60,

61.

£6.

67.

48,

70. Nacca A, Guiso G,

. Peutinai HM

. Pabon A, Chan KW, Sui JL,

. Musshofl F, Padosch $, Steinborn S, Maeda SSB (20

. Holzbach R, Jahn H, Pajonk TG

2. Gulfey JM, McNamara G, Barbera T, Ritz MG, George FR {19955 Selecuve

serotonin reuptake inhibitors: effects of chronic treanment on cthanobreinforced
behavior in mice. Alcohol 12: 177-181.

Volpicelli JR, Kranzler HR, Luck G, Rukstalis MR, et al. £2000;
Sevtraline treanment for alcohol dependence: interactive Lﬁccm of medication
and alcoholic subtype. Alcohol Clin Lx

3 SNRIs: their pharmacology,
in cr,-mparixon with other classes of

anudcpx essants. (J\Q Speewr iO 732 .
. Sigel E {1990} Use of Xeropus oocytes for the functional expression of plasima
membrane proteins. ] Membrane Biol 117: 201-221,

Aguado C, Colon ], Ciruela F, Schlaudraff F, Cabancero M], et al. {2008 Cell
wype-specific subunit composition of G protein-gated potassiura channels in the
511

cerebellum. J Neurochem 105 487-5
o Logothms DE, ¢t al. {2000} Glycosylation of
GIRK! at Asn'' and ROMKI1 ar Asn''” has different consequences in
potassiun channel funcdon. } Biol Chem 275: 30677-30682,

5 Fatal blood and tissue

=i
concentrations of more than 200 drugs. Fovensic Sci Inr 142: 161-210,

. Welzen M, Uges DRA 12004) TIAFT reference blood leved lise of the dherapeutic

and toxic substances. hup://soww.tiaftorg.

Lobo ED, Bergstromm RF, Reddy S, Quindan T {2008} In vivo and in vive
evaluations of cyiochrome P450 1A2 imeractions with duloxedne. Clin
Pharmacokines 47: 191-202.

Goeringer KE, Raymon L, Cluistian GD. Logan BK (2000) Posanortem
forensic toxicology of selectve serotonin reuptake inhibiwrs: a review of
pharmacology and report of 168 cases. ] Forensic Sci 45: 633-648.

Vey EL, Kovelman 1 (2010) Adverse events, toxicity and post-mortem data on
duloxeting: case reports and lterature survey. J Forensie Legal Med 17:
175-185.

. Taylor RL, Crooks CR, Caplan YH (1982} The determinadon of amoxapine fu

09-311.
ddhne € (1998) Suicide attempts with
mirtazapine overdose withowt complications. Biol Psychiauy 441 925-926.

human fatal overdoses. J Anal Toxicol

. Levine B, Jenkins AJ, Queen M, Jufer R, Sialek JE (1996) Disiribution of

venlafaxine in three postmaortem cases. ] Anal Toxicol 200 502-303.

TChr M, Graver MT, Holsboer F {2003} Differemiial enhancemient of
antddepressamt penetration fnto the brain in mice with abchlab {mdriab} P-
glycoprotein gene distruption. Biol Psychiany 54: 840-846.

Tremaine LM, Welch WM, Ronfeld RA (1989 Metabolism and disposition of
the S-hydroxytriptamine uptake blocker sertraline in the rat and dog. Drug
Metab Dispos 17: 542--550.

Bymaster FP, Lee TC, Knadler MP, Detke M, Iyengar 8 {2005) The dual
transporter inhibitor duloxetine: a review of s prechinical pharmacology,
pharmacokinetic profile, and clinical resulis i depression. Gurr Pharm Des 1
1475--1493.

. Sedgwick P, Spiehler VR, Lowe DR {1982 Toxicologicadl findings in amoxaping

overdose. | Anal Toxicol 6: 82-84.

Tracasso G, Cervo L, Caccia S {1996y Brain-to-blood
partition and @ @ve inhibition 5-hydroxyuryptammine reuptake and quipazine-
mediated behaviour of nefazodone and i main active metabolites In rodents,
Br J Pharmacol 125: 16171623,

. Allamura AC, De Novelis F, Mauwri MG, Gomeni R {1987) Plasma and brain

pharmacokinetics of mianserin after single and multiple dosing in mice. Prog
Neuropsychopharmacol Biol Psychiawy 11: 23-53.

@ PLoS ONE | www.plosone.org

10

72.

73.

. Henry ME,

. Blednov Y

. Ishister GK, Bowe S,

. Lou RS, Baker DE {2003; Duloxctne: a new antidepressant.

. Cruz HG, Bertom E,

GIRK Channel Inhibition by Antidepressants

Karson CN, Newton JEO, Livingston R, jolly JB, Gooper TB, et al. (1893}
an brain fluoxedne concenwations. J Neuropsychiawry Clin Neurosci 5

R, Hode Y, Nedelee J-F, Laine E, Wagner G, et al. {2000} Brain
pharmacokinetics and ussuc disuibuiion & #izo of fluvoxamine and fluoxetine by
ﬂuoriue magnede resonance speciroscopy.  Neuropsychopharmacology  23:
428-458.

. Henry ME, Moore CM, Kaufman M]J, Michelson D, Schmidi ME, et al. (2000

Brain kinetics of paroxetine and fluoxedne on the third day of phceho
substisution: a fluorine MRS study. Am ] Psychiatry 1570 1506-1508.

» Schmidt ME, Hennen J, Villafuerie RA, Butnan ML, et al. {2005 A
comparison of brain and serum pharmacokinetics of R-fluoxetine and racemic
fuoxetine: a 19-F MRS study. Neuropsychopharmacelogy 30: 1576-1583.

. Stoffel M. Chang SR, Harris RA {2001) Potassium chaunels as
targets for ethanol: studies of G-protein-coupled inwardly rectfying potassium
channel 2 (GIRK2) null mutamt mice, J Pharmacol Exp Ther 208: 521-530.

. Sanchez G, Meier E {1997) Bebavioral profiles of SSRIs in avimal models of

depression, anxicty and aggression. Psychopharrmacology 129: 197-205.

. Harada Y, Kohara N, Imacda T (2006} Pharmacological, pharnsacokinetic, and

dlirsical profile of sertraline hydrochloride {] ZOLOFT'™,

128: 417424,

3. Folia Pharmacol Jpn

. Schatzberg AF (2000} New indications for antidepressanis. J Clin Psychiauy

61{Suppl 11y 9-17.

. Monigomery SA {2005} Antidepressants and scizures: emphasis on newer agenis

and clinical mplications. Ine J Clin Pract 59: 14351440,

. Whyre IM, Dawson AH, Buckley NA {(2003) Relative toxiciy of venlafaxine and

selective serotonin reupiake inhibitors In overdese compared 1w frkeyelic
antidepressants. (3 ] Med 96: 560-374.

Dawson A, Whyte IM {2004) Relative woxicity of selective
serotomin reupiake inhibitors S8RIsy in overdose. J Tosicol Clin Toxicol 42:
277-285.

. Litoviiz TL, Troutman WG {1983} Amoxapine overdose: seizures and fatalities,

JAMA 250: 1069-1071.
Frommer DA, Kulig KW, Marx JA, Rumack B (1987) Tricyclic antidepressant
overdose: a review. JAMA 2 1-526.

Advances
Pharpacy 1: 228-241.

5. Bymaster FP, Dreshfield-Ahmad L, Threlkeld PG, Shaw JL, Thompson L, et al,

2001y Comparative affinity of duloxetine and venlafaxine for serotonin and
norepinephrine transporters in vitro and in vivo, human scrotonin receptor
subtypes, and other neuronal reeeprors. Neuropsychopharmacology 25:
871-380
371880,

. Hill KG, Alva H, Blednov YA, Cunuingham CL {2003} Reduced cthanol-

induced conditioned taste aversion and conditioned place preference in GIRK?2
null muiant mice. Psychopharmacology 169: 108114,

Sollini M, Blanchet G, Pravetoni M, et al. {2008} Absence
and rescue of morphine withdrawal in KIR/Kird knock-out mice. ] Neurosci 28:
4069-4077.

. Gray AM 2002} The effect of fuvoxamine and seruraline on the opioid

withdrawal syndrome: a combined in vivo cercbral microdialysis and
behavioural study. Eur Newropschopharmacol 12: 245-254,

. Morgan AD, Carroll ME, Loth AK, Stoffel M, Wickman K {2003} Decreased

cocaine self-adminisiration in Kir3 potasswm channel xubunn ercluy,xx mice,
Neuropsychopharmacology 28: 932-938.

December 2011 | Volume 6 | Issue 12 | 28208



For reprint orders, please contact: reprints@futuremedicine.com

Pharmacogenomics of the human p-opioid recepror

The p-opioid receptor is a primary target for clinically important opioid analgesics, mc!udmg morphme
fentanyl and methadone. Many genetic variations have been identified in the human y-opioid receptor
MOP gene (OPRMT), and their implications have been reported in the effects of opioid drugs and
susceptibility to drug dependence. Interestingly, agonistic and antagonistic opioid effects are inversely
associated with the A118G polymorphism genotype. The A118G polymorphism may also be associated with
substance dependence and susceptibility to other disorders, including epilepsy and schizophrenia. The
IVS1+A21573G, 1V51-T17286C, and TAA+AS5359G polymorphisms in the OPRM1 gene may be associated
with alcohol, opioid and tobacco dependence, respectively. However, some studies have failed to confirm
the correlations between the polymorphisms and opioid effects and substance dependence. Further studies

are needed to elucidate the molecular mechanisms underiying the effects of OPRM1 polymorphisms.

KEYWORDS: p-opioid receptor analgesia drug addiction gene‘ac po!ymorphxsm

narcotic drugs

Pharmacological importance of the
u-opioid receptor

The p-opioid receptor (MOP) is a subtype that
belongs to the superfamily of 7-transmem-
brane-spanning G-protein-coupled receptors.
Pharmacological studies with gene-knockout
mice show that MOP is a major target for
the clinically important opioid drugs, such
as morphine and fentanyl, and it appears
to play critical roles in the mediation of the
major effects of these opioid drugs, including
analgesia, tolerance, dependence and respira-
tory depression {1.2.201]. Homozygous MOP-
deficient mice are insensitive to morphine
13-s1. In addition, heterozygous MOP-deficient
mice, which possess approximately half of the
amount of MOP protein in wild-type mice,
exhibit haploinsufficiency in the analgesic
effects of morphine 45]. The CXBK mouse
strain, a recombinant inbred strain derived
from an F2 intercross between BALB/c and
C57BL/6 mice, exhibit reduced responses to
opioid receptor agonists (6. The CXBK strain
expresses approximately half of the amount
of MOP mRNA compared with progenitor
strains and display phenotypes similar o those
of heterozygous MOP-deficient mice 7). In
the CXBK strain, an intracisternal A-particle
transposon is inserted in the 3-UTR of the
MOP gene, which would be expected to be the
cause of the reduced response to opicids (s1.
Among wild-derived inbred mouse strains,
many genetic variations were identified in the

10.2217/PGS.11.68 © 2011 Future Medicine Lid

mouse MOP gene, and some of these variations
were associated with interstrain differences in
opioid sensitivity [9]. These results suggest that
genetic variations in the MOP gene and MOP
expression influence morphine sensitivity in a
gene dosage-dependent manner.

In this brief article, we focus on and summa-
rize the genetic variations in the human MOP
gene, which are analyzed with regard to pain sen-
sitivity, opioid drug sensitivity and susceptibility
to drug dependence, and other disorders.

@ Structure of the human MOP gene

The ¢cDNAs and genes encoding MOP have
been cloned from mouse, rat, porcine, bovine,
and buman sources [1¢ * 17). The human MOP
gene (OPRMI) spans over 200 kb and consists
of 11 exons that combine to yield 17 splice vari-
ants [18]. The exons A/B, X, Y and 5A-E in
intron 1 or 3 of the OPRMI gene yield variants
such as MOR-1B1-1B5, MOR-1X, MOR-1Y,
SV1 and SV2 (Feure 1. Among the transcripts
from the OPRMI gene, MOR-1, which con-
sists of exons 1, 2, 3, and 4, is approximately
15 kb in length and the most abundant tran-
script 19]. The MOR-1 3-UTR is continuously
transcribed, beginning with the exon 4 coding
region of MOR-1 mRNA. Human MOR-1
mRNA possesses a long 3'-UTR of over 13 kb.
The other variants of the OPRM]I gene, includ-
ing MOR-1B5 and MOR-1Y, are also long tran-
scripts defined as 15 kb, but the 3-UTRs for

these variants have not been identified [201.
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(YRI), northern and western European ancestry
in the USA (CEU), Japanese in Tokyo, Japan
(JPT), and Han Chinese in Beijing, China
(CHB) were analyzed, and variations in the
SNPs in the OPRMI gene were the following:
CEU > YRI » JPT and CHB 204}. These data

Human OPRM1 gene XYy Exon
Exon 1 Exon2,31/ 5A-E Exon4
. HH—-
CMOR b T ]
MOR-1B1 b——""" "

MOR-1B2 by suggest that the linkage disequilibrium (LD)
MOR-1B3 g —y bioc ks and n"uﬁol allele frequencies (MAF&)
of the SNPs in the OPRMI gene are different
MOR-1B4 F——””'\#!/\ﬂ . ..
: between different races and ethnicidies.
MOR- TBS F"A*“H’/\ﬂ In European populations (Eutopean Americans

MOF{-1X T Ty
MOR-Y F—"" TN
S8V T TN '

or Caucasians), the OPRMI gene is covered with
two LD blocks whose boundary is located around
the end of intron 1 berween rs3778156 and

V2 T N 152075572, rs1381376 and 1s9479757, rs1381376

R L and rs563649, or rs3778151 and rs660756 [26-30]. -
(0,9 e 0550/ o§’>° : é\g, , @Q} ~ QS\Q @0 , In American Indians, the OPRMI gene also con-
QT T BT ST TSt sists of two major LD blocks that are separated

by the border between 1s506247 and rs2075572

Genomic contig (NT_025741.15) (kb) 131). However, in the Japanese population, the

Figure 1. Human p-opioid receptor gene (OPRMT) structure. The human
OPRMT1 gene spans over 200 kb and consists of multiple exons that combine to
yield isoforms. Among these isoforms, MOR-1, which consists of exons 1, 2, 3 and
4 of the OPRMT gene, is approximately 15 kb in length and is the most abundant
transcript. Exon A/B was identified in intron 1 as the first exon for the splice -
‘variants SV1 and SVZ. Inintron 3, exons X, Y and 5 were also identified as the last
exons for the variants MOR-1X, MOR-1Y and MOR-1B1-1B5, respectively.
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The human MOP gene structure and splicing
sites are similar to those of mice [19.211. Mouse
MOR-1 mRNA is transcribed from exons 1, 2, 3
and 4 and possesses a long 3-UTR of over 10 kb,
which is continuously transcribed from exon
4, similar to human MOR-1 mRNA. Human
MOR-1 (GenBank accession no. 1.25119) shares
87% cDNA and 94% amino acid sequence
identities with mouse MOR-1 (GenBank acces-
sion no. U19380) z02]. The 3-UTR of human
MOR-1 mRNA shows high similarity to mouse
MOR-1 mRNA in the regions of their 5" and
3’ ends {191. Many splice variants of MOR-1
mRNA have also been reported in mice. Studies
with antibodies against splice variants of mouse
MOR-1 mRNA and gene-modified mice for
exon 11 were performed [22-25], but the fune-
tions of these splice variants of MOR-1 mRNA

have been controversial.

SNPs in the OPRM1 gene

Over 700 SNPs have been identified in the
OPRM]I gene (refer to the dbSNP database,
the NCBI database of genetic variations) 1203].
Genetic variations in the OPRM] gene are quite
different between different races and ethnicities.
In the International HapMap project, genetic
variations in the African population in Nigeria

OPRM]I gene is covered with four LD blocks {32].
In the Uyghur population, the major LD blocks
were not identified in the OPRMI gene, but a
small LD block was identified at incron 3 con-
taining rs3798683 and 19397685 331. The MAFs
of A118G (1s1799971), which is a well-studied
nonsynonymous SNP leading to an Asn40Asp
substitution in the OPRMI gene, are 0.047 in the
African population, 0.154 in the European popu-
lation, 0.485 in the Japanese population, 0.14 in
the Hispanic population, 0.210 in the Ashkenazi
population, 0.08 in the Bedouin population and
0.17 in the Ethiopian population, indicating a
wide variety of MAFs of the A118G SNP in the
OPRM] gene among different races and ethnici-
ties {34]. These results suggest that genetic varia-
tions in the OPRM1I gene need to be analyzed by
the race/ethnicity of populations.

Numerous SNPs in the OPRMI gene have
been analyzed with regard to clinical traits
(Surpsmentary Tasie 1; www.futuremedicine.com/
doi/suppl/10.2217/pgs.11.68). SuprLementary Tases 1
lists the SNPs in the OPRMI gene that were
previously reported in association studies, with
the exception of haplotype analyses, pain sen-
sitivity, opioid sensitivity, and susceptibility to
drug dependence and other disorders. Almost
all of the analyzed SNPs in the OPRM]I gene
are located at exons 1-4, corresponding to the
genomic region for the MOR-1 mRNA.

# Association studies of SNPs in the
OPRMT1 gene & pain sensitivity
Homozygous and heterozygous MOP-deficient
mice exhibited higher sensitivity to thermal
nociception compared with wild-type mice

Pharmacogenomics (2011) 12(9)
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in the tail-flick test at 50°C and 53°C (4.
These data suggest that hypomorphic SNPs
in OPRMI, which reduce their expression or
function, influence pain sensitivity.

Four SNPs in the OPRMI gene were ana-
lyzed in association studies with pain and related
traits (Tams ) [35-43]. Among four SNPs, the
IVS1-C2994T and IVS2+G31A SNDs were sig-
nificantly associated with pain sensitivity scores
and pressure pain thresholds, respectively (35.43].
However, no other reports have shown an asso-
ciation between these two SNPs and pain-refated
traits; therefore, the resules of these association
studies remain controversial. Significant associa-
tions with pain-related traits were also observed
in studies of the A118G SNP. The G-allele car-
riers of the A118G SNP showed higher reactivity
to social rejection compared with AA subjects in
the dorsal anterior cingulate cortex and anterior
insula, which are involved in processing social
and physical pain 41]. However, G-allele cas-
riers exhibited lower sensitivity to mechanical
stimulation than AA subjects did [36]. Therefore,
Further studies are necessary to evaluate the
results of these association studies between the

A118G SNP and pain sensitivity.

Association of OPRM1 SNPs with
opioid sensitivity

The MOP plays an integral role in the vari-
ous effects of opioids. Morphine, fentanyl and
methadone are agonists for the MOP, and the
clinical effects of these analgesic opioids, such as
analgesia and their side effects, including nausea,
vomiting, pruritis and respiratory depression, are
mainly produced through MOP 2j. The anal-
gesic and side effects of analgesic opioids were
abolished or reduced in homozygous or hetero-
zygous MOP-deficient mice {45]. These results
indicate that MOP gene dosage is related to the
clinical efficacy of analgesic opioids. In addi-
tion, the opioid antagonist naltrexone is effec-
tive for the ereatment of alcohol dependence (44].
Nalcrexone is a nonspecific antagonist of opioid
receptor subtypes, but it strongly interacts with
MOP 451. The effects of naltrexone on drink-
ing outcome have been found to be greater in
alcoholic individuals with a family history of
alcoholism (46,47}, suggesting that genetic fac-
tors highly contribute to the effects of naltrex-
one in alcoholic treatment. Furthermore, the
endogenous opioidergic system via MOP plays
a critical role in the regulation of hypocha-
lamic—picuitary—adrenal (HPA) axis activation.
Corticotropin-releasing factor neurons in the
paraventricular nucleus of the hypothalamus,

581 future science Sroup
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which expresses MOP, initiates HPA axis acti-
vation {48.49]. Opioid blockade by naloxone has
been found to show a greater cortisol response
among individuals with a family history of alco-
holism {50-521. Thus, genetic variations in the
OPRM]I gene appear to affect the analgesic and
side effects of opioids, efficacy of naltrexone for
alcoholic treatment, and HPA axis activation by
naloxone and exhibit interindividual differences
in these effects of opioids.

Many SNPs in the OPRM]I gene have been
investigated in regard to opioid sensitivity,
including the analgesic and side effects of anal-
gesic opioids, efficacy of naltrexone for alcoholic
trearment, and HPA axis activation by naloxone.
(Tasee 2) {3740,42,53-96]. Among these studies, statis-
tical significance was found in association studies
between only three SNPs (A118G, IVS2+C691G
and IVS3+A8449G) and opioid sensitivity.

The A118G SNP has been shown to be
associated with the analgesic and side effects
of opioids, including morphine, morphine-
6-glucuronide (MGG) and fentanyl. In these
studies, opioid dose [66,7¢], consumption [42,68],
requirement [54,56,63,64,80], and 50% effective
concentration (EC ) [s8,62] were greater in
G-allele carriers compared with AA subjects,
regardless of the analgesic and analgesia type.
Specifically, the analgesic effects were lower in

. Polymorphism  Result (MAF) Ref.
G-1727 No (pressure pain threshold and tolerance) (0.174) {35}
T Not analyzed (0.000) f3s]
A118G No (heat pain threshold) (0.112) 136
i G-allele carriers > AA subjects {pressure pain threshold,
p < 0.05)
No (ischemic pain threshold)
No (MPQ-sensory postoperative pain rating) (0.125) {37]
Assodiation (MPQ-sensory and MPQ-affective pain EN
ratings, p < 0.05)
No (pressure pain threshold and tolerance) (0.319) [35)
No (chronic widespread pain) (0.100)* [39]
No (cold pressor-induced pain threshold) (0.438) {40}
G-allele carriers > AA subjects (dispositional and neural {41
sensitivity, p < 0.05) (0.208)
G-allele carriers < AA patients (pain tolerance threshold, (42
; p = 0.03 and 0.001) (0.313) :
Ivs1-C2994T Association (pain-sensitivity score, p = 0.0007) [43]
No (chronic widespread pain) (0.093)° {39}
IVS2+G31A GA subjects > GG subjects (pressure pain threshold, {351
p = 0.036) (0.028)
No {pressure pain tolerance)
IVS2+C691G Not analyzed (0.000) [3s1
- 'The number of subjects combined the control and chronic widespread pain groups.
' MAF: Minor allele frequency, MPQ: McGill Pain Questionnafre.
www futuremedicine.com 1307
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G-allele carriers than in AA subjects. G-allele
carriers exhibited lower analgesic efficacy com-
pared with AA subjects [40,6770.73.75]. Similar
to analgesic efficacy, the incidence of analgesic
opioid side effects was lower in G-allele carriers
than in AA subjects [56.60.68,73.75,77]. Numerous
studies have also reported associations of the
A118G SNP with the efficacy of naltrexone for
alcoholic trearment. In contrast to the effects
of analgesic opioids, the efficacy of naltrexone
for alcoholic treatment (i.e., rate of relapse,
time to relapse, craving for alcohol and clinical
outcome) were higher in G-allele carriers than
AA patients (57.84,86.88.891. Similarly, HPA axis
activation induced by naloxone was greater in
G-allele carriers than AA subjects [93-96], These
results indicate that the G allele of the A118G
SNP is hypomorphic and hypermorphic for the

effects of analgesic opioids and opioid antago-

" nists, respectively. The meta-analysis showed an

association of the A118G SNP with less nausea
(effect size, Cohen’s d = -0.21, p = 0.037) and
more dosage requirements {d = 0.56, p = 0.018)
in GG subjects [971. However, some reports
showed no association between the A118G SNP
and opioid sensitivity. Association studies of opi-
oid sensitivity have been performed with various
races and population ethnicities. As described
above, the MAFs of the A118G SNP vary widely
among race/ethnicity; therefore, the effect sizes
of the A118G SNP in association studies are
quite different between races and ethnicities.
A possible explanation for the incidence of no
association between the A118G SNP and effects
of opioids is that the statistical power was inad-
equate and may be attributable w the different
MAFs between races and ethnicities in the sam-
ple populations. The MAF in the studies of the
association between the A118G SNP and anal-
gesic effects of opioids is 0.260 + 0.032 (n = 16,
average = standard error of the mean), which
tends to be higher than the MAF in studies that
found no association between the A118G SNP
and analgesic effects of opioids (0.173 = 0.067,
n = 5). However, the MAFs in the studies that
found an association between the A118G SNP
and side effects of analgesic opioids or efficacy of
naltrexone for alcoholic treatment, are not dif
ferent from the studies that found no associa-
tions. These opioid functions are dependent on
metabolic enzymes, transporters and molecules
involved in opioid signal transduction pathways.
Specifically, the side effects of opioid analgesics
are under the influence of drug-metabolizing
enzymes and transporters, which facilitate the
elimination of opioids from the body (e.g., CYP,

UDP-glucuronosyltransferase and ATP-binding
cassette transporters). Therefore, genetic varia-
tions in the genes that encode these molecules
might be involved in opioid sensitivity and affect
the association between the A118G SNP in the
OPRM1 gene and the side effects of opioid anal-
gesics. Naltrexone exerts its effect by interact-
ing not only with MOP but also with 8- and
K-opioid receptors. The A118G SNP in the
OPRM]1 gene may be associated with the action
of opioids, such as morphine and fentanyl, at the
MOP rather than affect the action of nonspe-
cific opioids, such as naltrexone, at other opioid
receptor subtypes. The reasons as to why some
studies did not confirm the association between
the A118G SNP and side effects of analgesic
opioids or treatment efficacy of naltrexone for
alcoholism, remain to be clarified.

In an association study of the IVS2+C691G
SNP, statistical significance was observed with the
effects of naloxone {961, but another study did not
show an association between the IVS§2+CG691G
SNP and analgesic effects of morphine or fen-
tanyl. Similar to the IVS2+C691G SNP, only
one study reported an association between the
IVS3+A8449G SNP and fentanyl analgesia [40].
Therefore, further work is needed to validate and
determine the significance of the IVS2+C691G
and IVS3+A8449G SNPs in the effects of

naloxone and fentanyl analgesia, respectively.

Association of OPRMT SNPs

with susceptibility to

substance dependence

Pharmacological studies in animals implicate
the endogenous opioid system in the reinforc-
ing effects of a variety of drugs, including alco-
hol, cocaine, heroin, cannabinoids, nicotine and
amphetamine. These drugs have been shown to
release dopamine in the nucleus accumbens and
ventral tegmental area, which are critical brain
loci in the reinforcement pathway (98). Dopamine
release is a consequence of increased opioider-
gic activity, which inhibits GABA neurons,
thereby disinhibiting dopaminergic neurons
1991. MOP-deficient mice exhibited decreased
ethanol self-administration and decreased
ethanol intake [100-102). The rewarding effects
of heroin, cannabinoids and nicotine, but not
amphetamine, were also abolished or reduced in
MOP-deficient mice f103-108]. Cocaine reward,
measured by conditioned place preference, was
reduced in both homozygous and heterozygous
MOP-deficient mice [109], although cocaine
produced comparable conditioned place prefer-
ence in both wild-type and MOP-deficient mice
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Morphine
Morphine
Morphine
Morphine

Naltrexone
Morphine
Morphine
Morphine/M6G
Morphine
Morphine

Morphine
Morphine

Morphine/M6G
Morphine

Morphine

Morphine/fentany!
Morphine

Morphine
Morphine

Maorphine

Opioid effect

Cancer pain relief
Cancer pain relief
Cancer pain relief

Postoperative
analgesia

Side effects
Alcoholic treatment
Pupil constriction
Morphine tolerance
Side effects

Pupil constriction
Side effects

Cancer pain relief
Cancer pain relief
Side effects

Cancer pain relief
Postoperative
analgesia

Side effects

Pupil constriction

Cancer pain relief
Side effects

Postoperative
analgesia

Side effects

Postoperative
analgesia

Cancer pain relief
Cancer pain relief
Postoperative
analgesia

Side effects

Side effects
Postoperative
analgesia

Side effects

"The number of subjects combined the control and switcher groups.

: ACTH: Adrenocorticotropic hormone; EC,,: 50% effective concentration; ESWL: Extracorporeal shock wave lithotripsy; HPA: Hypothalamic-pituitary-adrenal; M6G: Morphine-6-glucuronide; MAP: Mean arterial

" Result

GA carrier < GG carrier (pain relief)
No {morphine requirement)

No (opioid switching)

No (morphine requirement)

No (nausea, vomiting episodes and pruritis)

Not analyzed

No (EC,, of morphine)

Morphine tolerance with high plasma M6G in GG subjects

Dizziness, sleepiness and apathy in AA subjects

G-allele carriers < AA subjects (miotic effects of morphine and M6G)
G-allele carriers < AA subjects (nausea and vomiting, p < 0.05)

Less effective in AG patients

GG patients > AA patients (morphine requirement, p = 0.006)

No (nausea, vomiting, dyspnea, sleepiness, loss of appetite
and constipation)

No (opioid switching)
No (morphine dose)

No (PONV requiring ondansetron)

GG subjects > AA subjects (EC,, of opioids, p < 0.001)

GG patients > AA patients (morphine requirement, p = 0.024)
No (nausea score, vomiting and sedation score)

GG patients > AA patients (morphine requirement, p = 0.003)

No (nausea, vomiting, and other adverse effects)
No (morphine dose)

G-allele carriers > AA patients {morphine dose, p = 0.012)
GG patients < AA patients (pain relief, p < 0.001)
G-allele carriers > AA subjects (morphine consurnption, p < 0.05)

G-allele carriers < AA subjects (nausea, p = 0.02)
No (pruritus severity score)
Association (morphine requirement, p < 0.01)

Association (nausea, p = 0.026; vomiting episodes, p = 0.022)

| pressure; PaCO,: CO, arterial pressure; PONV: Pastoperative nausea or vomiting; VAS: Visual analogue scale.

Number of subjects
GG, 1, GA, 1, AA, O
GG, 90; GT, 8, TT, 1
GG, 137, GT, 19; TT, Of
GG, 819; GT, 156, TT, 8

CC,6;CT,5,TT, 0
AA, 6; AG, 5; GG, 1
AA, 1; AG, 0; GG, 1
AA, 6; AG, 4; GG, 2
AA, 1. AG, 1, GG, 0
AA, 78; AG, 17; GG, 4

AA, 114; AG, 37, GG, 57
AA, 57; AG, 15; GG, 2

AA, 23; AG, 6; GG, 2
AA, 43, AG, 19; GG, 18

AA, 74; AG, 33; GG, 13

AA, 70; AG, 30; GG, 1

AA, 166, AG, 36, GG, 5
AA, 106; AG, 22; GG, 10
AA, 272, AG, 234, GG, 82

AA, 389; AG, 435; GG, 170

53|
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531
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531
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- Polymorphism
A118G (cont.)

Opioid
M6G
M6G
M6G

Fentanyl
Fentanyl
Fentanyl

Fentanyl
Fentanyl

Fentanyt
Fentanyl/morphine

Alfentanyl

Alfentanyl

Levomethadone
Buprenorphine

Methadone
Some opioids

Some opioids
Some opioids

Naltrexone

Naltrexone

Opioid effect
Pupil constriction
Electrical pain relief
Electrical pain relief

Respiratory depression
Preoperative analgesia

Labor analgesia

Postoperative
analgesia

Side effects

Thermal pain relief
Postoperative
analgesia

Labor analgesia

Postoperative
analgesia

Electrical pain relief
Chemical pain relief
Side effects

ESWL pain relief

Pupil constriction
Heroin dependence
treatment

Opioid abuse
treatment

Postoperative
analgesia

Chronic pain relief
Postoperative
analgesia

Alcoholic treatment

Alcoholic treatment

| "The number of subjects combined the control and switcher groups.
ACTH Adrenocorticotropic hormone; EC,, 50% effective concentration; ESWL: Extracorporeal shock wave lithotripsy; HPA: Hypothalamic-pituitary-adrenal; M6G: Morphine-6-glucuronide; MAP: Mean arterial :
pressure PaCo,: CO, arterial pres5ure, PONV Poszoperanve nausea or vom:t/ng, VAS Vlsua/ ana/ogue scale

Result

G-allele carriers > AA subjects (EC,; of M6G, p < 0.05)
Low M6G analgesia in G-allele carriers

AG subjects < AA subjects (M6G analgesia, p < 0.01)
and EC,, of acute hypoxic response)

No (gastric response to fentanyl)

G-allele carriers < AA subjects (EC of fentanyl, p < 0.01)
G-allele carriers > AA patients (VAS score, p < 0.05)

No (E

max

G-allele carriers < AA patients (PaCO,, p < 0.05)
GG patients < AA patients (time to awakening and extubation,

p < 0.05)

No (respiratory depression)
G-allele carriers < AA subjects (pain threshold decrease, p = 0.046)
GG patients > A-allele carriers (fentanyl consumption, p = 0.039

or 0.01)

No (duration of fentanyl analgesia)
No (morphine requirement and duration of morphine analgesia)

G-allele carriers < AA subjects (alfentanyl analgesia, p < 0.05)
GG subjects < A-allele carriers (alfentanyl analgesia, p < 0.05)
GG subjects < A-allele carriers
G-allele carriers > AA subjects (alfentanyl dose, p < 0.01)
G-allele carriers > AA subjects (frequency of boluses, p < 0.05)
G-allele carriers < AA subjects (miotic effect, p < 0.001)
G-allele carriers < AA patients (ACTH response, p = 0.03)

No (methadone response)

SNP x anger-out (analgesic consumption, p < 0.05)

G-allele carriers < AA patients (opioid dose, p < 0.005)
GG patients > A-allele carriers (analgesic requirement, p < 0.05)

G-allele carriers < AA patients (rate of relapse, p = 0.044)
G-allele carriers > AA patients (time to relapse, p = 0.040)
No (effects of naltrexone treatment)

G-allele carriers > AA patients (decrease of MAP, p < 0.005)

respiratory frequency, p < 0.01)

Number of subjects
AA, 6; AG, 5; GG, 1
AA, 12, AG, 6, GG, 0
AA,12; AG, 4; GG, 0

AA, 15, AG, 2; GG, 1
AA, 150; AG, 62; GG, 11
AA, 99; AG, 66; GG, 24

AA, 86; AG, 143; GG, 51
AA, 86; AG, 67, GG, 21

AA, 144; AG, 34; GG, 12
AA, 78, AG, 22; GG, 3

AA, 10; AG, 4; GG, 6

AA, 72, AG, 24, GG, 3

AA, 40; AG, 8; GG, 3
AA, 14, AG, 4; GG, 2

AA, 177, AG, 57, GG, 4
AA, 37; AG, 10; GG, 1

AA, 103; AG, 17; GG, 1
AA, 41; AG, 70: GG, 27

AA, 89; AG or GG, 41

AA, 59; AG or GG, 29
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AN18G (cont.)

IVS1+C5143T
IVS1-C17823T
(VS2+G31A

VS2+C691G

Polymorphism

Opioid

Naltrexone
Naltrexone
Naltrexone

Naltrexone
Naltrexone

Naltrexone
Naltrexone
Naltrexone

Naltrexone
Naltrexone
Nalmefene
Naloxone

Naloxone
Naloxone

Naloxone

Morphine
Morphine
Morphine
Morphine
Morphine/M6G
Morphine
Morphine
Morphine/M6G
Fentanyl

Opioid effect

Alcoholic treatment
Alcoholic treatment
Alcoholic treatment

Alcoholic treatment
Alcoholic treatment

Alcoholic treatment
Alcoholic treatment
Alcoholic treatment

Alcoholic treatment
Alcoholic treatment
Alcoholic treatment
HPA axis activation

HPA axis activation
HPA axis activation

HPA axis activation

Cancer pain relief
Cancer pain relief
Cancer pain relief
Cancer pain relief
Pupil constriction
Cancer pain relief
Cancer pain relief
Pupil constriction

Result

No (effects of naltrexone treatment)

No {rate and time o relapse)

G-allele carriers < AA patients (craving for alcohol, p < 0.05)
No (alcohol-induced stimulation, sedation or mood changes)
No (effects of naltrexone treatment)

G-allele carriers > AA patients (% of days abstinent, p < 0.05)

G-allele carriers < AA patients (% of heavy drinking days, p < 0.05)

G-allele carriers > AA patients {rate of good clinical outcome,
p = 0.005)

No (effects of naltrexone treatment)

G-allele carriers > AA patients (time to relapse, p = 0.014)
Haplotype (including A118G) x medication (p = 0.03)
G-allele carriers > AA patients (rate of good clinical outcome,
p = 0.006)

No (effects of naltrexone treatment)

No {naltrexone effects on impulsive choice ratio)

No {(effects of nalmefene treatment)

G-allele carriers > AA subjects (cortisol response, p < 0.05)
AG subjects > AA subjects (plasma ACTH response, p < 0.05)
G-allele carriers > AA subjects (cortisol response, p < 0.05)
No (plasma ACTH response)

G-allele carriers > AA subjects (cortisol response, p = 0.046)
No (plasma ACTH response)

G-allele carriers > AA subjects (cortisol response, p < 0.05)
No (cortisol response)

G-allele carriers < AA subjects (plasma ACTH, p = 0.04)

No (opioid switching)

No (opioid switching)

No (morphine requirement)

No (opioid switching)

No (EC, of opioids)

No (morphine requirement)

No (opioid switching)

No (EC,, of opioids)

Preoperative analgesia No (gastric response to fentanyl)

The number of subjects combined the control and switcher groups.
| ACTH: Adrenocorticotropic hormone; EC,: 50% effective concentration,; ESWL: Extracorporeal shock wave lithotripsy; HPA: Hypothalamic-pituitary~adrenal; M6G: Morphine-6-glucuronide; MAP: Mean arterial

| pressure, PaCO,; CO, arterial pressure; PONV: Postoperative nausea or vomiting; VAS: Visual analogue scale.

Number of subjects
AA, 16; AG, 6; GG, 3
AA, 148; AG or GG, 42
AA, 25; AG, 14; GG, 1

AA, 119; AG or GG, 54
AA, 469; AG or GG, 135

AA, 75; AG or GG, 17
AA, 25; AG or GG, 38
Unknown

AA, 89; AG, 16; GG, 3
AA, - AG, - GG, ~

AA, 167, AG, 96; GG, 29
AA, 29, AG, 9; GG, 1

AA, 24, AG, 5; GG, 1
AA, 59; AG, 14; GG, 1

AA, 6; AG, 5; GG, 1
AA, 7, AG, 8; GG, 2
AA, 13; AG, 13; GG, 3
CC, 100; CT, 55; 1T, 11
CC, 80; CT, 70; 17, &¢
GG, 83; GA, 16; AA, O
GG, 129; GA, 27, AA, OF
GG, 26; GA, 5; AA, 0
CC, 39; CG, 46; GG, 14
CC, 34, CG, 72; GG, 50!
CC, 11; CG, 16; GG, 4
CC,4; CG, 14, GG, 0
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Number of subjects
CC, 87, CG, 45; GG, 6

Result

Opioid effect
Postoperative
analgesia

Opioi

'Polymorphism
TIVS24+C691G

(cont.)

[80

No (analgesic requirement)

Some opioids

Kasai & Tkeda

6]

CC, 13, CGor GG, 16

0.04)

G-allele carriers > CC subjects (plasma ACTH response, p

No (cortisol response)

HPA axis activation

Naloxone

i

GG, 12; GA, 25; AA, 1

No (analgesic requirement)

Postoperative
analgesia

Some opioids

IVS3+G5953A

AA, 219; AG, 60; GG, 1

0.01)

Postoperative G-allele carriers > AA subjects (fentanyl requirement, p
analgesia

Fentanyl

IVS3+A8449G

AA, 116; AG, 21; GG, 1

No (analgesic requirement)

Postoperative
analgesia

Some opioids

AA, 152; AG or GG, 50

No (rate and time to relapse)

Alcoholic treatment
Alcoholic treatment
Cancer pain relief
Postoperative
analgesia

"The number of subjects combined the control and switcher groups.

Naltrexone
- ACTH: Adrenocorticotropic hormone; EC,

IVS3-A1188G

AA, 169; AG, 95; GG, 8
1T, 91, 7C, 55, CC, 107

No (nalmefene effects of treatment)

No (opioid switching)

Nalmefene
Morphine

f55]

TAA+TI371C

AA, 116, AG, 21; GG, 1

No (analgesic requirement)

Some opioids

TAA+A2109G

(g0}

. 50% effective concentration; ESWL: Extracorporeal shock wave lithotripsy; HPA: Hypothalamic-pituitary-adrenal; M6G: Morphine-6-glucuronide; MAP: Mean arterial

NV: Postoperative nausea or vomiting; YAS: Yisual analogue scale.

50

ure; PO

| pressure; PaCO,: CO, arterial press
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when they were conditioned for a long period of
time (two sessions per day for 4-5 days) {103.104].
SNPs in the OPRM]I gene might be expected
to affect the susceptibility to substance depen-
dence in humans. To date, numerous SNPs in
the OPRMI gene have been analyzed for their
involvement in the susceptibility to substance
dcpendence (SuppLementARY TABLE 2) [26-31,34,110~150].
In studies of substance dependence or related
traits, SNPs in exon 1 and intron 1 corre-
lated wich clinical traits with high frequency
(number of analyses with positive correlation/
total analyses: 0/7 [5" flanking region], 0/5
[5" UTR], 25/66 [exon 1], 26/47 [intron 1],
5/17 [intron 2], 0/1 [exon 3], 1G/37 {intron 3],
3/11 [3"-UTR])). In the European and Japanese
populations, a large LD block covers the region
from exon 1 to intron 1, indicating chat the
LD block covering exon 1 and intron 1 in the
OPRM] gene is critically involved in substance
dependence and related traits.

Among the SNPs that have been analyzed
with regard to substance dependence and
related clinical traits, numerous studies showed
that the A118G and IVS1+A21573G SNPs were
associated with alcohol dependence or related
traits. The G-allele frequency of the A118G
SNP in alcohol dependence is higher or tends
to be higher compared with nonalcoholic con-
trols (111-113.12124,125.130]. In contrast, some
studies showed lower G-allele frequencies of the
A118G SNP in alcohol dependence than non-
alcoholic controls (119,120,128}, These controver-
sial results in the A118G SNP for alcoholism
might result from the various MAFs in different
races/ethnicities, but this remains to be eluci-
dated. The minor allele (G) frequency of the
IVS+A21573G SNP in alcohol dependence was
higher than in nonalcoholic controls [26].

In the case of opioid dependence, many
studies have reported that the Al18G and
IVS81-T17286C SNPs were associated with opi-
oid dependence. Similar to alcohol dependence,
the G-allele frequency of the A118G SNP in
opioid dependence was higher than in con-
trols [114.133,137). The minor allele (C) frequency
of the TVS1-T'17286C SNP in heroin dependence
was higher than in controls [138].

The A118G and TAA+A5359G SNPs were
also associated with tobacco dependence. In
contrast to alcohol and opioid dependence,
abstinence rates in G-allele smokers were higher
than in AA smokers (139.141,142], and the number
of cigarettes smoked in G-allele female smok-
ers was smaller than in AA allele smokers {140,

suggesting that the G-allele of the A118G SNP

future science group




is protective against smoking. In smokers, the
minor allele (G) frequency of the TAA+A5359G
SNP was smaller than in conwol subjects [27].

In chese three types of substance dependence,
previous studies have reported no significant
association with the A118G SNP. A meta-
analysis of 22 case—control studies failed to
detect a significant association between A118G
and substance dependence (odds ratio = 1.01,
959% CI: 0.86-1.19) 11511. The case—control stud-
ies examined by this meta-analysis examined
dependence on several substances, including
alcohol and opioids. Therefore, this meta-ana-
lysis did not strictly include specific substances.
In another meta-analysis of case~control stud-
ies that examined the association between the
A118G SNP and opioid dependence, no signifi-
cant evidence was found for either dominant
(p = 0.810) or addicdive (p = 0.406) effects of
the A118G SNP on the risk for opioid depen-
dence {152]. The pooled odds ratios and 95% CI
derived from the eight European, six Asian, four
African, two Hispanic, and one Native American
samples were 1.20 (0.91-1.58), 0.93 (0.66-1.31),
0.99 (0.44-2.21), 2.60 {0.54-12.47) and 2.34
(0.68-8.03), respectively. The association with
opioid dependence was not significant for any
of these specific ancestral groups. However,
the meta-analysis was designed to maintain
statistical power greater than 97% for detect-
ing additive effects and greater than 70% for
detecting dominant or recessive effects with an
odds ratio as small as 2.0. Therefore, if the odds
ratio for the acrual effect of the A118G SNP
on the risk for opioid dependence was smaller
than 2.0, then the meta-analysis would not have
sufficient power for detecting the effects of the
A118G SNP, indicating that further analyses are
needed with specific ancestral samples.

Association of $NPs in the OPRM1
gene with other disorders

SNDPs in the OPRM]I gene have been investi-
gated for their involvement in various other
disorders (SurrpLementary Tasre 3) {33,153-170}. The
A118G SNP is the only variation that has been
associated with susceptibility to disorders and
related traits in numerous studies. Patients with
idiopathic absence epilepsy showed high G-allele
frequencies of the A118G SNP compared to con-
trol subjects (154.157]. The G-allele frequency in
patients with schizophrenia was also higher than
in control subjects (160]. By contrast, G-allele car-
riets, including normal subjects, with glucose
tolerance and patients with impaired fasting
glucose or Type 2 diabetes mellitus exhibited

Pharmacogenomics of the human p-opioid receptor

better glucose tolerance compared with AA
homozygotes (161]. Furthermore, G-allele carriers
in patients with painless diabetic foot ulcer were
higher than in patients with painful diabetic
foot ulcer f162). In addition, a positive associa-
tion was found between BMI and copy number
of G-allele of the A118G SNP, and the G-allele
frequency in the obesity groups was lower than
in control groups in the Uyghur population 33].
The obese controls showed a lower G-allele fre-
quency of the A118G SNP than patients with
binge eating disorder f1671. These results indicate
that the G-allele of the A118G SNP is a risk
allele for epilepsy and schizophrenia, but it is
protective for diabetes and obesity.

Effects of A118G SNP on MOP
expression & function

Some in vitro and in vive studies have reported
the effects of the A118G SNP on opioid func-
tions, including receptor binding and expres-
sion. One report found that the ligand-binding
affinities of B-endorphin, morphine and nal-
oxone for the MOP were not significantly dif-
ferent between wild-type and knockin mice
(Oprml A112G) 7). Mice have four puta-
tive N-glycosylation sites in the MOP, and the
number of these N-glycosylation sites is pur-
portedly reduced to three in Oprml Al12G
knockin mice. The human MOP has putatively
five N-glycosylation sites, and the number of
these N-glycosylation sites is reduced to four in
118G/G subjects. For this reason, the Oprml
A112G knockin mouse strain is not a suitable
model for analyzing the effects of the A118G
SNP in the human OPRM]I gene. The effects of
opioid antagonists have not been analyzed with
regard to differences berween G-allele and com-
mon allele homozygous carriers of the A118G
SNP in vitro.

The binding affinity of B-endorphin, but
not endomorphin-1, to the 118G variant of
the MOP was higher than the common allelic
form of the MOP in AV-12 cells [172]. No differ-
ences were observed, however, in morphine and
[D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin
(DAMGO) agonist binding between the
118G and common form of the MOP in COS
cells 1731, Similarly, in HEK cells, no differences
were observed in morphine, M6G, and B-endor-
phin agonist binding between the 118G and
common form of the MOP 174]. A subsequent
study, however, did not confirm these binding
affinity results 175). Kroslak ez al. reported that
the binding activity of morphine, DAMGO, and
methadone but not B-endorphin were lower in
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the 118G variant than in the common form
of the MOP in both AV-12 and HEK cells.
In vive, in the somatosensory region of homo-
and heterozygous carriers of the 118G variant,
the efficacy of DAMGO was lower compared
with homozygous carriers of the commeon allele,
whereas the number of DAMGO binding sites
was unaffected [176}. These discrepancies in the
binding affinities of MOP agonists remain to be
resolved. In heterozygous samples, the mRNA
from the common allele was 1.5-2.5-fold more
abundant than from the 118G variant allele i77).
A possible explanation for the reduced efficacy of
opioid antagonists in 118G allele carriers may be
the attenuation of MOP expression.

The expression of endogenous opioid pep-
tides, including preproenkephalin and prepro-
dynorphin, was reduced in numerous rcgiorxs
of heterozygous carriers of the 118G allele pi78
Alterations of endogenous opioid systems nught
underlie the enhanced susceptibility to alcohol
and opioid dependence in 118G allele carriers.

Conclusion & future perspective

We have reviewed many OPRAMI gene varia-
tions that have been identified and analyzed
for their associations with pain sensitivity, opi-
oid sensitivity and susceptibility to substance
dependence and other disorders. These stud-
ies revealed significant associations between

genetic variations, including the A118G SNP,
with opioid sensitivity and susceptibility to sub-
stance dependence and other disorders (Fieure2).
However, associations between variations in the
OPRM]1 gene were not found in every analysis.
Therefore, the pharmacogenetic significance
of variations in the OPRMI gene is still being
discussed. One explanation why statistical sig-
nificance was not found in some analyses is
that the MAFs of the variations are different
among different races and ethnicities and lead
to different effect sizes in the analyses. The
MAFs of the A118G SNP vary among differ-
ent races/ethnicities, which would be expected
w affect the results of association studies. To
further elucidate the genetic variability in the
OPRM]I gene that contributes to opioid efficacy
and susceptibility to substance dependence,
replication studies will be required in different
races/ethnicities with sufficient samples for each
effect size. In addition, although some func-
tional analyses of the A118G SNP have been
performed, the results of these studies are also
controversial similarly to those of association
studies. Molecular mechanisms underlying the
relationships between genetic variations in the
OPRM]I gene and MOP expression and func-
tion should be elucidated for underlying and
supporting the associations of these variations
with clinical traits.

Human OPBMi gene polymorphisms.

—

Pain ----- R R bR A A118G (G; risk or protective?)
Opioid effecis :
~ Analgesia ----=--~----{-- A118G (G; low)
— Side effect -----=----- - A118G (G; low)
= Alcoholic treatment ----1-- A118G (G; high)
- HPA axis activation ----1-- A118G (G; high)
Substance dependencies e AT o
— Aleoho] -=-r-ncmmomn e = AT18G (G; risk), IV81+A21573G (G; risk)
— Opioid --=~~=-~-~- ----t-- A118G (G; risk}, IVS1-T17286C (C; risk)
- Tobacco --------- i -- A118G (G; protective), TAA+A5359G (G; protective)
Susceptibility fo disorders ; :
- —Epilepsy-rm-anasami o -+ A118G (G; risk)
_ — Schizophrenia --------- -- A118G (G; risk)
- Diabetes ----=--n--- - - A118G (G; protective)

= Obesity “==---==---- --4-- A118G (G; protective)

™

N

Figure 2, SNPs in the OPRM/1 gene associated with disorders and clinical conditions.
Numerous SNPs in the human OPRM1 gene have been reported to be associated or not associated
“with pain sensitivity, opioid effects, drug dependence and susceptibility to other dlsorders Only the
“SNPs that have been reported to be associated with disorders and chmcal condit:ons in numerous

studies are listed for each disorder and clinical condmon

HPA: Hypothalamic-pituitary-adrenal.
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As written in this article, a great number
of genetic variations in the OPRM1 gene have
been analyzed for the opioid sensitivity, sus-
ceptibility to substance dependences and other
disorders. Technologies for genetic analyses
are developing remarkably in recent years and
therefore genetic studies will be carried out
more generally and inexpensively in the future.
The pharmacogenetic information of the
OPRM]I gene including the associations with
individual opioid sensitivity and susceptibility
to substance dependences will be accumulated
{(see PharmGKB (20s]), and these data will be

Pharmacogenomics of the human p-opioid receptor

absolutely essential for the establishment of per-
sonalized medicine for pain and drug abuse in
the fucure.
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SNPS Iﬁ the OPRM1 gene

¢ Qver 700 polymorphisms have been identified from exon 1 to exon 4 of the OPRM1 gene.

Numerous studies have shown assodiations between these polymorphisms and opioid effects, substance dependence and susceptibility
to other disorders, including epilepsy and schizophrenia,
‘ Association of OPRM1 SNPs with opioid sensitivity
_« The analgesic and side effects of opicid agonists may be lower in G-allele carriers of the A118G polymorphism (rs1799971) compared

with AA patients.

© The effects of opioid antagonists for alccholic treatment may be higher in G-allele carriers than in AA patients.

Assoctatlon of OPRM1 SNPs with susceptibility to substance dependence & other disorders

« The G-allele of the A118G polymorphism may be a risk allele for alcoholism, opioid dependence, epilepsy and schizophrenia, but it may
© also be a protective allele for tobacco dependence, diabetes and obesity.
'« The G-allele of the IVS1+A21573G polymorphism and C-allele of the IVS1-T17286C polymorphism may be risk alleles for alcohol and

opioid dependence, respectively.

By contrast, the G-allele of the TAA+AS5359G polymorphism may be a protective allele for tobacco dependence.
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GIRK channels are coupled to various G-protein-coupled
receptors, including dopamine D, and opioid receptors, and
play an important role in the inhibitory regulation of neuronal
excitahility (Kobayashi and Ikeda, 2006). Kobayashi et al
(1999) reported that GIRK channels in the brain and heart are
important targets for ethanol. Interestingly, cocaine self-
administration is reportedly abolished in mice lacking the
GIRK2 and GIRK3 channel subunits (Morgan et al, 2003).
These findings suggest that GIRK channel inhibition may re-
duce the preference for drugs of abuse, including alcohol.

The present study examined the influences of GIRK inhibi-
tion on abstinence and relapse risk in Japanese alcohol-
dependent outpatients. We hypothesized that patients who
are treated with pharmacotherapeutics that inhibit GIRK ex-
hibit improvements in abstinence and relapse risk compared
with patients who are not treated with such medications.
Additionally, we examined the influence of other medications,
such as antidepressant, antipsychotic, anxiolytic, and anti-
alcoholic, on abstinence and relapse risk.

METHODS

The participants of the present study were 68 alcohol-
dependent outpatients, from whom we received written in-
formed consent. The recruitment criteria were the following:
at least 20 years old, history of alcohol abuse, diagnosis of al-
cohol-dependent based on the Diagnostic and Statistical
Manual of Mental Disorders, 4th edition, oufpatient at a
Japanese mental hospital, and ability to understand Japanese.
All participants belonged to the National Center of Neurology
and Psychiatry Musashi Hospital. They twice answered a
questionnaire that measured their alcohol abstinence and re-
lapse risk. Participants who did not answer the follow-up
questionnaire within the first 60 days after the first question-
naire were excluded. Data from the remaining 44 partici-
pants (32 males and 12 females; mean age, 50.27 years) were
statistically analyzed. A correlation analysis was used for the
examination of independence between GIRK inhibition treat-
ment and the other treatments. A two-way mixed-design
analysis of variance (ANOVA) was used to investigate
whether GIRK inhibition increases abstinence and decreases
relapse risk compared with the other treatments.

For medical treatment as the independent variable, infor-

* KR8 13 JSNP Excellent Presentation Award for CINP2010(&F#)
EZELLBETHE.

mation regarding the type of GIRK inhibition treatment,
serotonin transporter blockade treatment (.., antidepressant
treatment), dopamine D receptor blockade treatment (i.e.,
antipsychotic treatment), anxiolytic treatment, and anti-
alcohelic drug treatment were coliected by the participants'
psychiatrists. The medications with the ability of inhibiting
GIRK were ifenprodil tartrate (Kobayashi et al, 2006a),
paroxetine (Kobayashi et al, 2006b), and haloperidol
(Kobayashi et al, 2000) in the present study. A total of 12 pa-
tients received GIRK inhibition treatment, and 32 patients
received non-GIRK inhibition treatment. Additionally,
paroxetine was categorized as both a GIRK inhibition treat-
ment and antidepressant treatment. The type and dose of the
medications regularly administered by the participants did
not change until their follow-up rating.

Alcohol abstinence and relapse risk were the dependent
variables. Alcohol abstinence was defined as “no consump-
tion of any alcohol after the first rating” and measured by
patients’ self-reports or judgments by their psychiatrists.
Relapse risk was measured using the Alcohol Relapse Risk
Scale (ARRS; Ogai et al, 2009), which was a three-point
Likert-type multidimensional scale, with 32 items and five
subscales: (1) stimulus-induced vulnerability, (2) emotionality
problems, (3) compulsivity for alcohol, (4) positive expec-
tancy for alcohol, and (5) lack of negative expectancy for alco-
hol.

RESULTS AND DISCUSSION

No significant correlations were found between GIRK inhi-
bition treatment and the other treatments, with the exception
of the antidepressant treatment. A significant correlation was
found between GIRK inhibition treatment and antidepressant

~ treatment (r=0.632, p<0.01), possibly because paroxetine

functions as both a GIRK inhibitor and serctonin transporter
blocker. These results suggest that the GIRK inhibition
treatment was independent of the other treatments, with the
exception of the antidepressant treatment.

With regard to alcohol abstinence, a nearly significant ef-
fect of the GIRK inhibition treatment was observed (Fig
=2.96, p<0.10), and a nearly significant difference was found
in the first abstinence rating between groups (fsz= — 1.88,
p<0.10). Fig. 1 shows that the transition of the percentage
of abstinence was different between the GIRK inhibition
treatment and non-GIRK inhibition treatments. The GIRK
inhibition treatment group tended to increase its percentage
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Fig. 1 Difference in the transition of the percentage of absti-
nence between GIRK inhibition treatment and non-GIRK inhibi-
tion treatment.

of abstinence, whereas the non-GIRK inhibition treatment
groups slightly decreased their percentages. Additionally,
the antidepressant treatment, antipsychotic treatment,
anxiolytic treatment, and anti-alcoholic drug treatment did
not have any significant effects on alcohol abstinence. These
results suggest that GIRK inhibition treatment promoted al-
cohol abstinence, and the other treatments did not have any
effect on abstinence. These results are consistent with pre-
vious research, in which the antidepressant fluvoxamine,
which does not inhibit GIRK but blocks the serotonin trans-
porter, did not inhibit methamphetamine preference in mice,
whereas the antidepressants fluoxetine and paroxetine, which
exhibit both functions, inhibited preference (Takamatsu et al,
2006, 2011).

With regard to relapse risk, a significant interaction was
found between GIRK inhibition treatment and the “lack of
negative expectancy for alcohol drinking” subscale (Fiw
=4.84, p<0.05). Fig. 2 shows that the transition of the lack
of negative expectancy was different between GIRK inhibi-
tion treatment and the non-GIRK inhibition treatments. The
GIRK inhibition treatment group tended to decrease its lack
of negative expectancy score, whereas the non-GIRK inhibi-
tion treatment groups appeared to increase their scores.
Additionally, no significant difference was found in the first
score of that subscale between groups (f2=1.53, #.5.). These
results suggest that the GIRK inhibition treatment group be-
came more attentive to the negative influence of alcohol
drinking, whereas the non-GIRK inhibition treatment group
became gradually less attentive to that influence. No signifi-
cant interactions were found with the other ARRS subscales.

The present study has some limitations. First, the medica-
tion schedule was not well controlled, and the patient data
were analyzed retrospectively. Therefore, factors other than
GIRK inhibition might have influenced the outcome as con-
founding variables. Second, the quality of each group, with
the exception of the independent variable, could not be as-
sured without using a random assignment procedure. Third,
ifenprodil, paroxetine, and haloperidol were combined as a
“GIRK inhibition treatment” category. Fourth, the sample
size was relatively low. A sample of 12 GIRK inhibition
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Fig. 2 Difference in the transition of the lack of negative ex-
pectancy between GIRK inhibition treatment and non-GIRK in-
hibition treatment.

treatment participants may have been too small to sufficiently
support the ANOVA. More well controlled medical treat-
ments and larger sample sizes may be necessary to confirm
the present results.

In summary, the results of the present study indicated that
GIRK inhibition treatment might improve alcohol abstinence
and negative expectancy for alcohol, supporting the hypothe-
sis that GIRK channel inhibition may reduce the preference
for drugs of abuse, including alcohol.
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The inducible cyclic adenosine monophosphate (cAMP)
early repressor (ICER) is the collective name for a group of
proteins produced from the cAMP response element modula-
tor (CREMYICER gene. Transcribed from the P2 internal
promoter located in an intron of the CREM gene, ICER only
contains two DNA binding domains (DBD I and DBD 1I) and
lacks the activation and kinase-inducible domains (Molina et
al, 1993). Consequently, ICER functions as an endogenous
transcription repressor of several cAMP response element
(CRE)-containing genes (Jaworski et al, 2003; Molina et al,
1993; Tinti et al, 1996). The P2 promoter of the ICER gene
contains four CRE-like cAMP auvtoregulatory elements
(CAREs). These CAREs are strongly inducible and recog-
nized by a variety of CRE-binding proteins, including CRERB.
The phosphorylated CRE-binding protein (CREB) binds to
CAREs in the P2 promoter and can induce transcription of
the ICER gene. The increased ICER competes with CREB
in binding with the CRE sequence, blocking transcription
from CRE-containing promoters, including ICER’s own pro-
moter, and functioning as a potent endogenous CREB antago-
nist (Molina et al, 1993).

Alternative splicing of the ICER transcripts results in four
ICER isoforms: ICER I, ICER Iy, ICER II, and ICER Ily.
ICER I mRNA contains DBD I and DBD I, but DBD II is ab-
sent in the ICER I protein because a stop codon exists at the
end of DBD 1. The ICER H isoform contains only DBD IL
ICER Iy and ICER lly are characterized by a deficiency of
exon y from ICER I and ICER I, respectively (Mioduszewska
et al, 2003).

ICER is expressed at low levels in the central nervous sys-
tem, with the exception of neurcendocrine structures.
However, a variety of physiological and non-physiological
stimuli can dramatically upregulate ICER expression (for re-
view, see Borlikova and Endo, 2009). Amphetamine injection
increases ICER mRNA expression threefold in the striatum
(Green et al, 2006), suggesting that [CER may participate in
the mechanisms that underlie the effects of drugs of abuse.

Kojima et al (2008) generated two types of ICER mutant
mice—ICER knockout mice and ICER-overexpressing mice
—and showed that both ICER knockout mice and ICER-
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overexpressing mice displayed normal locomotor activity,
sensory and motor functions, and emotional responses.
However, long-term conditioned fear memory was attenuated

‘in ICER-overexpressing mice and enhanced in ICER knock-

out mice, indicating the negative role of ICER in regulating
long-term fear memory and epileptogenesis kindling. The
present study investigated the role of ICER in
methamphetamine (METH)-induced locomotor sensitization.
We also screened gene expression profiles in METH-treated
ICER I-overexpressing mice and their wildtype littermates
using DNA microarrays purchased from Illumina.

ICER and METH-induced locomotor sensitization

Locomotor sensitization is characterized by the progres-
sive enhancement of locomotor activity after repeated
psychostimulant exposure (Pierce and Kalivas, 1997). The
augmentation of this behavioral response can be maintained
for several months after cessation of drug treatment
(Robinson and Becker, 1986). This process closely resem-
bles the course of relapse in METH-induced psychosis (Sato
et al, 1983). In the present study, mice were first habituated
to the apparatus for 180 min and then injected with METH (1
mg/kg, i.p.). Locomotor activity was then measured for 60
min after the injection. The procedure was repeated seven
times, once every other day from Day 1 to Day 13. Aftera 7
day drug-free period, locomotor activity was measured again
after METH injection (1 mg/kg, i.p.) on Day 20.

Methamphetamine-induced locomotor sensitization was
significantly decreased in ICER [l-overexpressing mice.
Although METH-induced locomotor sensitization was not
significantly altered in ICER knockout mice, they showed a
minimal enhancement of METH-induced locomotor sensitiza-
tion compared with wildtype mice. These data indicate the
inhibitory role of ICER in METH-induced locomotor sensiti-
zation.

Altered gene expression in ICER I-overexpressing mice

To identify the downstream components of ICER and re-
veal a possible mechanism of the inhibitory role of ICER in
METH-induced locomotor sensitization, we screened the
gene expression profiles of ICER I-overexpressing mice and
their wildtype littermates using DNA microarrays purchased
from IHlumina. Mice were decapitated, and the striatum



