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Dementia is a serious loss of cognitive ability in
a previously unimpaired person beyond what might
be expected from normal aging. Dementia that
begins gradually and worsens progressively over
several years is usually caused by neurodegenera-
tive disease, that is, by conditions affecting only or
primarily the neurons of the brain and causing
gradual but irreversible loss of function of these
cells. Worldwide increases in the number of people
with dementia, the highest proportion of whom are
affected by Alzheimer’s disease (AD), have made
its early diagnosis a major research and clinical
priority. The cause of AD is unknown, but typical
changes in the brain are neuronal loss, numerous
globs of sticky proteins (B-amyloid [AB] plaques)
in the spaces between neurons, a tangled bundle
of fibrils within neurons (neurofibrillary tangles).
Although it is still unclear what the relationship is
between amyloid pathology and neuronal degen-
eration, progressive neuronal loss, and subse-
quent atrophy of various cortical gray matter
structures, the most prominent hypothesis' for
the cause of AD remains the amyloid cascade
hypothesis, which holds that the Ap peptide is the
key to the initiation and progression of the disease.
Pathologic studies are insufficient to validate this
theory, because they are always inevitably cross-
sectional and cannot determine how key evenis
are temporally related to each other. During the
past several years, amyloid imaging has estab-
lished itself alongside magnetic resonance (MR)

imaging and fluorodeoxyglucose (FDG)-positron
emission tomography (PET) as a surrogate marker
for the investigation of brain aging and dementia.
Functional neuroimaging, such as FDG-PET and
brain perfusion single-photon emission computed
tomography (SPECT), has been widely used for
imaging biomarkers of AD. Recent advances in
instruments have facilitated investigations of func-
tional alterations in fine structures of not only
cortical but also subcortical areas with high spatial
resolution. Metabolic and perfusion reductions in
the parietotemporal association cortex are recog-
nized as a diagnostic pattern for AD. Outstanding
progress in the diagnostic accuracy of these
modalities has been achieved using statistical
analysis on a voxel-by-voxel basis after anatomic
standardization of individual scans to a standard-
ized - brain . volume template instead of visual
inspection or a volume-of-interest technique. In
a very early stage of AD, this statistical approach
revealed hypometabolism or hypoperfusion in the
posterior cingulate cortex and precuneus. In
some countries where FDG-PET has not yet
been accepted for reimbursement for the detec-
tion of dementia in the health insurance system,
more widely available brain perfusion SPECT has
been used for the imaging diagnosis of AD. FDG-
PET is superior to SPECT in diagnosing early AD
because of its higher sensitivity and higher spatial
resolution, and FDG-PET offers many advantages
for detecting abnormalities in the AD brain. SPECT
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offers the advantages of lower cost and ease of
access, which could lead to a large increase in
the number of cases studied using this technique.
Although FDG-PET shows more robust separation
of patients with AD from healthy volunteers than
SPECT, good correspondence of changes in the
parietotemporal and posterior cingulate cortices
and precuneus in mild to moderate AD is observed
using voxel-based statistical image analysis be-
tween FDG-PET and SPECT.

Amyloid imaging allows for more rigorous quan-
tification of the distribution and burden of amyloid,
and enables direct comparison of these measures
with simultaneously derived cognitive metrics in
conirast to the significant delay between behav-
ioral assessment and autopsy often seen in post-
mortem studies.

Among several compounds that have been devel-
oped for the imaging of amyloid, N-methyl-[''C]2-
(4 -methyl-aminophenyl)-6-hydroxybezothiazole or
simply Pittsburgh compound-B (PiB)? is a derivative
of the amyloid-binding dye thioflavin T and the most
extensively validated tracer. It binds to aggregated,
fibrillar AB deposits, such as those found in the
cerebral cortex and striatum, but not to the amor-
phous AB deposits, such as those that predominate
in the cerebellum. The first PiB-PET study in hu-
mans® was performed in patients with mild AD, in
whom the uptake pattern was consistent with AB
plague deposition described in postmortem studies
of AD brains. Postmortem studies of patients who
showed increased PiB deposition during life
showed high correlations between in vivo PiB accu-
mulation and in vitro measures of AB pathology.*®
This article reviews the rapidly expanding literature
applying PiB-PET to study cognitively normal volun-
teers and patients with mild cognitive impairment
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(MCI) and AD and summarizes the contribution of
PiB-PET in understanding the association between
amyloid plagues, aging, and dementia.

PiB-PET IMAGE ANALYSIS

Although visual reading of PiB images seems more
accurate than that of FDG for identification of AD,
better accuracy is obtained using a quantitative
approach without requiring the expertise of
readers.® PiB binding to AB plaque in the gray
matter is specific and reversible, whereas PIB
binding in the white matter is nonspecific and non-
saturable.” The relatively slow kinetics of PiB
makes the specific PiB uptake in the gray matter
prominent at later time points, which may impede
the quantification of AB deposits because of the
short half-life of ''C-labeled tracer. To overcome
this drawback in quantification, three-dimensional
dynamic sampling of emission data for the whole
brain is desirable, lasting 70 to 90 minutes after
tracer injection. Application of the linear models
developed by Logan® to these sampling data has
become a standard calculation method for robust
quantification in PiB studies (Fig. 1). Logan analysis
is used to calculate the distribution volume of ligand
tracers that have reversible binding kinetics. The
choice of cerebellar cortex as a reference region
that has no specific PiB deposition enables calcula-
tion of a distribution volume ratio (DVR) without
arterial plasma data sampling as a slope of a graph-
ical plot.° The DVR equals binding potential + 1.
The pons can also be chosen as a reference
area.'® On the other hand, the standardized uptake
value ratio (SUVR) has been proposed as a
more feasible semiquantitative analysis than DVR
(Fig. 2)."" SUVR is calculated by computing the

;ZLagan Fééot,

Creference integral/Cg,

Fig. 1. Typical time-activity curves from dynamic PiB-PET studies from a patient with AD (A) and graphical analysis
using a Logan plot (B). Using cerebellar cortex as input, the DVR in the posterior cingulate cortex is determined as
a slope of a graphical plot without arterial plasma data sampling.
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Fig. 2. Comparison of SUVR and DVR images. DVR
provides better image quality than SUVR. A longer
period of approximately 70 minutes is required for
data acquisition for DVR compared with 20 minutes
for SUVR.

region/cerebellum ratio at later time points. The
optimal time range was studied by McNamee and
colleagues’?; their suggestion was to use a 40- to
60-minute period in studies limited by low injected
dose, or a 50- to 70-minute period because of
greater measurement stability, especially for longi-
tudinal multisite studies (Fig. 3). The advantages of
the SUVR approach are large effect sizes for AD
and control group differences, and the possibility
of obtaining the required data from a single short
scan of 20 minutes. The disadvantages of this
approach are the lower test-retest variability
compared with the DVR approach and the potential
for time-varying outcomes.’ It also has the in-
herent bias of a tendency to overestimate PiB
deposition.’? The use of a standardized volume-
of-interest template with spatially normalized PiB
images to the same standardized space has been
proposed as an automated voxel-based method
for PiB deposition analysis.®

Regions that share a border with lower-binding
or higher-binding structures are susceptible to

partial volume effects because of a blurring
caused by the low resolution of PET. Because
gray matter, white matter, and cerebrospinal fluid
(CSF) have different PiB uptake patterns, all gray
matter boarders undergo partial volume effects.
Atrophy of a region that increases the amount of
neighboring CSF accentuates these partial volume
effects. Applying partial volume correction to PiB-
PET has been expected to increase the PiB depo-
sition in atrophied gray matter and lead to more
accurate quantification.”®"* Partial volume correc-
tion is usually performed using segmented gray
matter from three-dimensional MR imaging core-
gistered to PiB images.

PiB-PET IN NORMAL CONTROLS

Several autopsy studies have reported that signif-
icant Ap deposits can be found post mortem in
more than 30% of cognitively normal older individ-
uals and that the extent of AR pathology may be
indistinguishable from that found in AD.'®76 |n
accordance with these autopsy results, several
PiB-PET studies have consistently detected
increased PiB binding in a subset of normal older
volunteers (Fig. 4), with the proportion of PiB-
positive cases ranging from 10% to 30% depend-
ing on the age of the cohort and the threshold for
defining PiB positivity.> 141720 |n contrast, in-
creased binding has not been reported in young
normal controls. Several studies suggest preferen-
tial PiB deposition in the prefrontal cortex and
posterior cingulate/precuneus similar to the
regions of earliest AB deposition noted in autopsy
studies.?" Some older controls show a distribution
pattern of PiB binding that is essentially indistin-
guishable from that seen in AD. The high rate of
PiB positivity in normal controls suggests that
a positive PiB scan cannot be interpreted without
a careful clinical evaluation and emphasizes that
amyloid imaging alone must not serve as a surro-
gate for a clinical diagnosis of AD.

The most important risk factors for AD are age,
family history, and heredity. The relationship
between these risk factors and PiB deposition
has been investigated using a voxel-based statis-
tical analysis. Advancing age increases PiB-
positive frequency in normal controls: 18% in
those aged 60 to 69 years, rising to 65% in those
older than 80 years.?? The prevalence of AB depo-
sition, as detected post mortem in cognitively
normal subjects, exponentially increases with
advancing age. The prevalence of PiB-positive
normal controls increases with advancing age in
a similar exponential fashion but precedes the
postmortem study by 10 to 15 years. AB deposi-
tion seems almost inevitable with advancing age.
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Normal Control ‘

0-25min 2

Fig. 3. SUVR images for the periods 0 to 25 minutes, 25 to 50 minutes, and 50 to 70 minutes for a control subject
and a patient with AD. Note temporal changes in PiB distribution. The main factors determining PiB distribution
changed from perfusion in an early phase to deposition in AB in a late phase. A control individual shows no accu-
mulation in cerebral cortex but nonspecific accumulation in white matter in the late phase (PiB-negative). A
patient with AD shows prominent PiB accumulation in the entire cerebral cortex except for occipital cortex
and striatum in the late phase (PiB-positive). The cerebellar cortex shows very low accumulation in the late phase.

A recent study shows that normal controls with
a parent affected by late-onset AD have increased
PiB deposition in brain regions typically affected in
patients with clinical AD compared with normal
controls with no family history. In addition, signifi-
cant parent-of-origin effects on AP deposition
were found.”®> Normal controls with mothers
affected by late-onset AD show increased and
more widespread PiB deposition than those with
affected fathers. Another recent study showed
that PiB deposition in normal controls correlates
with apolipoprotein E (APOE) 4 gene dose, which
is the best known genetic risk factor for AD.** The
APOE4 allele increases the risk of the disease by 3
times in heterozygous individuals and 15 times in
homozygotes. Emerging evidence suggests there
may be other risk factors for AD. Epidemiologic
studies suggest that cardiovascular risk factors
such as increased blood pressure in midlife are
associated with increased risk of AD in late life.
Langbaum and colleagues®” revealed that systolic
blood pressure and pulse pressure were both
positively correlated with PiB depositions. These
preliminary findings provide additional evidence
that higher BP, which is likely to reflect arterial stiff-
ness during late midlife, may be associated with
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increased risk of presymptomatic AD. There is
some evidence®® that only angiotensin receptor
blockers and angiotensin-converting enzyme
inhibitors, and not other blood-pressure-lowering
medications, are associated with reduced risk of
AD. Antihypertensive treatments may protect
against AD neuropathology, potentially by re-
ducing vascular and arterial stiffness, thereby
increasing blood flow to the brain and aiding in
the removal of AB.

A major unresolved issue in AD research is
whether cognitively normal people with amyloid
deposition are on a trajectory toward AD, or
whether the disease is benign in these individuals.
Cross-sectional studies evaluating the influence of
PiB binding on brain structure and cognition in older
control individuals have yielded seemingly conflict-
ing results. When individuals are dichotomized into
PiB-positive and PiB-negative groups, most
studies®'®%27 have not found significant differ-
ences in cognitive performance, with the exception
of a study'” that found lower episodic memory
scores in the PiB-positive group. In contrast, most
studies that evaluated PiB deposition as a contin-
uous variable have found significant negative corre-
lations between PiB uptake and episodic memory
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Fig. 4. Fluorodeoxyglucose and PiB-PET images in normal controls, MCl, patients without AD, and patients with
AD. Both PiB-negative and PiB-positive findings are shown in normal controls and patients with MCI. PiB is useful

for differentiating patients with and without AD.

scores. Mormino and colleagues® revealed signif-
icant correlations between PiB deposition and
episodic memory, PiB deposition and hippocampal
volume, as well as hippocampal volume and
episodic memory. This observation suggests that
declining episodic memory in older individuals

may be caused by AB-induced hippocampal
atrophy. Becker and colleagues®® found the signif-
icant Ap-associated cortical thinning particularly in
parietal and posterior cingulate regions extending
into the precuneus in a pattern consistent with early
AD among nondemented older individuals. This
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finding suggests that AB-associated neurodegen-
eration is manifest as cortical thinning in regions
vulnerable to early AP deposition. Oh and

colleagues® found that gray matter volume in the
left inferior frontal cortex was negatively associated

with amyloid deposition across all participants of |

nondemented older controls, whereas reduced
gray matter volume was shown in the posterior
cingulate among older controls with high amyloid
deposition. This reduction of gray matter volume
in the left inferior frontal cortex was associated
with poorer working memory performance. The
pattern of AB deposition as detected by PiB-PET
shows substantial spatial overlap with the default
mode network comprising a group of brain regions
that typically deactivate during externally driven
cognitive tasks.®° Functional connectivity in the
default mode network is altered with increasing
levels of PiB uptake. These findings highlight struc-
tural and cognitive changes in association with the
level of AB deposition in cognitively intact normal
elderly individuals.

Longitudinal studies evaluating the relationship
between PiB deposition and cognitive decline or
brain atrophy have also yielded conflicting results.
Dricoll and colleagues®' examined associations
between PiB deposition and brain volume changes
in the preceding years in 57 nondemented individ-
uals. Despite significant longitudinal decline in the
volumes of all the regions investigated, no associa-
tions were detected between PiB deposition and
regional brain volume decline trajectories in the
preceding year, nor did the regional volume trajec-

tories differ between those with highest and lowest

AB burden. These findings suggest that AB load
does not seem to affect brain volume changes in
individuals without dementia. These investigators’
observations are in agreement with existing reports
on PiB deposition and brain volume loss. Jack and
colleagues® investigated MR imaging and PiB
studies at 2 time points, approximately 1 year apart,
to gain insight into the sequence of pathologic
events in AD. These investigators reported a disso-
ciation between the rate of amyloid deposition and
the rate of neurodegeneration late in life over 1 year
of follow-up. Amyloid deposition proceeded at
a constant low rate irrespective of clinical status,
whereas neurodegeneration accelerated in associ-
ation with clinical symptoms. These findings
suggest that in nondemented elderly individuals,
amyloid accumulation does not affect the rate of
brain atrophy beyond that already observed as
a part of the normal aging process. On the contrary,
Villemagne and colleagues'* reported that normal
controls who progressed to MCl or AD over 38
months had significantly lower memory scores,
higher baseline, and greater increase of PiB
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_deposition than those normal controls who did

not progress. Sojkova and colleagues®® also found
that longitudinal increases in Ap deposition varied
among individuals. This variability in the annual
rate of change was affected by PiB deposition at
the initial PET study, and increases were greater

- in nondemented older adults with an increased AB

level compared with a minimal AB level at the initial
evaluation. Furthermore a longitudinal cohort
study®* was performed to determine whether pre-
clinical AD, as detected by PiB-PET in cognitively
normal older adulls, is associated with a risk of
symptomatic AD. Twenty-three of 159 participants
with a clinical dementia rating (CDR) of 0 pro-
gressed to CDR 0.5 at follow-up assessment.
More increased PiB deposition highly predicted
progression to CDR 0.5, with a hazard ratio of
4.85. These findings suggest that PiB deposition
is not benign, because it is associated with
progression to symptomatic AD.

PiB-PET IN MCI

Amyloid imaging can potentially identify patients
with MCI who already show AR aggregation and
are thus in the early clinical phase of AD, and sepa-
rate them from patients with alternative causes for
their cognitive impairment. Dividing patients with
MCI into more biologically homogeneous groups
may also facilitate their inclusion in clinical trials
for AD-specific therapies, allowing these treat-
ments to be tested in patients earlier in the disease
course. Perhaps the correct use of antiamyloid
monotherapies will be as a prophylactic given
long before the onset of symptoms in people at
risk of AD.%5

- Numerous studies in MCI have reported that PiB
uptake is intermediate between AD and controls
(see Fig. 4). However, PiB binding levels in MCI
in most studies are bimodal, with most cases
showing an AD-like uptake level, a few showing
low control-level binding, and a few falling in the
intermediate range. Overall, 52% to 87% of
patients with MCI show increased PiB binding,
depending on the criteria used to diagnose MCI
and the threshold used to define PiB posi-
tivity,11:14.17,18,20,27,36-38 " |ndjviduals meeting the
criteria for amnestic MCl were more likely 1o be
PiB positive than patients with nonamnestic MCI.
Villemagner and colleagues'* reported that pro-
gression of MCI to AD occurred in 67% of cases
of MCI with high PiB deposition versus 5% of
those with low PiB. Forsberg and colleagues®’ re-
ported that 33% (7 of 21) of patients with MCI with
increased PiB binding later at clinical follow-up
converted to AD. lrrespective of MCI subtypes,
longitudinal follow-ups reported that 5 of 13
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Fig. 5. Typical FDG and PiB-PET findings for AD in a 72-year-old male patient. His minimental stateékér:nihation
score was 18. Note high PiB deposition in the prefrontal cortex and posterior cingulate/precuneus, whereas FDG-
PET showed decreased glucose metabolism in posterior cingulate/precuneus and bilateral parietal cortex.

amyloid-positive patients, but 0 of 10 amyloid-
negative patients, converted to clinical AD.%®

PiB-PET IN AD

The initial objective of amyloid imaging with PiB-
PET focused on detecting AB amyloidosis in
patients clinically diagnosed with AD. As expected,
most patients with AD show increased PiB deposi-
tion (Fig. 5).%%918.27.3% Using clinical diagnosis as
a gold standard, the sensitivity of PiB-PET for AD
has been reported as 80% to 100%, with most
studies reporting sensitivities of 90% or greater.
The significance of a negative PiB scan in a patient
clinically diagnosed with AD is not yet clear
because of the lack of postmortem data. The
proportion of PiB-negative scans in AD is similar
to the fraction of patients clinically diagnosed with
AD at dementia referral centers who are subse-
quently found to have an alternative pathology at
autopsy,*® suggesting that many PiB-negative
scans in AD may represent a true-negative. A
pathology-confirmed false-negative PiB result has
been reported,”’ involving a patient with Ap pla-
ques on frontal brain biopsy who showed low PiB
binding when studied with PET 20 months later.
Cairns and colleagues*? reported a PiB-negative
patient with reduced AB4, and an increased level
of tau in the CSF whose postmortem biochemical
analysis met the neuropathologic criteria of AD.

An inverse relation between PiB deposition and
CSF A4, has been reported.*® However, low levels
of CSF AB4» can occur in the absence of increased
PiB deposition,** possibly because PiB may fail to
bind to certain human amyloid confirmations,
such as diffuse nonfibrillar plague or concomitant
ApB oligomer formation. Therefore, although prelim-
inary studies based on clinical diagnosis are
encouraging, the precise sensitivity and specificity
of PiB-PET for AD pathology need to be determined
by further postmortem studies.

Patients with familial AD caused by presenilin-1
mutations show an atypical pattern of PiB deposi-
tion, with high uptake in the striatum and low
cortical uptake.*® Striatal binding is found in
asymptomatic presenilin-1 mutation carriers, sug-
gesting that striatal amyloid deposition may be an
early feature of familial AD.

SUMMARY

PiB-PET shows potential for distinguishing AD from
frontotemporal dementia*® and AD from healthy
controls, although specificity for the latter requires
further examination. Amyloid imaging in healthy
controls may detect those at high risk of future
AD, identifying them as candidates for early preven-
tive measures if and when they become available. A
promising '8F-labeled imaging marker*” is currently
available, which if successful will allow broader

163

63




Matsuda & Imabayashi

application of amyloid imaging in clinical practice
and research. The development of in vivo bio-
markers for other critical elements of AD pathogen-
esis such as soluble A and tau would further inform
our understanding of the disease and assist in
developing and testing disease-modifying thera-
pies for AD.48
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