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Fig. 3. Effect of SEB on expression of (A) Ku70, (B) Cu,Zn-superoxide dismutase (SOD), and (C) Mn-SOD. RNA was isolated from muscle biopsies excised before and 24 h after SEB.
Quantitative RT-PCR was carried out as described under Materials and methods. YS, young sedentary; YSSE, young sedentary after a single bout of exercise; YA, young active; YASE,
young active after a single bout of exercise; 0S, old sedentary; OSSE, old sedentary after a single bout of exercise; OA, old active; and OASE, old active after a single bout of exercise.

Values are means =+ SE for six subjects per group. *p<0.05, *p<0.01.

preexercise levels in physically active individuals, both OA and YA, its
level in DNA remained high in sedentary young and old subjects after
a 24-h recovery period (Fig. 1A). For example, 8-0xo0G levels were
approximately four times higher in untrained older (Fig. 1A)
compared to younger individuals without SEB (Fig. 1A). Importantly,
there was no change in genomic 8-0xoG levels in muscle biopsies of
OA individuals after SEB (Fig. 1A).

The subphysiological level of genomic 8-0xoG in physically active
subjects suggested an efficient repair of DNA. We observed that 0GG1
levels did not significantly change in younger subjects, but they
increased in the older subjects in response to SEB (Fig. 1B). In contrast,
Ac-0OGG1 levels were significantly increased in younger individuals,
whereas in the older subjects no significant change was observed in
response to SEB. Ac-OGG1 level was approximately threefold higher
in active compared to older, sedentary individuals (Figs. 1E and C).
SEB did not change Ac-APE1 (Fig. 2A), which was similar to APE1
levels (data not shown), suggesting that neither Ac-APE1 nor APE1 is
limiting in the repair of 8-0x0G.

In response to SEB, the expression of p300/CBP increased
approximately fivefold in the younger subjects, but unexpectedly, it
significantly decreased in older subjects (Fig. 3A). If indeed p300/CBP
is the acetyltransferase in muscle, these results are in line with the
levels of Ac-OGG1 (Figs. 1C and E). In physically active subjects SEB
did not significantly alter p300/CBP levels (Fig. 2B). Expression of the
deacetylase SIRT1 showed a significant increase only in younger
sedentary subjects in response to SEB (Fig. 2C). The expression of
SIRT3, which has no deacetylase activity, was the highest in muscle
biopsies of active, younger subjects (Fig. 2D), and its expression did
change upon SEB (Fig. 2D). SIRT6 expression (Fig. 2E), along with
Ku70 (Fig. 3A), decreased in both young and old muscles after SEB.
Together these data suggest that a physically active lifestyle induces
an adaptive response by generating mild oxidative stress and prevents
the age-associated increase in genomic 8-0x0G levels possibly due to
the age-independent increase in OGG1's acetylation.

Discussion

Age-related and physical exercise-associated changes in DNA
damage levels in skeletal muscle of experimental animals have been
reported previously [13,14,48]. This study analyzed levels of 8-0x0G
in DNA and the abundance of rate-limiting BER enzymes in human
muscle biopsies before and after a single exercise bout. We also
examined expression of acetyltransferases and deacetylases linked to
DNA repair pathways and antioxidant genes that could reflect on
cellular redox conditions. We show that the genomic 8-0xoG level is
lastingly elevated in sedentary young and old subjects, but it returned
rapidly to preexercise levels in physically active individuals indepen-

dent of age upon a single exercise bout. The 8-0xoG level in DNA
inversely correlated with the abundance of Ac-OGG1, but not with
total OGG1, APE1, or Ac-APE1. Importantly, our data also demonstrate
a physical activity-dependent increase in the acetylated forms of
OGG1 in human skeletal muscle. Accordingly, it is possible that an
exercise-induced acetylation pathway would enhance OGG1 activity,
not only in muscles, but in other tissues, and thereby exercise may
decrease the incidence of various pathological conditions, such as
inflammation, that have been linked to carcinogenesis, cardiovascular
diseases, strokes, or Alzheimer disease.

8-0x0G is arguably one of the important forms of DNA base damage
induced by ROS, and it has been proposed to play a role in the aging
process and is also linked to age-associated diseases [1-3,5]. This
hypothesis is consistent with the severalfold increase in 8-0xoG (and
possibly of other oxidized bases) content in nuclear and mtDNA from
aged tissues [1-3,5]. A single bout of exercise has been shown to cause
mild oxidative stress [32,49,50], and thus we applied a SEB and
determined cellular oxidative states, changes in 8-o0xoG levels, and
abundance of selected repair enzymes. Because of a limited amount of
muscle biopsies, we used quantitative fluorescence analysis [36,38,41]
to assess 8-0xoG levels, as the quantity of DNA isolated did not allow us
to use HPLC with electrochemical detection [7,8], which would provide a
better estimates. By using a highly specific, anti-8-oxodG-specific
antibody, we observed significantly higher levels of genomic 8-0xoG
in human skeletal muscle of sedentary, older individuals compared to
the levels in younger subjects, in line with previous observations
[13,14,43,44]. In response to SEB-induced ROS, 8-0xoG levels increased
further and were not repaired, even after a 24-h period, in sedentary
individuals, independent of age. In contrast, 8-0xoG levels returned to
preexercise levels in physically active individuals, a finding that may
mean regular physical activity could prevent accumulation and/or
increase repair efficacy of 8-0xoG and possibly other bases in DNA
human skeletal muscle.

The observed increase in 8-0xoG levels in sedentary individuals
points to a possible age-dependent decrease in levels of OGG1. In
contrast, our data show a significantly increased OGG1 level in elderly
subjects and, interestingly, SEB furthered its level. Unexpectedly, the
8-0x0G level was also enhanced. These paradoxical observations
suggested to us that 0GG1 may have a low DNA glycosylase/AP lyase
activity or that BER activities are significantly lower in aged human
muscle. Indeed, a recent publication documents decreased overall BER
activities in both the nuclei and the mitochondrial extracts from
skeletal muscles, compared to those from liver or kidneys of the same
mice [51]. Although decreased overall BER activity could be a
possibility, our data also imply that a lack of or delayed repair of
8-0x0G could be linked to a deficiency in posttranslationally modified
0GG1 in aged muscles. Indeed, OGG1's glycosylase/AP-lyase activity is
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modulated via acetylation, phosphorylation, and redox [23,25]. For
example, OGG1 is acetylated on lysines 338 and 341 and has an
approximately 10-fold increase in its 8-oxoG excision activity
compared to unacetylated OGG1 [23]. To explore this possibility we
show that approximately one-fifth of OGG1 is in an acetylated form in
younger individuals and, importantly, Ac-OGG1 was nearly undetect-
able in the sedentary elderly. This observation is a feasible possibility,
as 8-oxoG level in DNA was inversely correlated with levels of
Ac-0GG1 in muscles of young and old individuals.

Repair of 8-0xoG is initiated by OGG1 during the BER pathway,
followed by APE1-mediated cleavage of the DNA strand at the abasic
site. After removal of this 3/-blocking group, the single-nucleotide gap
is filled in by a DNA polymerase, and DNA ligase seals the nick to
restore DNA integrity [17]. It has also been shown that OGG1 remains
tightly bound to its AP product after base excision, and APE1 prevents
its reassociation with its product, thus enhancing OGG1 turnover [45].
Accordingly, APE1 is considered to be rate-limiting in the BER of 8-
oxoG [17,39]. However, neither APE1 nor Ac-APE1 showed significant
changes with aging and/or physical activity. Therefore, it may be
proposed that the Ac-OGG1 is limiting in the repair of 8-0x0G lesions
in human skeletal muscle during BER processes. As modification by
phosphorylation substantially alters the incision activity of only 0GG1
[24], our earlier observations of an exercise-induced increase in 0GG1
activity in skeletal muscles of human and experimental animals
[14,43] may be attributed to Ac-OGG1.

Acetylation levels of OGG1 and APE1 are dependent on the level/
activity of the acetyltransferase p300/CBP [23,25] and possibly on a
deacetylase(s) such as some of the sirtuins [52]. Results from our
studies show that p300/CBP's expression was increased in young
individuals by SEB, independent of whether they were sedentary or
active. However, we were not able show such consistency in the
elderly. SIRT1, a NAD-dependent histone deacetylase [53], has been
shown to interact with p300/CBP to regulate its acetyltransferase
activity {52]. SIRT1 levels increased in both young and elderly muscles
inresponse to exercise. These observations are in line with the general
role of SIRT1 in the DNA damage response and maintenance of
genomic integrity, as it promotes proper chromatin structure and
DNA damage repair foci formation for repair of DNA base lesions
[27,28]; however, the patterns of change in SIRT1 expression in young
vs old or sedentary vs physically active suggest an inverse correlation
between SIRT1 and the level of Ac-OGG1.

Among sirtuins, only SIRT3 expression correlates with the life span
of humans [54]. Interestingly, SIRT3 expression was increased with
physical fitness level only in young subjects in this study. SIRT3 has
two isoforms with different molecular masses (44 and 28 kDa), which
are localized in mitochondria and nucleus, respectively [55]. The
translocation of SIRT3 from the nucleus to the mitochondria has been
shown to be induced by oxidative stress [55]. SIRT3 is also a
modulator of apoptosis [56]. Recent findings also indicate that SIRT3
is a downstream target of PGC-1o and one of the regulators of
mitochondrial ROS production [57].

Exercise has been shown to cause mild oxidative stress [32,49,50,58].
Although the 8-0x0G level is a documented measure of such an oxidative
insult [14], MDA levels and expression of superoxide dismutase(s) were
used to evaluate further SEB-induced oxidative stress. An increase in
MDA levels in plasma correlated with genomic 8-0xoG level in both
young and old subjects in response to SEB. Interestingly, only the
expression of Cu,Zn-SOD showed age-independent and exercise-
associated changes, and Mn-SOD expression was increased only in the
younger sedentary group. Based on these observations, it appears that
Cu,Zn-SOD expression is a better measure of an adaptive response to ROS
than that of mitochondrial Mn-SOD. These data also imply a decline in
adaptive response with age at the level of Mn-SOD. These observations
are in line with those showing that the adaptive capability of an
organism to withstand oxidative stress challenge(s) is markedly
decreased as a function of age [59,60]. Based on our data, however, we

propose that adaptive responses to ROS are not age dependent, but
decided by the physical status of an individual.

In conclusion, this investigation offers insight into interactions
between aging processes, exercise, and regulation of the repair of
oxidized DNA base lesions in human skeletal muscle, We show for the
first time that (1) acetylated forms of OGG1 and APE1 are present in
human tissues, but (2) only Ac-OGG1 seems to be rate limiting in the
BER processes of 8-0xoG, and (3) repair of 8-0xoG seems to be
independent of age, but (4) is dependent on the physical state of
muscles. Our data also imply that regular exercise induces an adaptive
response that involves an improved, more efficient antioxidant and
DNA repair machinery.
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