x 10°), with or without
MRC-5 cells (5 x 10°), were injected subcutaneously into
the backs of 5-week-old male severe combined immuno-
deficient (SCID) mice (Japan Clea). After 4 days {tumors
diameter >4 mm), mice were randomly allocated into
groups of 6 animals to receive TAE684 (1.25 mg/kg/d) or
vehicle by oral gavage. Tumor size was measured with
digital calipers, and tumor volume was calculated as 0.5
x length x (width)?. All animal experiments complied with
the Guidelines for the Institute for Experimental Animals,
Kanazawa University Advanced Science Research Center
(approval no. AP-081088).

HGF production in tumor tissues

Tumors obtained from SCID mice after 4 and 8 days were
lysed in mammalian tissue lysis buffer containing a phos-
phatase and proteinase inhibitor cocktail (Sigma). HGF was
quantitated by ELISA (Immunis HGF EIA; Institute of
Immunology), with a detection limit of 0.1 ng/mL. All
samples were assayed in triplicate.

Statistical analysis

Differences were analyzed by one-way ANOVA. All sta-
tistical analyses were carried out using GraphPad Prism Ver.
4.01 (GraphPad Software, Inc.). P < 0.05 was considered
significant.

Results

HGF and/or EGFR ligands reduced the sensitivity of
EML4-ALK lung cancer cells to ALK inhibitor in vitro
We first examined the sensitivity of human 12228,
human H3122, and mouse MANA2 lung cancer cell lines,
all containing EML4-ALK translocations, to the ALK inhi-
bitors crizotinib and TAE684, and to various EGFR-TKIs.
Human H2228 cells with EML4-ALK variant 3 (E6;A20) and
H3122 cells with EML4-ALK variant 1 (E13;A20) were
insensitive to the EGFR-TKIs erlotinib (a reversible EGFR-
TKI) and WZ4002 (selective for mutant EGFR), but sensitive
to the ALK-TKIs crizotinib and TAEG84 (Fig. 1). MANA2
cells, established from lung tumors of an EML4-ALK variant
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Figure 1. EML4-ALK lung cancer cells are highly sensitive to the ALK
inhibitors, crizotinib, and TAE684. The sensitivity of EML4-ALK lung
cancer cells, human H2228, human H3122, and mouse MANAZ, to the
ALK inhibitors, crizotinib, and TAEE84 were determined by analyzing the
effects of the EGFR-TKls, erlotinib (reversible EGFR-TKI), and WZ4002
(mutant EGFR selective TKI). Tumor cell growth after 72 hours was
measured by the MTT assay. Each sample was assayed in triplicate, with
each experiment repeated at least 3 times independently.

1 (E13;A20) transgenic mouse, were also sensitive to cri-
zotinib and TAE684, although their viability was slightly
inhibited by high concentrations (1 pmol/L) of EGFR-TKIs.

Because several growth factors have been associated with
poor patient prognosis and/or drug resistance in lung
cancer, we explored the effect of EGFR ligands (EGF,
TGF-0, and HB-EGF), IGF-1, PDGF-AA, and HGF on the
sensitivity of EML4-ALK lung cancer cells to ALK inhibitors.
In the absence of ALK inhibitors, these growth factors
slightly increased the viability of H2228, H3122, and
MANA2 cells. In H2228 cells, all 3 EGFR ligands reduced
sensitivity to crizotinib in a dose-dependent manner, but
IGF-1, PDGF-AA, and HGF failed to do so (Fig. 2, Supple-
mentary Fig. S1). Interestingly, HGF, as well as the EGFR
ligands, reduced sensitivity to TAEG84, but IGF-1 and
PDGF-AA failed to do so. Similar results were observed in
H3122 and MANA2 cells. To further confirm the effect of
these growth factors on specific ALK inhibition, we knocked
down ALK using 2 different specific siRNAs in H2228 cells.
Whereas 12228 cells were highly sensitive to ALK-specific
siRNAs, EGFR ligands and HGF restored cell viability inhib-
ited by ALK knockdown (Supplementary Fig. $2). When we
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assessed the ability of crizotinib to induce apoptosis in
H2228 and H3122 cells, we found that crizotinib induced
apoptosis in H3122, but not H2228, cells (Supplementary
Fig. $3).

HGF and EGFR ligands trigger ALK inhibitor resistance
via Met and EGFR, respectively

To assess the mechanism by which these growth factors
reduced cell sensitivity to ALK inhibitors, we analyzed the
phosphorylation status of ALK, receptors, and their down-
stream molecules in H2228, H3122, and MANAZ2 cells by
Western blotting. Crizotinib inhibited ALK phosphoryla-
tion, thereby suppressing the phosphorylation of Akt, Erk1/
2 and STAT-3, as described (ref. 11; Fig. 3A, Supplementary
Fig. S4). The EGFR ligands, EGF, TGF-0, and HB-EGF
stimulated EGFR phosphorylation. Crizotinib inhibited
ALK and STAT-3 phosphorylation even in the presence of
EGFR ligands, but failed to inhibit phosphorylation of
EGFR and downstream Akt, and Erk1/2. Phosphorylation
of ErbB4, a potential receptor for HB-EGF, was not affected
by crizotinib or EGFR ligands. To further confirm the
involvement of EGFR in crizotinib resistance induced by
EGFR ligands, we knocked down EGFR by specific siRNAs in
H2228 and H3122 cells (Fig. 3B). Although crizotinib
markedly inhibited cell viability and all 3 EGFR ligands
induced resistance in cells treated with scrambled siRNA,
resistance to crizotinib was not induced by EGF, TGF-o,
or HB-EGF in EGFR siRNA-treated cells, indicating that
EGFR ligand-triggered crizotinib resistance is mediated by
EGFR.

In parallel experiments, TAE684 inhibited ALK phos-
phorylation, thereby suppressing the phosphorylation of
Akt, Erk1/2, and STAT-3 (Fig. 3C). HGF stimulated the
phosphorylation of Met and its adaptor protein, Gabl, as
described (29). TAE684 inhibited ALK and STAT-3 phos-
phorylation even in the presence of HGF, but failed to
inhibit phosphorylation of Met and downstream Akt and
Erk1/2. Phosphorylation of ErbB3, an adaptor of amplified,
but not HGF-stimulated Met (30), was not affected by
TAEG684 or HGF. To further confirm the involvement of
Met and Gabl in HGF-induced TAEG684 resistance, we
knocked down Met, ErbB3, or Gab1l by specific siRNAs in
H2228 and H3122 cells (Fig. 3D). TAE684 markedly inhib-
ited the viability and HGF induced resistance in cells treated
with scrambled siRNA., Importantly, treatment of cells with
Met or Gabl, but not ErbB3, siRNA, induced TAE684
resistance, indicating the involvement of Met/Gabl in
HGF-induced resistance to TAE684.

Cross-talk of endothelial cells and fibroblasts reduces
the sensitivity of EML4-ALK lung cancer cells to ALK
inhibitors

To determine which types of host cells could produce
EGFR ligands and HGF, we investigated production of
these growth factors by various types of host stromal cells,
comparing lung epithelial cells and cancer cells. The
endothelial cell lines HMVEC produced discernible levels
of EGFR ligands, including EGF, TGF-0, and HB-EGF,
whereas fibroblasts produced a high level of HGF (Fig.
4A). EML4-ALK lung cancer cells (H2228, H3122, and
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Figure 3. HGF and EGFR ligands trigger ALK inhibitor resistance via Met/Gab1 and EGFR, respectively. A, crizotinib inhibited the phosphorylation of ALK and
STAT-3 but did not that of EGFR, Akt, and Erk1/2 in the presence of EGF, TGF-a, or HB-EGF. Tumor cells were treated with or without crizotinib (100 nmol/L) for
1 hour and/or EGF (100 ng/mL), TGF-o. (100 ng/mL), or HB-EGF (10 ng/mL) for 15 minutes. The cells were lysed and the indicated proteins were
detected by immunoblotting. The results shown are representative of 3 independent experiments. B, control or EGFR-specific siRNAs were introduced into
H2228 and H3122 cells. After 24 hours, the cells were incubated with or without crizotinib (100 nmol/L), and/or EGF (100 ng/mL), TGF-o. (100 ng/mL), or HB-
EGF (10 ng/mL) for 72 hours and lung cancer cell growth was determined by MTT assays. EGFR knockdown was confirmed by immunoblotting. The
percentage of growth is shown relative to untreated controls. Each sample was assayed in triplicate, with each experiment repeated at least 3 times
independently. G, TAE684 inhibited the phosphorylation of ALK and STAT-3, but not of Met, Gab1, Akt, and Erk1/2 in the presence of HGF. Tumor cells were
treated with or without TAEE84 (100 nmol/L) for 1 hour and/or HGF (50 ng/mL) for 15 minutes. The cells were lysed and the indicated proteins were
detected by immunobilotting. The results shown are representative of 3 independent experiments. D, control or Met, ErbB3, or Gab1-specific siRNAs were
introduced into H2228 and H3122 cells. After 24 hours, the cells were incubated with or without TAEE84 (100 nmol/L) and/or HGF (50 ng/mL) for

72 hours and lung cancer cell growth was determined by MTT assays. Met, Gab1, and ErbB3 knockdowns were confirmed by immunoblotting. The
percentage of growth is shown relative to untreated controls. Each sample was assayed in triplicate, with each experiment repeated at least 3 times

independently.

MANA2) and lung epithelial cells (BEAS-2B) produced
low or no detectable levels of EGFR ligands or HGF.
Interestingly, coculture of H2228 or H3122 cells with
fibroblasts {MRC-5) significantly reduced their sensitivity
to TAEGS84, an effect abrogated by anti-HGF antibody
(Fig. 4B). Coculture with endothelial cells (HMVEC) also
reduced sensitivity to crizotinib, an effect inhibited by
anti-EGFR antibody (Fig. 4C).

These results suggested that host stromal cells, such as
endothelial cells and fibroblasts, may regulate sensitivity to

ALK inhibitors by secreting EGFR ligands and HGF,
respectively.

HGF derived from fibroblasts induces TAEG84
resistance of EML4-ALK lung cancer cells in vivo

To investigate whether sensitivity to TAE684 could be
affected by fibroblasts in vivo, we subcutaneously inocu-
lated F12228 cells, with or without MRC-5 cells, into SCID
mice. The tumors of mice injected with H2228 and MRC-
5 cells grew slightly faster than those of mice injected with
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Figure 4. Cross-talk of endothelial cells and fibroblasts reduces sensitivity of EML4-ALK lung cancer cells to ALK inhibitors. A, receptor ligand production was
assayed in lung cancer (H2228, H3122, and MANA2,), human bronchial epithelial cell (BEAS-2B), fibroblasts (MRC-5 and IMR-90), endothelial cells
(HUVEC and HMVEC), and the macrophage differentiated cell line (PMA-U937). The cells were incubated in medium for 48 hours, culture supernatants were
harvested, and EGF, TGF-a, HB-EGF, and HGF concentrations were determined by ELISA. All samples were assayed in triplicate. B, H2228 and

H3122 cells were cocultured with or without fibroblasts, MRC-5 cells, and/or anti-HGF-neutralizing antibody (2 pug/ml), in the presence or absence of
TAE684 (100 nmol/L) for 72 hours, with cell growth determined by MTT assays. *, P < 0.05 (one-way ANOVA). Each experiment included triplicate
determinations, and each experiment was repeated at least 3 times independently. C, endothelial cell-derived EGFR ligands induced crizotinib resistance in
lung cancer cells with EML4-ALK fusion protein, an induction abrogated by blockade of EGFR. H2228 and H3122 cells were cocultured with or without
endothelial cells, HMVECs, and/or anti-EGFR-neutralizing antibody (2 g/mL) in the presence or absence of crizotinib (100 nmol/L) for 72 hours, with cell
growth determined as in B. *, P <0.05 (one-way ANOVA). Each experiment included triplicate determinations, with each experiment repeated at least 3 times

independently.

H2228 cells alone, but the difference was not statistically
significant by day 8 (Fig. 5A). TAEG684 treatment, begin-
ning on day 4, caused marked regression of tumors in
mice injected with H2228 cells alone, but not of tumors
in mice injected with H2228 and MRC-5 cells, indicating
that fibroblasts induced resistance to TAE684 in vivo (Fig.
5A). We confirmed that HGF was produced by MRC-5
cells in vivo. Although the tumors of mice injected with
H2228 cells alone did not produce detectable levels of
HGF, the tumors of mice injected with H2228 and MRC-5
cells produced high levels of HGF, started on day 4, but
decreasing slightly on day 8 (Fig. 5B).

We further analyzed whether coinjection of MRC-5
cells restored the Akt pathway inhibited by TAE684 in
the tumors. Western blotting showed that TAE684 treat-
ment inhibited Akt phosphorylation, which was restored
by coinjection of MRC-5 cells (Fig. 5C). These results
suggested that fibroblasts produced HGF in the tumors

and restored Akt phosphorylation as a survival signal, as
well as inducing resistance to TAE684 in EML4-ALK lung
cancer cells in vivo.

Ligand-triggered resistance to ALK inhibitors is
abrogated by inhibiters of both HGF-Met and EGFR

To establish novel strategies to treat EGFR ligand- or
HGF-triggered resistance to ALK inhibitors, we examined
the effect of combinations of ALK inhibitors with EGFR
inhibitors (anti-EGFR Abs and reversible EGFR-TKIs) and
HGF-Met inhibitors (anti-HGF Abs and Met-TKIs). Com-
bined treatment with erlotinib, a reversible EGFR-TKI and
cetuximab, an anti-EGFR Ab, successfully resensitized
12228 and H3122 cells to crizotinib even in the presence
of the EGFR ligands, EGF (Fig. 6A), TGF-o. (Fig. 6B), and
HB-EGF (Fig. 6C). Moreover, the combination of HGF
with E7050 (Met-TKI) or anti-HGF Ab resensitized cells to
TAE684 (Fig. 6D).
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Figure 5. HGF derived from fibroblasts induces TAE684 resistance of EML4-ALK lung cancer cells in vivo. A, fibroblast-derived HGF induced TAE684
resistance in H2228 tumors in SCID mice. H2228 cells (5 x 10°), with or without MRC-5 cells (5 x 10%, were inoculated subcutaneously into SCID mice
on day 0. Starting on day 4, mice received oral TAE684 (1.25 mg/kg/d) or vehicle alone, with tumor size measured on days 4 and 8. Tumor volumes were
calculated as described in Materials and Methods. Data shown are the representative of 2 independent experiments. Error bars indicate SEs of 6 mice.
P < 0.05 was considered significant by one-way ANOVA. NS, not significant. B, HGF production by tumor tissues. Tumors were harvested on days

4 and 8 and lysed, and HGFs in the lysates were assayed by ELISA. All samples were assayed in triplicate. C, fibroblast-derived HGF induced TAE684
resistance via the Akt signal pathway in vivo. Tumors were harvested 2 hours after treatment on day 7 and lysed, and the lysates were analyzed by
immunobilotting with the indicated antibodies, as described in Materials and Methods. The results shown are representative of 2 independent experiments.

Biscussion

We have shown here that endothelial cells and fibro-
blasts, both components of the tumor microenvironment,
secreted EGFR ligands and HGF, respectively, causing resis-
tance to the ALK inhibitors crizotinib and/or TAE684 by
activating bypass survival signals.

Ofthe EGFR ligands, EGF and TGF-0.bind predominantly
to EGFR, whereas HB-EGF binds to EGFR and ErbB4 (17).
H2228 cells expressed both EGFR and ErbB4. Our results
suggested that the bypass survival signal induced by EGFR
ligands is mediated mainly by EGFR, as EGFR ligands
markedly activated the phosphorylation of EGFR, not
ErbB4. Moreover, knockdown of EGFR abrogated resistance
caused by all EGFR ligands tested. EGFR ligand-triggered
resistance was canceled by erlotinib or cetuximab, an anti-
EGFR Ab, drugs approved for the treatment of patients with
NSCLC and colorectal cancer. In addition, AP26113, an
inhibitor of both ALK and EGFR, has been reported active
against EML4-ALK lung cancer cells with amplified ALK and
secondary mutations (7). Therefore, clinical trials are war-
ranted to evaluate the efficacy and feasibility of combina-
tions of an ALK inhibitor and these EGFR inhibitors to
overcome ALK inhibitor resistance.

HGEF, the sole ligand of Met (29), is important in EGFR-
TKI resistance in EGFR-mutant lung cancer. HGF derived
from cancer cells or stromal fibroblasts activated Met phos-
phorylation and stimulated the downstream Akt and Erk1/2
pathways (21, 22, 30) using Gab1, an adaptor protein for
Met (31), triggering resistance to both reversible and irre-
versible EGFR-TKIs. In our Japanese cohort study of patients

with EGFR-mutant lung cancer, high HGF expression was
detected in 61% of tumors with acquired resistance and in
29% of tumors with intrinsic resistance to EGFR-TKIs,
suggesting the rationale of targeting HGF to overcome
EGFR-TKI resistance (32). We also found that HGF triggered
TAEG84 resistance by activating Met and stimulating down-
stream Akt and Erk1/2 pathways using the adaptor protein
Gab1. Because many anti-HGF Abs and Met-TKIs are being
evaluated in clinical trials, HGF-triggered resistance to selec-
tive ALK inhibitors may be controlled by their combina-
tions in the near future.

EGFR and Met have been shown to interact with each
other and to mediate redundant signaling in lung cancer
cells (33). In EGFR-mutant lung cancer cells, Met amplifi-
cation causes EGFR-TKI resistance by triggering bypass
survival signals using ErbB3, an adaptor protein (34). Met
activation by HGF also triggers resistance to EGFR-TKIs that
use Gabl as an adaptor. In EML4-ALK lung cancer cells,
both novel ALK second mutations and autocrine EGFR
activation causes resistance to ALK inhibitors (11). We
found that paracrine HGF and EGFR ligands could trigger
ALK inhibitor resistance. Taken together, these findings
suggest that signaling by EGFR and Met is crucial for the
survival of lung cancer cells with EGFR mutations and
EML4-ALK translocations under inhibition of these driver
oncogenes.

We found that resistance to TAE684 was induced by
both EGFR ligands and HGF, whereas crizotinib resis-
tance was induced by EGFR ligands alone, a finding that
may be due to the dual activities of crizotinib on ALK and
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