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ABSTRACT

The brain-machine interface (BMI) enables us to control machines and to communicate with others, not
with the use of input devices, but through the direct use of brain signals. This paper describes the
integrative approach we used to develop a BMI system with brain surface electrodes for real-time robotic
arm control in severely disabled people, such as amyotrophic lateral sclerosis patients. This integrative
BMI approach includes effective brain signal recording, accurate neural decoding, robust robotic control,
a wireless and fully implantable device, and a noninvasive evaluation of surgical indications.

INTRODUCTION

The brain-machine interface (BMI) is a man-machine interface that enables us to control machines and
to communicate with others not with the use of input devices, but through the direct use of brain signals
alone (Figure 1). Several diseases and conditions can lead to the loss of muscular control without a
disruption in patients’ brain function, including amyotrophic lateral sclerosis (ALS), brainstem stroke,
spinal cord injury, and muscular dystrophy, among others. BMI technology offers these patients greater
independence and a higher quality of life by enabling the control of external devices to communicate with
others and the ability to manipulate their environment at will (Wolpaw, Birbaumer, McFarland,
Pfurtscheller, & Vaughan, 2002).

There are two types of BMI: invasive BMI and noninvasive BMI. Invasive BMI requires surgical
procedures and measures the brain signals from intracranial electrodes (needle electrodes or brain surface
electrodes), whereas noninvasive BMI measures brain signals noninvasively from outside of the body
using scalp electrodes, and so forth. To achieve a higher performance and a higher level of usefulness, we
employed invasive BMI techniques, which involve the implantation of devices. For use in a practical
situation, invasive BMI requires an organic integration of the following medical and engineering
technologies:

1) Neural recording with high spatiotemporal resolution

2) High-speed data transfer and processing

3) Optimal extraction of appropriate neurophysiological features
4) Accurate neural decoding

— 407 —



5) Robust control of external devices such as robotic arms and electric wheelchairs
6) Downsizing, integration, and implantation of electronic devices, and the use of wireless technology
7) Noninvasive pre-surgical evaluations for appropriate surgical indications
8) On-target survey and analysis of patient needs
9) Addressing of neuroethical issues
In this chapter, we describe the development of our invasive BMI system using brain surface electrodes.

Figure 1. A conceptual diagram of the brain machine interface.

NEURAL DECODING AND REAL-TIME ROBOTIC CONTROL USING

ELECTROCORTICOGRAMS
Clinical studies using electrocorticograms recorded from brain surface

electrodes

In the process of providing neurosurgical treatments for specific groups of patients, we sometimes record
brain signals (electrocorticograms: ECoGs) or electrically stimulate the brain using electrodes that are
directly placed on the brain surface. The ECoGs can selectively measure brain signals within a limited
distance of a few millimeters without distortion. In addition, the ECoGs are insusceptible to external
noises, and the scalp skin electrodes measure the distorted brain signals (electroencephalograms: EEGs)
from a distance of up to a few centimeters. Furthermore, ECoG recordings from the brain surface
electrodes are stable for at least one year (Chao, Nagasaka, & Fujii, 2010), whereas the spike recordings
from the needle electrodes will gradually deteriorate in yield due to chronic inflammatory tissue reactions.
The ECoG is a well-balanced brain signal for BMI (Table 1). Thus, we prefer to use the ECoGs recorded
by the brain surface electrodes for BMI to achieve a high performance.

In our clinical studies, all of the subjects were recruited from patients in whom we temporarily placed
brain surface electrodes to treat intractable pain or epilepsy. Informed consent was obtained from all of
the patients, and all of the studies were performed with the approval of the ethics committee of Osaka
University Medical Hospital. We measured the ECoGs during the performance of two or three types of
simple motor tasks of the hand or arm, such as grasping, pinching, and elbow flexion. We predicted the
type of movement based on the analysis of a single ECoG trial using a support vector machine (SVM)
algorithm (Kamitani & Tong, 2005). As a result, we were able to predict movement types on a single trial
basis with an accuracy rate of 70-90%. Specifically, we first demonstrated that ECoGs from the anterior
wall of the central sulcus (a groove in the brain where most of the primary motor cortex lies) are useful
for the accurate and early decoding of movement types (Yanagisawa et al., 2009). Most of the primary
motor cortex, which is responsible for the final functional output of motor commands, lies within the
anterior wall of the central sulcus. In humans, the anterior wall of the central sulcus contains many
neurons that directly project to the spinal anterior horn cells, and such neurons are thought to be related to
fine movement control (Rathelot & Strick, 2009). We suggest that an appropriate neurophysiological
feature extraction from the central sulcus contributed to our accurate movement decoding.

We applied this decoding method to an ECoG-based BMI system for real-time control of a robotic arm
(Figure 2). The ECoGs were measured using a 128-channel digital EEG system (EEG 2000; Nihon
Koden Corporation, Tokyo, Japan) and digitized at a sampling rate of 1000 Hz. We introduced successive .
decoding every 200 ms, and the Gaussian process regression was used to predict the movement onset.
Next, the SVM was used to infer the type of hand and arm movements. The robotic arm was an
experimental anthropomorphic hand developed by Prof. Yokoi H(Yokoi, Kita, & Nakamura, 2009). The
general movement mechanisms and degrees of freedom of the hand mimicked those of a human hand. In
addition, the hand was equipped with 8 DC motors to independently actuate 8 individual tendons in the
robotic hand. The 8 tendons functioned in a coordinated manner to accomplish flexion or extension of
each individual finger. As a result, we found that the normalized power in the high gamma band (80 -
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150 Hz) gave the highest decoding accuracy of all the frequency bands and ranged from 3 to 150 Hz
(Yanagisawa et al., 2011). We succeeded in generating the voluntary control of grasping and releasing of
objects (Figure 3) (Yanagisawa et al., in press). Using a successive decoding and control algorithm, a
smooth robotic hand movement was achieved, although the decoding accuracy on a single trial basis was
approximately 70%. We found that despite being severely paralyzed, just the imagery of the hand
movement could induce clear, high gamma band responses that were similar to those induced by real
movements. '

Table 1. Brain signals used for the Brain-Machine Interface.
Figure 2. A real-time BMI system for robotic arm control.

Figure 3. Real-time control of a robotic arm. The patient voluntarily controlled grasping (right) and
opening (left) of the robotic arm in real time.

A FULLY IMPLANTABLE WIRELESS SYSTEM

Wired leads, which penetrate the skin, pose a high risk of infection. It is necessary to fully implant a
recording system within the body to reduce the infection risk from the penetration of wire leads.
Moreover, once the devices are implanted, it will be more convenient to use the BMI system because the
patients would not have to wear or remove the system. For this reason, we have developed the first
prototype of a fully implantable ECoG recording system for human brain-machine interfaces using brain
surface electrodes. By integrating this wireless system into a real-time BMI system, we ultimately aim to
develop a Wireless Human ECoG-based Real-time BMI System (W-HERBS) (Hirata et al., 2011).

System Overview

The first prototype is shown in Figure 4. This fully implantable system includes many new technologies
such as a 64-ch integrated analog amplifier chip, a Bluetooth wireless data transfer circuit, a wirelessly
rechargeable battery, 3-dimensional tissue conformable high-density electrodes, a titanium head casing,
and a fluorine polymer body casing.

The implantable system consists of two parts; a head part and a body part. The head part consists of
tissue conformable brain surface microelectrodes, a titanium head casing that also functions as an
artificial skull, and a 128-ch amplifier unit with 2 64-ch chips. The body part consists of a wireless data
transfer unit and a microchip data controller, a wireless rechargeable unit, and a fluorine polymer body
casing.

Figure 4. A: The first prototype of a fully implantable wireless system for the W-HERBS. A fluorine
polymer body casing, which includes a wireless rechargeable unit and a wireless data transfer unit (a). A
titanium head casing / artificial skull (b). Brain surface microelectrodes conformable to the outer surface

of the individual brain (c). Brain surface microelectrodes conformable to the brain groove (d). B: The
prototype is attached to the skull bone model.

Integrated Analog Amplifier Unit

The ECoQG is characterized as signals with low frequency bands that range from 0.1 Hz to 500 Hz and
produces small amplitudes that range from 1 pV to 1 mV. It is necessary to reduce the input-referred
noise of the amplifier to record the ECoG signals (Yoshida et al., 2010). The variable bandwidth and wide
dynamic ranges are also important because commercial AC noises with similar frequency bands can
easily contaminate ECoG signals. Thus, a high-linearity low noise amplifier with a variable bandwidth
was developed to cover the frequency bands and voltage gains appropriate for recording ECoG signals
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(Yoshida et al., 2011). The low noise amplifier with a 0.1 Hz roll-off frequency was implemented with
. core differential amplifiers using large-sized MOSFETs and a capacitor feedback scheme biased by
ultrahigh resistors of cascade 12 MOSFETs. A VLSI chip was fabricated using CMOS 0.18 um process
technology in the chip fabrication program of the VLSI Design and Education Center (VDEC) at the
University of Tokyo.
The specifications of the chip functions are as follows:
-number of channels: 64 channels
- 12 bits A/D converter
-voltage gain: 40 — 80 dB
-signal frequency bands: 0.1 — 1000 Hz
-input referred noise: 2.8 uV
-power consumption: 4.9 mW
-chip size: 5.0 mm x 5.0 mm
-master/slave function for a 128-channel system

A 128-channel analog amplifier board consists of two chips mounted on two high-density printed boards
that were bridged by flexible printed wiring (Figure 5). The size of the board was 20 mm x 30 mm x 2.5
mm, which was small enough to be placed within a head casing, which will be described later in the text.

Figure 5. A 128-channel integrated analog amplifier board

Wireless Data Transfer Unit

We adapted the Bluetooth protocol communication (Class 2) for the first prototype for its high usability.
A combination of 2 sets of Bluetooth circuits enabled us to achieve effective data transmission rates of
400 kbps, which allowed the transfer of 128-ch x 12-bit ECoG data in real time. Power consumption was
approximately 300 mW, which meant that most of the system power was consumed by the wireless data
transfer. Further improvements in the data transfer protocol should be made to achieve a faster and more
power-efficient operation of the system. The size was 60 mm x 60 mm x 8 mm, which should also be
reduced. One solution would be to change the data transfer protocol from Bluetooth to WLAN or UWB.

Wireless Rechargeable Unit

The wireless battery charging system consists of two parts. One is a transmitter positioned outside of the
human body, and the other is a receiver located inside the human body. We achieved a wireless charging
power of 4 W at a distance of 38 mm, which was sufficient to run the entire implantable system. The coil
size of the abdominal portion was 40 mm in diameter and 8 mm in thickness, which may be scaled down
if the power consumption can be reduced.

Tissue Conformable Brain Surface Microelectrodes

To record the ECoGs with a higher spatiotemporal resolution, we developed 3-dimensional high-density
grid electrodes, which were designed to fit to the individual’s brain surface (Hirata et al., 2010). We
extracted 3-dimensional (3D) surface data of the brain surface and brain groove from the patient’s
individual magnetic resonance (MR) images. An automatic brain groove extraction software program
(Brain VISA, http://brainvisa.info/) was used. Next, we designed male and female molds for the grid
electrodes using 3D CAD software (3 matic, Materialize Japan, Tokyo, Japan) (Figure 6). Next, the molds
were rapidly produced by a 3D printer. The silicon sheets fitting the brain surface were subsequently
produced from these molds. In addition, the location of each platinum electrode (1.0 mm in diameter) was
designed with the 3D CAD software, which took into account the individual’s anatomical information.
The inter-electrode spacing was up to 2.5 mm and the brain groove grid electrodes were located on both
sides of the electrode sheet. These 3D grid electrodes fitted onto the brain surface with only a minimal
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compression of the brain tissue and generated high ECoGs yields due to their close contact with the brain
surface.

Figure 6. Tissue conformable brain surface microelectrodes. The tissue conformable brain surface
microelectrodes fitted on to the individual brain surfaces. Left: High-density electrodes (inter-electrode
spacing 2.5 mm) and standard electrodes (inter-electrode spacing 10 mm). Middle: Gyral (brain surface)
electrodes. Right: Sulcal (brain groove) electrodes.

Head Casing and Artificial Skull Bone

We developed a titanium head casing, which contained a 128-channel amplifier unit. This casing
functioned as both a head casing and an artificial skull bone and was designed to fit a patient’s individual
skull bone shape using the 3D CAD (3 matic, Materialize Japan, Tokyo) and 3D CAM (Gibbs CAM,
Gibbs and Associates, USA) software programs (Figure 7). This head casing not only had cosmetic
advantages, but it was also safer than other convex shapes that posed a higher risk of cutaneous fistula.

Figure 7. A titanium head casing / artificial skull bone. A: A computer simulation of machining path
using 3D CAM software. B: A computer simulation of a head casing fitting the skull bone. Left: skull bone
opening. Middle: Outer side view of a head casing fitting the skull bone. Right: Inner side view. C: A
head casing designed using 3D CAD software. Upper: A head casing without an electronic circuit board.
Lower: A head casing with an electronic circuit board. D: A prototype casing. Upper: inner side view.
Lower: outer side view. E: A prototype casing attached to the skull bone model. Three-dimensional skull
bone data were obtained from the individual’s CT images. The head casing contains two 64-channel
integrated amplifier chips on a small mounting board, which was mounted onto a folded inner panel as
indicated by the green color.

Fluorine Polymer Body Casing

Compared with the head casing, the body casing offers a larger space and does not require careful
cosmetic consideration. We introduced a soft casing made of fluorine polymer, which has advantages in
terms of cost, chemical stability, durability, and biocompatibility. This body casing embeds a wireless
data transfer unit and a microchip data controller, a wireless power supply unit, and a rechargeable battery
in silicone covered by fluorine polymer films.

NONINVASIVE NEURAL DECODING USING MAGNETOENCEPHALOGRAPHY

A noninvasive evaluation of the individual BMI performance is indispensable for determining the surgical
indication of the invasive BMI treatment. A magnetoencephalography (MEG) is a potentially
noninvasive method for evaluating individual BMI performance because of its high spatiotemporal
resolution and neurophysiological compatibility with the ECoG. We investigated the neural decoding
performance of 3 types of unilateral hand and arm movements on a single trial basis using an MEG
(Sugata et al., 2012). We used an SVM to decode the movement types. The peak amplitudes of the first
component after the movement onset of the movement-related cortical fields (pMRCF) were used as
decoding features. As a result, the neural decoding accuracies largely exceeded the chance level in all of
the 9 healthy subjects that were evaluated. The pMRCFs and decoding accuracies were strongly
correlated (rs = 0.900, p = 0.002) (Figure 8). These results suggested that the neurophysiological profiles
might serve as a predictor of individual BMI performance and assist in the improvement of general BMI
performance.
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Figure 8. Neural decoding using magnetoencephalography. A: a typical averaged waveform of a
movement-related cortical field. B: The relationship between the neural decoding accuracies and the
peak amplitudes of the first component after the movement onset of the movement-related cortical field.

CONCLUSION

We have developed an ECoG-based real-time BMI system and the first prototype of a fully implantable
wireless system. The ECoG-based real-time BMI system successfully provided voluntary control over the
grasping and opening of a robotic hand. A fully implantable wireless system is indispensable for the
clinical application of invasive BMI to reduce the risk of infection. The noninvasive evaluation of an
individual BMI performance using an MEG might be useful for determining the surgical indication of
invasive BMI treatment.
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KEY TERMS AND DEFINITIONS

Brain-machine interface: a man-machine interface, which enables us to control machines and to
communicate with others without the use of input devices, but through the direct use of brain signals
alone.

Neural decoding: decoding neural signals.

Real time: to respond on the order of milliseconds and at times, microseconds.

Prosthetic arm: an artificial robotic arm that substitutes for a missing arm.

Implantable device: a medical device implanted within the body.

Brain surface electrodes: electrodes that are directly placed on the brain surface.

Motor restoration: recovery of neural motor function.
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16 Motor systems

Movement-related neuromagnetic fields and performances

of single trial classifications

Hisato Sugata? Tetsu Goto®°, Masayuki Hirata®?, Takufumi Yanagisawa®®,
Morris Shayne®, Kojiro Matsushita®, Toshiki Yoshimine® and Shiro Yorifuji®

In order to clarify whether neurophysiological profiles
affect the performance of brain machine interfaces (BMI),
we examined the relationships between amplitudes of
movement-related cortical fields (MRCFs) and decoding
performances during movement. Neuromagnetic activities
were recorded in nine healthy participants during three
types of unilateral upper limb movements. The movement
types were inferred by a support vector machine. The
amplitude of MRCF components, motor field (MF),
movement-evoked field | (MEFI), and movement-evoked
field Il (MEFII) were compared with the decoding
accuracies in all participants. Decoding accuracies at the
latencies of MF, MEFI, and MEFII surpassed the chance
level in all participants. In particular, accuracies at MEFI and
MEFII were significantly higher in comparison with that of
MF. The amplitudes and decoding accuracies were strongly
correlated (MF, r,=0.90; MEFI, r,=0.90; and MEFII,
rs=0.87). Our results show that the variation of MRCF

Introduction

Brain machine interfaces (BMI) utilize brain signals for
controlling external devices such as computers and
prostheses [1-4]. This technology is expected to restore
motor function to severely paralyzed patients with
amyotrophic lateral sclerosis or high cervical cord injury.
"To realize clinical applications of BMI, many studies have
examined the validity of measuring brain activities [2-6],
and recent advancements in methods for evaluating
neural activity and neural decoding have led to increased
decoding performances, even when using noninvasive
methods such as electroencephalography and magnetoen-
cephalography (MEG) [7-9]. However, there have been
few studies discussing the neurophysiological significance
of brain signals contributing to classifications.

Neurophysiological activities related to movement can
be measured with high spatiotemporal resolution using
MEG. These are known as movement-related cortical
fields (MRCFs) [10,11]. Many MEG studies reported
signal component generators for the various MRCFs
[12-14]. MRCFs consist of three components: the
readiness field, motor field (MF), and movement-evoked
fields (MEF). The readiness field is thought to reflect

Supplemental digital content is available for this article. Direct URL citations
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components among participants reflects decoding
performance. Neurophysiological profiles may serve as a
predictor of individual BMI performance and assist in the
improvement of general BMI performance. NeuroReport
23:16-20 © 2011 Wolters Kluwer Health | Lippincott
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activities in the supplementary motor area during
preparation periods for movements, and both the MF
and MEFs reflect activities in the sensorimotor areas
during movement [15]. Furthermore, the MEF consists
of three components, numbered from I to III. MEFI is
the first negative response, and has been proposed to
represent sensory feedback from muscle spindles to the
primary somatosensory cortex [16]. MEFII and MEFIII
are positive and negative responses, respectively, and are
observed within 500 ms after movement onset [11].
MEFII is thought to represent the second activation of
the precentral gyrus in close proximity to the anterior wall
within the central sulcus [13], whereas the generator of
MEFIII remains unclear.

MEG studies have demonstrated that different partici-
pants exhibit different MRCFs patterns. For example, the
MF is not always observed and its pattern depends on
movement type [16]. In addition, not all three MEF
components may be identified in all participants [17].

The aim of this study was to examine the relationship
between the decoding performance and the neurophy-
siological profiles of MRCFs. For this purpose, we focused
on ME MEFI, and MEFII and evaluated these compo-
nents to examine the relationship between the amplitude
of each of the MRCF components and the decoding
accuracy calculated using them.

DOI: 10.1097/WNR.Ob013e32834d935a

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
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Materials and methods

Participants

Nine right handed healthy volunteers participated in the
study (four men and five women; mean age 32.8 years, SD
14.2, range 21-59 years). All participants had no history of
neurological or psychiatric diseases. In accordance with the
Declaration of Helsinki, we explained the purpose and
possible consequences of this study to all participants and
obtained written informed consent before their study
participation. The protocol of this study was approved by
the ethics committee of the Osaka University Hospital.

Task

The experimental paradigm is shown in Fig. 1. An epoch
started with a 4-s resting state and visual presentation of a
black fixation cross. Then, a Japanese word representing
one of the three movements (grasping, pinching, and
elbow flexion) was presented to instruct the participant
which movement to perform after the execution-cue.
Each of the three movements was performed 60 times,
and the movement in any given epoch was selected
randomly.

Measurements and preprocessing

Neuromagnetic activities were recorded in a magnetically
shielded room using a 160-channel whole-head MEG
system equipped with coaxial type gradiometers (MEG
vision NEQO; Yokogawa Electric Corporation, Kanazawa,
Japan). The participant lay on a bed in the supine
position with their head centered. Visual stimuli were
displayed on a projection screen using a visual presenta-
tion system (Presentation; Neurobehavioral Systems,
Albany, California, USA) and a liquid crystal projector
(LVP-HC6800; Mitsubishi Electric, Tokyo, Japan). Data
were sampled at a rate of 1000 Hz with an online low-
pass-filter at 200 Hz. After data acquisition, a notch filter
at 60 Hz was applied to eliminate the AC line noise. 'To
reduce contamination from muscle activities and eye
movements, we instructed the participants to rest their
elbows on a cushion while avoiding shoulder movements,

Fig. 1
Grasp
+ Pinch > < >< X
Elbow
} 4.0s { 1.0s } 1.0s =|l 1.0s ;1[0.55 I

Experimental paradigm. An epoch began with a 4-s resting phase and
visual presentation of a black fixation cross. A Japanese word
representing one of three movements was then presented for 1s to
instruct the participant which movement to perform after the execution-
cue. Two 1-s timing-cues were presented before the execution-cue.
Each of the three movements was performed 60 times.
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and to watch the center of the display without ocular
movements or blinking. We also recorded electromyo-
grams of the flexor pollicis brevis, flexor digitorum
superficialis, and biceps brachii muscles. Each movement
onset was determined by an initial rise in the most
responsive electromyogram waveforms, and this onset
time was defined as Oms. Normalized neuromagnetic
amplitudes of epochs from —4000 to 2000 ms were
calculated by subtracting the mean and dividing by SD of
the baseline values (-4000 to —3000 ms). As channels
for analysis, all MEG channels were selected except those
of the bilateral frontal base, which were omitted in order
to minimize such artifact contamination as eye move-
ments and/or eye blinking.

Evaluation of amplitude of movement-related

cortical fields

In order to reveal the relationship between responses of
MRCF components and decoding performances, we
evaluated the amplitude of three MRCF components
and compared these values with the decoding accuracy.
After checking the emergence of MRCF components on
channels over the sensorimotor area in all participants
(Fig. 2a), we obtained the grand field powers of ME, MEFI,
and MEFII for each of the three movements in each
participant. To calculate these powers, we used the root
mean square (RMS), which was calculated from the
averaged wave forms of all MEG channels used for analysis.
Three detectable peaks of RMS amplitudes corresponding
to the latencies of ME MEFI, and MEFII were defined as
the grand field powers of each MRCF component (Fig. 2b).
Next, the mean of these powers for the three movements
were measured for each component, and this mean power
for each component was used as the participant’s amplitude
of response. The supplementary Table, Supplemental
digital content 1, Azzp://links.bww.com/WNR/AI68 shows the
mean latencies and the amplitudes for the three compo-
nents in all participants. Then, single trial classification of
movements was performed using the averaged normalized
neuromagnetic amplitudes as a decoding feature. These
amplitudes were calculated for each channel between —25
and +25ms from the latencies for each of the three
components. Furthermore, a univariate statistical analysis
of each decoding feature was performed to reveal which
channel showed statistically significant variability among
movement classes. The F value of a one-way analysis of
variance was examined across the three classes of move-
ment using the averaged normalized neuromagnetic
amplitudes as a decoding feature of ME MEFI, and
MEFIL The topographies of the F values with statistically
significant differences (P < 0.05) were delineated on a map
of all MEG channels.

Classification of movements

A linear support vector machine (SVM), that was
extended to discriminate multiclasses [18], was used to
classify the movements on Matlab 2008a software
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Fig. 2
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(a) Time average of the movement-related magnetic fields for right
grasping movement in one participant for a channel overlying the
contralateral sensorimotor area (red circle). MEFI and MEFII, first and
second movement-evoked fields; MF, motor field; RF, readiness field.
(b) The root mean square amplitudes of motor evoked responses in
each of three movements in a same participant. The root mean square
curve shows three peaks. These peaks correspond to MF (white
arrows), MEFI (black arrows), and MEFII (gray arrows). In each
component, the amplitudes and latencies from three movements were
averaged. (c) Topographies of F values showing differences of the
decoding features in each channel in the same participant. Significant
differences were observed in the channels located over the parietal
area at the latency of MF (left) and over both the parietal area and
sensorimotor area at the latency of MEFI (middle). Channels with high
F values at the latency of MEFII were distributed mainly over the
frontal area (right). Color bar shows a range of significant F values
(P<0.05, analysis of variance).

(Mathworks, Natwick, Massachusetts, USA). We used a
10-fold cross-validation as our performance measure. All
epochs were divided into 10 blocks and one of the 10
blocks was selected as a testing dataset. A SVM decoder
was trained by the trials of the other nine blocks. Then,
the testing dataset was used for prediction of movements.
This routine was repeated 10 times, and the average
percent correct over all runs was presented as a measure
of decoder performance. A Mann-Whitney U-test was
applied to statistically evaluate the differences of
decoding accuracies among the three MRCF compo-
nents. After that, we compared the amplitudes and the
decoding accuracies of all participants for each compo-
nent, and the correlation coefficients were calculated by a
Spearman’s rank correlation test.

Results

MRCFs were observed on channels over the motor area
(Fig. 2a). Three peaks of RMS amplitudes were obtained
around movement onset and approximately corresponded
to the latencies of ME MEFI, and MEFII (Fig. 2b). As for
the variability of decoding features of each MEG channel,
F values with statistical significance (£ < 0.05, analysis of
variance) were mainly located in channels over the
parietal area at the latency of ME and in those over the
parietal area and the sensorimotor area at the latencies of
MEFI and MEFII (Fig. 2c).

With regard to classification of movements, decoding
accuracies at the three MRCF components surpassed the
chance level in all participants (Fig. 3a). The decoding
accuracies at MEFI and MEFII were significantly higher
in comparison with that of MF (2 < 0.05, Mann—-Whitney

Fig. 3
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(a) Decoding accuracies at the latencies of MF, MEFI, and MEFIl in all
participants. Decoding accuracies in most participants exceeded the
chance level at each MRCF component. (b) The mean decoding
accuracies at the latencies of MEFI and MEFII were significantly higher
in comparison with that of MF (P<0.05, Mann—Whitney U-test). A
dotted line indicates the chance level (33.3%). MEFI and MEFI, first
and second movement-evoked fields; MF, motor field; MRCF,
movement-related cortical field.
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Scatter diagrams showing the correlation between RMS amplitude and decoding accuracy. There were significant positive correlations between
amplitudes and the decoding accuracies for all of the three components (MF, r=0.90, P<0.005; MEFI, r;=0.90, P<0.005; MEFII, r;=0.87,
P<0.005; Spearman’s rank correlation test). MEFI and MEFI, first and second movement-evoked fields; MF, motor field; RMS, root mean square.

U-test) (Fig. 3b). Furthermore, the relationship between
the amplitude for each component of the MRCFs and
their decoding accuracies showed a significant positive
correlation for all of the three components (Fig. 4; ME
rs = 0.90, P < 0.005; MEFI, ;= 0.90, P < 0.005; MEFII,
7. =0.87, P <0.005; Spearman’s rank correlation test).

Discussion

In this study, we discriminated three types of upper-limb
movements based on single-trial MEG signals using an
SVM, and compared the decoding accuracy with three
MRCF components. Decoding accuracies at these three
components largely exceeded the chance level and were
strongly correlated with the amplitudes of their re-
sponses. These results show a relationship between high
decoding accuracy and high amplitudes of the three
neurophysiological components. Below, we discuss the
MRCFs and the effect on decoding performance.

Individual differences in neuromagnetic fields during move-
ments have been reported in amplitude and spatiotemporal
patterns [16,17]. These results suggest the possibility that
individual differences in neurophysiological activity may be
involved in explaining differences in BMI performance. In
our study, the amplitude of all three MRCF components
significantly correlated with the decoding accuracy. In
addition, decoding accuracies at the latencies of MEFI and
MEFII were significantly higher than that of ME As
described above, strong correlations were shown between
amplitudes and performances in all components. Especially,
in MEFI and MEFII, there were participants with high
amplitudes in comparison within ME and they achieved high
decoding performances. Therefore, the amplitude of compo-
nent derived from individual difference in neurophysiological
profiles may affect decoding performances.

Furthermore, significant spatiotemporal differences in
the magnetic fields among the three movements were
obtained in the frontoparietal MEG channels overlaying
the sensorimotor area and parietal area at the latencies of

the three components of MRCFs. The sensorimotor and
parietal areas have been previously reported to have
movement-specific responses [16,19,20]. Our results also
showed that MEG channels over these areas contributed
to the decoding performance of movement in comparison
with other channels. These suggest that brain signals
from the sensorimotor and parietal areas have specific
information related to movements. '

MEG generally shows higher sensitivity to activities in
the sulci than to those in the gyri, because currents in the
sulci flow tangentially to the skull and thus produce
stronger extracranial magnetic fields [21,22]. Therefore,
this aspect of MEG is useful for detecting activities in the
anterior and posterior walls of the central sulcus, which
are the generators of the ME MEFI, and MEFII [16]. In
fact, these three components provided higher decoding
accuracy than chance level in our study, indicating the
possibility that MEG can detect the information related
to the somatotopy of the anterior and posterior walls of
the central sulcus. In an electrocorticographic study,
signals from the anterior wall of the central sulcus
contributed more to discrimination than those from other
channels [23]. These findings indicate that the signals
within the central sulcus are promising for motor BMI,
and that performance of a MEG-based BMI may be a
predictor for the performance of an ECoG-based BMI.

To predict the performance of clinical BMI for patients
with severe paralyses, it is important to focus on ME The
MF is said to appear also in patients with amyotrophic
lateral sclerosis and high cervical spinal cord injury,
because the efferent signals from the motor-related area
persist in these patients [24,25]. In present study, the
accuracy rates at the latency of MF significantly exceeded
chance levels. This result indicates that the amplitude of
MF also affects BMI performance, suggesting that
neurophysiological profiles of MF may be useful in
predicting decoding performance before applying invasive
BMI procedures to severely paralyzed patients.
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