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In this study, we examined classification using only three
types of movements and one type of feature. We feel that
our results suggest the need to evaluate neurological
profiles of participants before the application of invasive
clinical BMI techniques, and that this may be valid even
when using other movement types and features. How-
ever, as there have been few reports in terms of this,
further studies are needed in order to clarify the
generality of our results.

Conclusion

Decoding accuracies at the latencies of three MRCF
components largely exceeded the chance level in all
participants. The amplitude of neurophysiological re-
sponses reflected decoding accuracies. We propose that
BMI performance can be predicted by evaluating
neurophysiological profiles.
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Electrocorticographic Control of a
Prosthetic Arm in Paralyzed Patients

Takufumi Yanagisawa, MD, PhD,'? Masayuki Hirata, MD, PhD,’
Youichi Saitoh, MD, PhD," Haruhiko Kishima, MD, PhD,’ Kojiro Matsushita, PhD,’
Tetsu Goto, MD, PhD,’ Ryohei Fukuma, MS,%3 Hiroshi Yokoi, PhD,*
Yukiyasu Kamitani, PhD,?? and Toshiki Yoshimine, MD, PhD'

Objective: Paralyzed patients may benefit from restoration of movement afforded by prosthetics controlled by
electrocorticography (ECoG). Although ECoG shows promising results in human volunteers, it is unclear whether
ECoG signals recorded from chronically paralyzed patients provide sufficient motor information, and if they do,
whether they can be applied to control a prosthetic.
Methods: We recorded ECoG signals from sensorimotor cortices of 12 patients while they executed or attempted to
execute 3 to 5 simple hand and elbow movements. Sensorimotor function was severely impaired in 3 patients due to
peripheral nervous system lesion or amputation, moderately impaired due to central nervous system lesions sparing
the cortex in 4 patients, and normal in 5 patients. Time frequency and decoding analyses were performed with the
patients” ECoG signals.
Results: In all patients, the high gamma power (80-150Hz) of the ECoG signals during movements was clearly
responsive to movement types and provided the best information for classifying different movement types. The
classification performance was significantly better than chance in all patients, although differences between ECoG
power modulations during different movement types were significantly less in patients with severely impaired motor
function. In the impaired patients, cortical representations tended to overlap each other. Finally, using the
classification method in real time, a moderately impaired patient and 3 nonparalyzed patients successfully controlled
a prosthetic arm.
Interpretation: ECoG signals appear useful for prosthetic arm control and may provide clinically feasible motor
restoration for patients with paralysis but no injury of the sensorimotor cortex.

ANN NEUROL 2012;71:353-361

Paralyzcd patients and amputees would benefit from
cortically controlled prosthetics in the form of a
brain—computer interface (BCI). Among the possible
cortical signals available for BCI, electrocorticography
(ECoG) offers one of the most clinically feasible options,
having superior long-term stability and lower technical
difficulty compared with other invasive signals."” Evi-
dence from studies with nonparetic patients with epilepsy
shows that some movements or movement intentions can

be inferred from ECoG signals accurately enough to
3-6

contro| external devices such as a computer cursor.

However, it is unclear whether these findings are applica-
ble to paralyzed patients, whose sensorimotor cortices
may have undergone extensive reorganization after de-
efferentation and deafferentation of the paralyzed body
parts.

Paresis-associated cortical reorganization may mod-
ity ECoG signals of the sensorimotor cortex. Cortical
reorganization occurs in the sensorimotor cortex of
individuals with spinal cord injuries,”™ limb amputa-

10-12 3-15

. 1 . . .
tions, and stroke. Such cortical reorganizations

have been shown to alter functional activations in the
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TABLE 1: Clinical Profiles

Patlet . Age, Dxagnas;s .
NI 34/F R intractable epilepsy

;{ N2 14/M R intractable epilepsy

N3 20/F L intractable epilepsy
N4 22/F R intractable epilepsy

- N5 13/M L intractable epilepsy
Dl 49/M R putaminal hemorrhage
P2 66/F R subcortical infarction

- P3 64/M R thalamic hemorrhage
P4 65/M Ruptured spinal dAVF

S1 31/M L brachial plexus avulsion
S2 49/M L brachial plexus avulsion
- Amputation below L shoulder

 Duratio
Disease,

3.3

. ‘Pat@%,ls

~ Sensation in

':~Afféétle:' Li;hb:

None Normal
None Normal
None Normal
None Normal
None Normal
Slightly spastic (5-)  Hypoesthesia
Spastic (4) Hypoesthesia
Spastic (4) Hypoesthesia
Spastic (4) Hypoesthesia
Complete (0)* Anesthesia

Severe (1)*

No arm

Severe hypoesthesia

None

sensation, and rec-

cortices and affect motor function,'®

ognition of body parts.'“! !¢ However, quantitative data
are lacking on altered functional activations of the senso-
rimotor cortex after cortical reorganization and subse-
quent modification of ECoG signals.

We examined ECoG signals of nonparalyzed patients
and patients with different levels of motor dysfunctions to
quantitatively address 3 questions: (1) Do the ECoG sig-
nals of patients with chronic motor dysfunctions show
preservation of spatiotemporal patterns of activation even
after reorganization? (2) How much are ECoG activation
maps for different motor tasks modified in the reorganized
sensorimotor cortex? and (3) Can ECoG activation be
applicable to controlling a prosthetic arm?

Patients and Methods

Patient Population

Twelve patients (4 female, 8 male; age range, 13-66 years) with
subdural electrodes participated in this study. The patients had
different degrees of motor dysfunctions and sensory disturban-
ces (Table 1). Five patients (N1-N5) with epilepsy had no
motor dysfunctions; 4 patients (P1-P4) had spastic paresis and
weakness in their upper limbs due to strokes without damage
to the sensorimotor cortex (moderate motor dysfunction); and
3 patients (S1-S3) had severely impaired sensorimotor function
of their limbs due to brachial plexus root avulsion or amputa-
tion (severe motor dysfunction; Supplementary Methods).
Patients $1-83 differed in their ability to imagine movement of

354

their affected limbs (Table 2). All participants or their guardians
gave written informed consent to participate in the study, which
was approved by the ethics committee of Osaka University
Hospital.

All patients had been implanted with subdural electrode
arrays that covered a broad sensorimotor cortical area, including
the hand motor strip. These arrays were kept in place for 2
weeks to determine either the epilepric foci or the optimal stim-
ulation sites to achieve maximum pain reduction.'” At the end
of these 2 weeks, the arrays were removed. In impaired patients,
4 permanent electrodes were then placed at the sites where
stimulation provided optimal pain control.

Movement Tasks

Experiments were performed in an electromagnetically shielded
room approximately 1 week after electrode placement. The first
session was designed to train the decoder on the ECoG signals
(decoder training session). Patients performed 1 of 3 possible
movement tasks thar differed by the set of movement types that
were executed: (1) grasping, thumb flexion, and elbow flexion
(P1, P2, S1-83); (2) grasping, pinching, hand-opening, elbow
flexion, and tongue protrusion (P3); or (3) grasping, pinching,
hand-opening, elbow flexion, and elbow extension (N1-NS3,
P4). For movement task 3, the patients were first instructed to
perform the 3 hand movements. Then, after a free-run session
in which patients undertook movements at their own pace, if
they were able to undertake additional sessions without fatigue,
they were instructed to perform 5 movements, preferably ones
involving the elbow. Grasping and elbow flexion were com-

monly performed among all patients, although we selecred the

Volume 71, No. 3
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TABLE 2: Summary of the Decoding Results
Patient No. Ability to % Correct ~ Mean + SD % Correct Mean +SD
Imagine (grasp vs (move vs rest) ' :
Movements elbow) ~
N1 92.9 92.5 = 34 (p < 0.05) 96.6 93.6 = 4.4 (NS)
N2 98.2 94.5
N3 90.7 86.0
N4 90.5 94.2
N5 90.0 96.4
D1 86.7 89.2 + 5.8 (NS) 95.7 95.6 = 4.5 (NS)
P2 85.7 100.0 |
P3 97.9 89.5
P4 86.7 97.3
S1 Easy 90.3 713 = 17.0 (p < 0.05) 982 93.2 = 4.6 (NS)
S2 Slightly difficule  57.3 92.2
-S3 Difficult 66.3 89.2
NS = naffski:ggiﬁcant;“ébgzi giamiard d¢viatiéh. .

3 types of movement tasks to adjust the way patients could
control the prosthesis.

The patients selected and performed one of the move-
ments within a presented task after being cued with auditory
beeps (Fig 1A). The patients were instructed to execute move-
ments immediately after the third beep and then return their
hands or elbows to a resting position. For the resting position,
patients were instructed to relax their hands or elbows with
slighty flexed joints. Each type of movement was performed
approximately 30 to 100 times. Patients S1-53 were instructed to
attempt the movements of their affected limbs immediately after
the auditory cue. The movement instructions were delivered
using a PC monitor controlled by ViSaGe (Cambridge Research
System, Rochester, UK) placed in front of the patients. The de-
coder training session was open loop. The patients were not
informed of the classifier results and therefore did not have an
opportunity for learning or improving their performance.

After the decoder training session, 4 patients repeated the
same task they had performed during the session, but at self-
paced intervals without external cues (free-run session, see Fig
1B). These patients had recently performed the task and were
able to continue without extensive fatigue. Without receiving
further training, they were instructed to control the prosthetic
arm by performing their hand and elbow movements. Patient
N1 could not control the elbow of the prosthetic arm due to
mechanical problems of the prosthesis.

ECoG Recording and Preprocessing
For each patient, 15 to 60 planar-surface platinum grid electro-
des were placed over the sensorimotor cortex and within the

March 2012

central sulcus (intrasulcal electrodes)'® (see Supplementary
Methods). Video recording and electromyographic (EMG elec-
trode; Nihon Koden, Tokyo, Japan) recordings of their hands
and arms were performed solely to identify the performed
movements,

ECoGs were recorded and digitized at a sampling rate of
1,000Hz. During the decoder training session, the ECoG sig-
nals were obtained time-locked to the cue signal. In the free-
run session, l-second duration ECoG signals were recorded
online at 200-millisecond intervals. A fast Fourier transforma-
don (FFT; EEGLAB v5.03) was performed for each 1-second
signal to obtain the power of each of the 3 frequency bands
(2-8, 8-25, and 80-150Hz) for each electrode. We used FFT
to complete the online decoding over the 200 milliseconds.
The 3 frequency bands were chosen based on our previous
studies.””

Decoding Algorithms and Prosthetic Hand
Control

To infer, or decode, the movement types executed or attempred
by the patients, we constructed a linear classifier trained by a
linear support vector machine, the SVM decoder (see Supple-
mentary Methods)."™***! The trained SVM decoder was input-
ted with the ECoG signals to output an inferred movement
type. A 5-fold cross-validation was used to test how well the de-
coder could generalize.

To apply the SVM decoder to the free-run sessions with-
out external cues, we developed another decoder (GPR decoder;
see Supplementary Methods). The trained GPR decoder was
also inputted with the ECoG signals to output an estimated

355
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FIGURE 1: Task paradigm. (A) The task paradigm during the
decoder training session. In the execute task, patients
selected and executed 1 of 3 (or 5) movements after the
sound cue. The cue consisted of 3 beeps 1 second apart
that recurred every 5.5 seconds. The movements were per-
formed with the arm contralateral to the implanted electro-
des. In the attempt task, patients were instructed which of
the 3 (or 5) movements to attempt. The 1-second electro-
corticography (ECoG) signals used for the decoding analysis
are shown below the time line: N = used for normalization
and resting state; Pre = used as the first period by the
Gaussian process regression (GPR) decoder; M = used as
the move state; Post = as the last period by the GPR de-
coder. (B) Controlling the prosthetic hand with 2 decoders.
The GPR decoder estimated the accuracy of the time deter-
mined to be necessary for the support vector machine
(SVM) decoder to classify the ECoG signals. The prosthetic
hand was controlled incrementally according to the decod-
ing results.

estimated

grasp grasp grasp

classification accuracy of the SVM decoder. When the estimared
classification accuracy exceeded a certain threshold value (see
Fig 1B), the SVM decoder classified the ECoG signals to infer
the intended movement (Supplementary Fig 3).

The GPR decoder was trained using a Gaussian process
regression (GPR),” which is one kind of Bayesian approach.”?
We used GPR because it could be applied to the nonlinear data
with a simple model. The GPR decoder was trained with the
classification accuracies and the 3 frequency band powers of 3
time domains (Pre, M, and Post in Fig 1A; see Supplementary
Methods). The classification accuracies were evaluated by the
mutual information, which quantified the confusion marrix
resulting from the SVM decoder. The mutual information was
normalized by using the values of the 3 time domains. The
trained GPR decoder estimated the classification accuracy with
3 frequency band powers at a given time in a free-run session.
The GPR and SVM decoders were trained for hand and elbow
movements separately.

The commands to the prosthetic arm were updated by
the host computer system every 200 milliseconds. When the
SVM decoder inferred a movement type, the posture of the
prosthetic arm was partially altered to match the posture of the
inferred movement (see Supplementary Methods). Completing

2

a movement required 2 or 3 consecutive matched decodings.

356

This incremental control of the prosthetic hand permitted the
desired posture even when the classification performance of the
SVM decoder was not perfect; the classification errors of the

severe motor
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FIGURE 2: Representative results of time-frequency analysis.
(A) Locations of implanted electrodes for patients N1, P4, and
$2 are indicated by the green (implanted on the brain surface)
and red (implanted within the central sulcus) filled circles on
the 3-dimensional brain renderings of magnetic resonance
imaging volumes. The dashed white line indicates the location
of the central sulcus. Only the electrodes used for the analysis
are shown. (B) Power spectra of the electrocorticographic sig-
nals recorded during grasping (execute) or attempt to grasp
from the electrodes on the primary motor cortex indicated by
the orange arrows in A. The black horizontal bars show the
1,000-millisecond period used for normalization. Time 0 corre-
sponds to the onset cue. (C) The high gamma power is color
coded to the location of the electrodes for grasping and
elbow flexion. The direction indicators correspond to A = an-
terior, P = posterior, M = medial, and L = lateral on the
brain. The white dashed lines and the white circles indicate
the locations of the central sulcus and the electrodes, respec-
tively. For the patient 52, the electrodes between the 2 white
lines were located within the central sulcus (intrasulcal electro-
des; see Supplementary Methods). The lowest figure of each
patient shows the distribution of the F value with statistical
significance (p < 0.05). (D) The correlation coefficient of the
high gamma powers between hand grasping and elbow flex-
jon for each patient’s group. ANOVA = analysis of variance.
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decoder caused only a tremor of the prosthetic arm as it moved

to the desired posture.

Offline Analyses

The ECoG signals of grasping and elbow flexion were com-
pared among patients. A Hilbert transformation (EEGLAB
v5.03) was used to obtain the temporal power spectral density
of each frequency band (see Supplementary Methods). The
temporal powers were normalized by powers of the initial 1-sec-
ond period (—2 to —1 seconds) of each trial.

The variability of the high gamma power of 0 to 1 sec-
ond was statistically evaluated among 2 types of movements by
the F value of one-way analysis of variance (ANOVA) for each
electrode. The statistical similarity of the high gamma power
maps was evaluated by determining the correlation coefficient
of the mean power maps of 2 movements. The classification
accuracies for inferring 2 movements using the SVM decoder
with the high gamma powers were compared among patients.

Results

Time-Frequency Analysis

The power spectrum of the ECoG signals showed some
characteristic modulations among patients. Figure 2B
illustrates examples of the power spectrum time-locked
to the external cues while grasping or attemprting to
grasp. An increase in the high gamma power and
decreases in the alpha and beta powers were consistently
observed for all patients with different levels of motor
dysfunctions. The spatial distributions of the high
gamma power during movement (0-1 second) were
obviously different for each movement (see Fig 2C),
and the ANOVA F value revealed that high gamma
powers were significantly modulated between the move-
ments. Notably, the powers around the central sulcus
showed significant differences (p < 0.05). The charac-
teristic modulations of the high gamma power were
consistently observed among all patients, although the F
values pertaining to variability were lower in patients
with severe dysfunctons than in other patients. More-
over, the correlation coefficient of the spatial distribu-
tion of the high gamma power between the movements
was significantly high for the patients with motor dys-
functions (see Fig 2D).

Decoding Analysis

The accuracy of classifying (ie, decoding) the movements
was compared among the frequency band powers at each
time. Figure 3 shows the color-coded percentage of cor-
rect movement classifications averaged over each patient
group. Regardless of the level of motor dysfunctions, the
2 movement types were best inferred by using the high
gamma power around the movement onset.

March 2012

Yanagisawa et al: ECoG Control of Prosthetic Arm

no motor dysfunction moderate motor dysfunction
200 200 . :
. 160 160 |
£
<120 120
5
g; 80 80 |
o -
& 40 40 :
2 -1t 0 1 2 2 -t 0 1 2
Time () Time (s)
severe motor dysfunction
o - 100
5 160
&
B 120 ¢
=4
3 80
4
w40

2 10 1 2
Time (s}

FIGURE 3: Averaged classification accuracy with each fre-
quency band power. Classification accuracies with each fre-
quency band power were averaged for the patients of each
group and celor coded at the center of each frequency
band and time domain. Time O corresponds to the sound
cue for the movements.

The movement classifications were carried out for
all patients with a high gamma power for 0 to 1 seconds.
The classification accuracy of patients S1 to S3 was sig-
nificantly inferior to that of patients N1 to N5
(ANOVA, p < 0.05; sce Table 2). However, these accura-
cies were still above levels that would occur by chance
(50%). This relationship was also observed in the classifi-
cation of 3 types of movements (Supplementary Table).
On the other hand, the accuracies to classify the resting
state (—2 to —1 seconds) and the movement state (0 to
1 seconds) were not significandy different among the 3
patient groups (see Table 2).

Decoding in Free-Run and Real-Time Control of
a Prosthetic Hand

The classification accuracy of 3 hand movements with
the SVM decoder varied with time in the decoder train-
ing session (Fig 4B). It was highest immediately after the
onset cues (eg, when the hand EMG response started to
increase; see Fig 4A). The trained GPR decoder accu-
rately inferred the timing of the peak and zero value of
the normalized mutual information only using the 3 fre-
quency bands at each time (see Fig 4C).

Using the trained decoders, the ECoG signals were
decoded in real time while the patient, without further
training, voluntarily (ie, without cue) performed the 3 to
5 types of movements (free-run period, see Fig 4D). The

estimated mutual information peaked when the standard
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FIGURE 4: Prosthetic control with the electrocorticography
(ECoG) signals. (A) The standard deviations (SDs) of the
electromyographic (EMG) responses averaged over 1-sec-
ond periods are shown at each time centered on the onset
cue (0). (B) For patient P4, the mutual information for the
performed movements and the inferred movements was
normalized at each time. The values of the mutual informa-
tion at 3 time domains (black circle) trained the Gaussian
process regression {(GPR) decoder. (C) The mutual informa-
tion estimated by the trained GPR decoder at each time. (D)
Representative photographs of the prosthetic arm con-
trolled in real time by the ECoG signals of patient P4. (E)
The estimated mutual information and standard deviation of
the EMG responses were averaged for the 6 seconds time-
locked to the peak values of the estimated mutual informa-
tion that exceeded a value of 0.07. (F) The percentage cor-
rect of each 20 trials over the course of the entire free-run
session of P4 (squares = first session; circles = second ses-
sion). {G) The percentage correct of each 20 trials were not
significantly different among all sessions of 4 patients (anal-
ysis of variance, p = 0.55).

deviation of the EMG response started to increase, indi-
cating that the GPR decoder successfully decoded the
movement onset in the free-run session (see Fig 4E).

The prosthetic arm was controlled in real time
according to the decoding results of the SVM and GPR
decoders, mimicking the hand movements of patients.
The prosthetic hand completed the same movement of
patient P4 in 42 of 48 attempts (87.5%; Supplementary
Video 1). Fach hand movement required an average of
2.2 incremental movements of 4.2 seconds each. By vol-
untarily moving his own hand, patient P4 was able to

catch and hold an object for seconds and intentionally
release the object from the prosthetic hand (Supplemen-
tary Video 2). Moreover 4 days after the first experi-
ments (second free run), the patient was still able to per-
form the same free-run task (Table 3, see Fig 4E
Supplementary Video 3), using the decoder trained in
those initial experiments. The 3 other participating
patients (N1, N3, N4) were also able to voluntarily con-
trol the prosthetic arm (see Table 3). Notably, the classi-
fication accuracy of the SVM decoder was not signifi-
cantly different berween the training session and the free-
run session (ANOVA, p = 0.06) and over the course of
the each free-run session (ANQOVA, p = 0.55; sce Fig 4F,
G). Finally, the elbow of the prosthetic arm was simulta-
neously controlled by the other GPR decoder for the
elbow (Supplementary Video 4). The success rate for
complete elbow movements of the prosthetic arm was
significantly lower than that of the training (ANOVA,

p < 0.05).

Patient N1 described her impression of control as
thinking at first that the prosthetic arm moved in mim-
icry of her movements, rather than that she was control-
ling the prosthesis. But at the end of the experiment, she
realized she was able to control the prosthesis well. How-
ever, no patient controlling the prosthesis stopped mov-
ing their own limb.

Discussion

We have shown that ECoG signals recorded from
patients with chronic motor dysfunctions still represented
motor information via high gamma power to a degree
that they could be decoded successfully enough to con-
trol a prosthetic hand. However, the modulation of the
representation for different movements may have deterio-
rated depending on the degree of impairment. Qur quan-
titative evaluation of motor representations in the reor-
ganized cortex elucidated pathological states of patients
with motor dysfunctions and demonstrated the applic-
ability of these representations for an ECoG-based BCI
to improve patients’ quality of life.

Preserved Features following Cortical
Reorganization

The spatiotemporal features of the ECoG signals during
movements or attempts at movements were qualitatively
preserved in  the sensorimotor cortex of impaired
patients. During movements, high gamma power was
consistently increased around the central sulcus, even for
severely impaired patients. This is consistent with previ-
ous functional magnetic resonance imaging (fMRI) stud-
ies showing that activation of the motor cortex is
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 and Session

N1 st

2nd
N3 Ist
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Mean + SD
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% Correct
of Training

79.2 H
70.0
60.8
80.8

72.7 £ 9.2
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% Correct to
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(correct/trial)
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51.2 (22/43)
85.7 (30/35)
47.2 (17/36)
64.7 (11/17)
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77.3 = 11.1

53.6 = 7.8

70.1

= support vector machine.
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preserved even in paralyzed patients,”* ¢ because the
high gamma activity is correlated with the fMRI blood
oxygen level-dependent signal.”’

The decoding analysis showed that modulation of
the high gamma power provided the most information
about the movement types. This result was consistent
with previous studies that showed human movements
could be inferred by using ECoGs.>*** It was sug-
gested that the basic features of cortical processing with
high gamma powers are preserved following cortical reor-
ganization resulting from motor dysfunctions.

Deteriorated Motor Representation
Accompanying Phantom Limb Pain
The decreased decoding accuracy in padents with motor
dysfuncrions indicated that the high gamma powers were
not prominenty modulated among the different types of
movements, suggesting that modulation of the high gamma
power (ie, motor representation) had significantly deterio-
rated following cortical reorganization. Conversely, the
increased correlation of the high gamma powers between
different movements suggested that the representations of
the movements became similar to each other in the
impaired patients. Notably, this similarity was not due to a
weakened representation; an increase in the high gamma
power during movement was accurately decoded even in the
patients with severe dysfunctions. Our results suggested that
the modulation of the high gamma powers had deteriorated
in the impaired patients with increased similarity of the
power maps among movements. This result was consistent
with previous reports showing that cortical representations
of nonaffected body parts shifted to overlap representations
of affected body parts in phantom limb pain patients.’ 11630
It was suggested that the decreased decoding accuracy of
movement types might be due to overlaps in the spatial dis-
tributions of the high gamma powers for each movement.
Our dara also suggested that the deteriorated mod-
ulation of motor representations in patients S1 to 53 was
related to patients’ ability to imagine movements. Classi-
fication accuracy of these patients was highest for the
patient who could most easily imagine the movements
and lowest for the patients who could hardly imagine
movements. This relation was also observed in the distri-
bution of the F values of the high gamma powers (Sup-
plementary Fig 4). For some patients who lost the ability
to imagine intentionally moving their phantom limbs,
the motor representation, or high gamma powers, may
no longer be modulated well enough to be decoded. We
suggest that cortical reorganization did not alter the char-
acteristic features of the ECoG signals, but rather affected
modulation of the representation, related to the ability to
imagine the movements.

360

Prosthetic Hand Control Applied to a Diverse
Patient Population

Successful control of the prosthetic arm was demon-
strated with the SVM and GPR decoders, which accu-
rately inferred various movement types from the ECoG
signals of patients with motor dysfunctions. This suggests
the feasibility of restoring purposeful movement based on
a BCL Although the cortical control of some prostheses
has already been demonstrated with other invasive sig-
nals,>"** our success with the ECoG signals may be ben-
eficial for clinical applications because an ECoG-based
BCI has advantages in signal stability and durability that
are absolutely necessary for clinical application.” As we
demonstrated, the prosthetic hand could be controlled
for several days with a single decoder trained once at the
first session. This reveals the robustness of our decoding
method and the stability of the ECoG signals. Moreover,
our method was demonstrated with an elderly patient
who was able to successfully and naturally control the
prosthetic arm without any prior training. A requisite for
a clinically useful BCI system is that it be developed to
be stably and easily used by a diverse population of
patients in their daily lives.
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Abstract

The brain—machine interface (BMI) is a new approach to the man—machine interface, which enables us to
control machines and to communicate with others without input devices, but directly using brain signals.
‘We describe our integrative approach to develop a BMI system using brain surface electrodes for motor and
communication control in severely disabled people. This includes effective brain signal recording, accurate
neural decoding, robust robot control, a wireless fully implantable device, a non-invasive evaluation of
surgical indications, etc. In addition, the inspection and addressing of neuroethical issues is indispensible
when undertaking work in this field.
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1. Introduction

The brain—machine interface (BMI) is a new approach to the man—machine inter-
face, which enables us to control machines and communicate with others without
input devices, but directly using brain signals alone (Fig. 1). There are many dis-
eases and conditions that lead to a loss of muscular control without disruption of
the patients’ cognitive abilities. These include amyotrophic lateral sclerosis, brain-
stem stroke, spinal cord injury, muscular dystrophy, Parkinson’s disease, cerebral
palsy, etc. BMI technology can offer these patients greater independence and a
higher quality of life by enabling the control of external devices to communicate
with others and to manipulate their environment according to their will [1]. Func-
tional restoration using the BMI is a more feasible solution in the shorter term when
compared to methods using neural regeneration or neural transplantation, which
presently lack the critical technologies necessary to organize functional neural net-
works.

There are two types of BMI — invasive and non-invasive. The invasive BMI re-
quires surgical procedures and measures brain signals from intracranial electrodes
(needle electrodes or brain surface electrodes), while the non-invasive BMI mea-
sures brain signals non-invasively from outside of the body using scalp electrodes,
etc. To achieve higher performance, and, thus, usefulness, we use invasive BMI
techniques that involve the implantation of devices. For use in a practical situation,
the invasive BMI needs organic integration of the following medical and engineer-
ing technologies:

(1) Neural recording with high spatiotemporal resolution.

wheel chair

Figure 1. Conceptual diagram of the BMIL
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(i1) High-speed transfer and processing of neural signals.
(iii) Optimal extraction of neurophysiological features.
(iv) Neural decoding.

(v) Control of external devices such as robots.

(vi) Downsizing, integration and implantation of electronic devices, and the use
of wireless technology. ‘

(vii) Non-invasive evaluations for appropriate surgical indications.
(viii) On-target survey and analysis of patient needs.
(ix) Addressing neuroethical issues.

In this paper, we describe the development of our invasive BMI system using
brain surface electrodes.

2. Neural Decoding and Real-Time Robot Control Using Electrocorticograms

In the process of providing neurosurgical treatments for certain groups of patients,
we sometimes record brain signals (electrocorticograms (ECoGs)) or electrically
stimulate the brain using electrodes directly placed on the brain surface. ECoGs
selectively measure brain signals within the limited distance of a few millimeters
without distortion and are, in addition, not susceptible to external noises, while
scalp skin electrodes measure distorted brain signals from a distance of up to a few
centimeters. Thus, we prefer to use ECoGs recorded by brain surface electrodes for
the BMI to achieve high performance.

Eighteen subjects have participated in the present studies to date. All of the
subjects were recruited from patients in whom we temporarily had to place brain
surface electrodes in order to treat intractable pain or intractable epilepsy. Informed
consent was obtained from all of the patients. All studies were performed with the
approval of the Ethics Committee of Osaka University Medical Hospital. We mea-
sured ECoGs during two or three types of simple motor tasks of the hand or the arm,
such as grasping, pinching and elbow flexion. We predicted the type of movement
based on analysis of single-trial ECoGs using a support vector machine (SVM)
algorithm [2]. As a result, we were able to predict movement types on a single-
trial basis with an accuracy rate of 70-90%. Specifically, we first demonstrated that
ECoGs from the anterior wall of the central sulcus (the groove in the brain where
most of the primary motor cortex lies) are useful for the accurate and early decoding
of the movement types [3]. Most of the primary motor cortex, which is responsi-
ble for the final output portion of motor commands, lies within the anterior wall of
the central sulcus. Especially in the human, the anterior wall of the central sulcus
has many neurons directly projecting to the spinal anterior horn cells. Such neurons
are thought to be related to fine movement control [4]. We suppose that appropri-
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' - Neural decoding

Three dimensional high density grid

|
- _communication

Figure 2. Real-time BMI system for motor and communication control (wired type).

Figure 3. Real-time control of a robot hand. The patient voluntarily controlled grasping (left) and
opening (right) the robot hand in real-time.

ate neurophysiological feature extraction from the central sulcus contributed to our
accurate movement decoding.

We applied this decoding method to an ECoG-based BMI system for real-time
control of a robot arm (Fig. 2). We introduced successive SVM decoding every
200 ms. ECoGs were measured using a 128-channel digital EEG system (EEG
2000; Nihon Koden) and digitized at a sampling rate of 1000 Hz. The robot arm
was an experimental anthropomorphic hand developed by Professor Yokoi [5]. The
general movement mechanisms and degrees of freedom of the hand mimicked those
of a human hand. The hand was equipped with eight DC motors to independently
actuate eight individual tendons in the robot hand. The eight tendons work in a co-
ordinated manner to accomplish flexion or extension of each individual finger. As
a result, we succeeded in the voluntary control of the grasping and releasing of ob-
jects [6] (Fig. 3). Using a successive decoding and control algorithm, smooth robot
hand movement was achieved even though the decoding accuracy on a single-trial
basis was approximately 70%. We found that, in the case of paralyzed patients,
just imagery of hand movement induces ECoG responses similar to those of real
movements [3].
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3. Fully Implantable Wireless System

Wired leads that penetrate the skin pose a high risk of infection. It is necessary to
fully implant a recording system within the body in order to reduce infection risk
through penetrating wire leads. For this reason, we are in the process of developing
a fully implantable ECoG recording system (Fig. 4). This fully implantable system
includes two 64-channel integrated analog amplifier chips, a Bluetooth wireless
data transfer circuit and a wireless battery charger.

The integrated analog amplifier chip was designed for measuring ECoG Signals
(Fig. 5). One chip functions with a 64-channel analog amplifier and 12-bit A/D
converters at a maximum sampling rate of 1 kHz, and a size of 5.0 mm x 5.0 mm x
2.5 mm. In addition, this chip has a master/slave function so that two chips can deal
with 128-channel signals. We adapted the Bluetooth protocol communication (Class
2) for the first prototype for high usability. A combination of two sets of Bluetooth
circuits enabled effective data transmitting rates of 400 kbps. The wireless battery
charging system consists of two parts — a transmitter outside the human body
and a receiver inside the human body (abdominal part). We achieved a wireless

19.4mm

28.5mm

Figure 5. A 128-channel integrated analog amplifier system. This system includes two 64-channel
analog amplifier chips on two small high-density mounting boards bridged by flexible wiring.
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Figure 6. The 3-D high-density brain surface grid electrodes that fit individual brain surfaces.
(A and B) Gyral (brain surface) electrodes. (C and D) Sulcal (brain groove) electrodes. (E) Mold
designed with 3-D CAD software after automatic sulcal detection.

charging power of 4 W at a distance of 40 mm, which is sufficient to work the
whole implantable system. The size of the abdominal part is 40 mm in diameter
and 8 mm in thickness.

In addition, in order to record ECoGs with higher spatiotemporal resolution, we
developed three-dimensional (3-D) high-density grid electrodes, which fit to an in-
dividual’s brain surface [7]. We extracted 3-D surface data of the brain surface
and the brain groove from the patient’s individual magnetic resonance images. Au-
tomatic brain groove extraction software was used. Then we designed male and
female molds for the grid electrodes using 3-D CAD software (Mimics; Material-
ize Japan) (Fig. 6). The molds were then rapidly produced by a 3-D printer. These
3-D grid electrodes fit to the brain surface with only minimal compression of the
brain tissue and provide high ECoGs yields due to their close contact with the brain.

We developed a head casing made of titanium, which was cut to fit a patient’s
individual skull bone shape using 3-D CAD (Mimics) and 3-D CAM (Gibbs CAM,;
Gibbs and Associates) software (Fig. 7) [8]. This head casing not only has cosmetic
advantages, but it is also safer because other convex shapes pose a higher risk of
cutaneous fistula.

At this stage, we have developed the first prototype of a fully implantable sys-
tem and have just started animal experiments. Further animal experiments will be
needed before applying the implantable system to human clinical trials.

4. Importance of Neuroethics

Brain signals are the ultimate form of personal information, because they might in-
clude personal thoughts and emotions that subjects might not want others to know
about. BMI research may allow us to decode such types of personal neural infor-

— 438 —



M. Hirata et al. / Advanced Robotics 26 (2012) 399408 405

Figure 7. Titanium head casing fitted to a model of an individual’s skull bone. (A and B) Head cas-
ing design using 3-D CAD. The 3-D skull bone data were obtained from an individual’s computer
tomography images. (A) Outer side view. (B) Inner side view. The head casing contains two 64-chan-
nel integrated amplifier chips on a small mounting board that are mounted on a folded inner panel
as indicated. (C) Prototype casing. Left: inner side view. Right: outer side view. (D) Prototype casing
placed on the skull and brain model made from individual magnetic resonance images.

mation. In addition, the effects of the BMI on brain function are still not completely
known. Thus, the BMI arouses new ethical issues, known as neuroethics. We are
addressing these ethical issues using an ethical consultation system that was set up
within our research project.

5. Conclusions

We have developed an ECoG-based real-time BMI system and the first prototype of
a fully implantable wireless system. The ECoG-based real-time BMI system suc-
cessfully provided voluntary control over the grasping and opening of a robot hand.
A fully implantable wireless system is indispensable for the clinical application of
an invasive BMI to reduce the risk of infection.
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