Figure 2. Environmental conditions of the virtual ecosystem SIVA-T05 are designed to be finite and heterogeneous.

(A) Spatial design. The virtual space of SIVA-TO5 is a two-dimensional lattice (B) Spatial distribution of environmental conditions.
Left: Distribution of environmental temperature. Initial distribution of energy stocked in each spatial block. Right: Initial
distribution of four kinds of virtual inorganic biomaterials (VI). Each substance flows between adjacent spatial blocks to restore the
environment to the initial condition when the amount of a substance goes above or below that of the predetermined level.

diffusion and radiation in the terrestrial ecosystem, a
predefined amount of energy per time unit is refilled, and the
total amount of energy in each spatial block must not exceed a
predetermined threshold. The amount of refilled energy and
the upper limit of total energy are set at appropriate levels so
that a simulation does not become meaningless, that is, not so
small that no VLI can live stably and not so large that all VLIs
can always live without any failure.

B) Design of Virtual Life in SIVA-T0S. In SIVA-TO05, we
have designed a new type of virtual life based on the
hierarchical biomolecular covalent bond (HBCB) model
(Oohashi et al. 2009). Table 1 shows the design of the
hierarchical structure of virtual biomolecules based on the
complexity of the interatomic network of actual biomolecules
that compose terrestrial life.

Virtual biological polymers (VPs) and virtual biological
monomers (VMs) are categorized into two groups: the
functional module group and the constitutive information
group, which in terrestrial life correspond to the phenotype
and the genotype respectively.

Basically each substance in a certain class consists of several
elements belonging to the next lower class. For example, a
virtual organic biomaterial (VO) consists of several virtual
inorganic biomaterials (VIs), and a VM consists of several
VOs. Several VMs constitute a functional unit, which is a
subclass of its VP class, and several functional units constitute
a larger VP. In the present simulation experiments, we
designed five VMs as a single functional unit. A functional
unit serves as one word in the SIVA language in the
functional module group and also constitutes a virtual codon
(Vcodon) in the constitutive information group. Oohashi’s
SRSD automaton is installed as an artificial life form in
SIVA-TO05 (Figure 3). The VLI consists of a virtual genome
and functional automata. The virtual genome is a VP of the
constitutive information group and corresponds to instruction

tape I in Figure 3, whereas the functional automata are VPs
belonging to the functional module group and correspond to
automata A, B, C, and FZ in Figure 3. The virtual genome
encompasses the functions of preservation, replication, and
transcription of structural and functional information about a
VLI, while the functional automaton encompasses various life
activities of the VLI, such as synthesis, decomposition, and
reproduction.

The virtual genome consists of a sequence of four kinds of
VM (W, X, Y, Z in Table 1) corresponding to the nucleotide
in terrestrial life (Figure 3). In the virtual genome, five VMs
constitute a functional unit, which serves as a Vcodon.
Namely, each Vcodon is defined as corresponding to one of
18 kinds of VM (I, J, K, L; O, P, Q, R; 0-9 in Table 1) of the
functional module group (i.e., virtual amino acid: VAA). The
sequence of Vcodons defines the sequence of the VAAs in a
functional automaton. The sequence information regarding all
automata is described in the virtual genome. For the
reproduction of a VLI, automaton B replicates the whole
virtual genome, and automaton A synthesizes a functional
automaton. Mutation can occur in either of these processes.
SIVA-TOS executes the functions of the automata described
by the SIVA language as an interpreter by which life activities
of VLIs are expressed. First, a functional unit consisting of a
sequence of five VAAs serves as a <word> in the SIVA
language. A <word> can be categorized as a functional word,
which serves as an executable <command>, or as a temporary
information word (Table 1). A <command> as a functional
word covers a substantial part of the life activities of a VLI.
One or more words constitute a <sentence>,  which has to
include zero or more <command>s and one <period> at the
end. Before a <command>, a <sentence> can include one or
more conditional phrases. When there is no conditional phrase
in the <sentence>, <command>s are directly executed in the
order described in the <sentence>. If a <sentence> includes
any conditional phrases, a <command> is executed only when

Tablel: Hierarchization of virtual biomolecules composing virtual life based on the complexity of the inter-atomic network.

Class name Functional module group

| Constitutive information group

Virtual biological polymer (VP)

Polymerized functional units

Functional unit | Functional word (command)

Temporary information word

(variable, relational operator etc.) Virtual codon

Virtual biological monomer (VM) O P Q R(4 kinds)

IJKL0123456789 (14 kinds) W XY Z(4 kinds)

Virtual organic biomaterial (VO)

A B C D (4 kinds/upper-case letter)

Virtual inorganic biomaterial (VI)

a b c d (4 kinds/lower-case letter)
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Figure 3. Relationship between life activities of virtual life
individuals (VLIs) and the environment in SIVA-TOS.
Oohashi’s SRSD automaton is implemented in the VLI in
SIVA-T05. Each VLI consists of functional automata for

self-reproduction [D (=A+B+C)], those for self-
decomposition [FZ], and an instruction tape [ID+FZ] (i.e.,
a virtual genome) that is a blueprint of all the automata.
Automaton A produces all the functional automata
described in the virtual genome. Automaton B replicates
the virtual genome. Automaton C constitutes a daughter
VLI, combining the automata newly synthesized by
automaton A and the virtual genome replicated by
automaton B, and divides it from the parental VLL
Automaton FZ decomposes a VLI when the VLI
encounters environmental conditions unsuitable for
survival or when it lives out its life span. A VLI can
reproduce itself by the uptaking of substances and energy
existing in the spatial block to which its habitation point
belongs. During self-decomposition, the substances and
the energy generated by the decomposition of virtual
biomolecules constituting the VLI are restored to the
spatial block. The occupied space is also released for
utilization by another VLI.

all the conditional phrases are true but not when any of the
conditional phrases is false. On the basis of these rules, a VLI
can be programmed to undergo individual division when all
conditions are satisfied, and to decompose itself when
unfitness for its environment exceeds threshold level, etc.
Each VLI expresses its life activities by executing all
<sentence>s during one time count (TC), the unit of virtual
time in SIVA-TO0S. The order in which a VLI in the virtual
ecosystem expresses its life activities within one TC is
randomly determined at every TC. It takes at least 5 TCs for a
newborn individual to reproduce itself in our current
simulation experiments. Therefore, we use <passage duration>
as a virtual time unit, which corresponds.to the value of TC
divided by 5.

When a VLI reproduces itself, it chooses a habitation point for
a newborn VLI adjacent to its own habitation point. If the life
activities of a newborn VLI fit the environmental conditions
in the habitation point, it can also reproduce itself. If such
activities do not do so, the newborn VLI decomposes itself
prior to reproduction. Since certain mutations may accumulate
as generation changes recur, certain offspring may emerge
whose life activities fit environmental conditions differing
slightly from those existing for their parents. Consequently,
VLIs increase or decrease the size of their habitation point.
(Oohashi et. al., 2009)
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3) Experimental conditions

First, we designed a VLI of a mortal organism with a genetic
program for death. This VLI has Automaton A, B, C and FZ
as described in Figure 1 and 3, an initialization Automaton
that produces the initial setting of the VLI, and a virtual
genome corresponding to these Automata. On the basis of the
PSD model (see Figure 1), the Automaton FZ, the mechanism
for death, was designed to be activated when either of the
following conditions is true: (1) unconformity between the
VLI and its habitation environment or (2) the end of the life
span of the VLI. We took advantage of this mechanism to
design a VLI of an immortal organism, of which the value of
both the conditional phrases of SIVA language for Automaton
FZ were kept unchangeable at a false value and accordingly
the functional words in SIVA language for self-decomposition
in the FZ automaton were kept unchangeable at an inactivated
state. If a mutation occurs in one of these conditional phrases
and the value of either conditional phrase becomes
changeable, it means that a mortal VLI is evolutionarily born.
The functional words in SIVA language for self-
decomposition of the mutant VLI will become activated, and
the VLI will decompose itself when the above conditions
become satisfied during the life of the VLI.

We seeded a single VLI that possessed this precursor of a
genetic program for death in the center habitation point of the
ecosystem with suitable environmental conditions and then
conducted simulations of reproduction and evolution.

In the present simulation experiments, mutation of virtual
genomes randomly occurs at the probability predetermined as
a mutation rate. We investigated three mutation rates as
follows: 0.005, 0.002 and 0.001. Mutation rates of the existing
terrestrial lives are distributed from 10-4 to 10-10. There is a
tendency for a living organism with a small genome to exhibit
a large mutation rate. For example, an organism with a
genome of 104 molecules has a 10-4 mutation rate. Virtual
genomes of the VLIs in the present simulation experiments
consist of 1275 molecules of VM, so we think the above
configured mutation rates are within an appropriate range.
Consequently, we conducted 200, 500 and 800 simulations at
mutation rates of 0.005, 0.002 and 0.001, respectively. The
simulations were of 800 passage durations. Changes in size of
the habitation area, number of individuals, and frequency of
mutation were observed.

Results

The rates at which mortal organisms evolutionarily emerged
and survived are shown in Table 2. The denominators are the
number of simulation trials including many cases in which no
valid mutation occurred or no VLI of a mortal organism
emerged within the 800 passage durations. The rates are 3.5%,
1.4%, and 0.25% for mutation rates of 0.005, 0.002, and
0.001, respectively. That is to say, when the genetic program
for death was evolutionarily acquired, the individual
possessing the program and its offspring did not always
become extinct and survived within a certain probability.

When a VLI of a mortal organism survived, it and its
offspring surpassed VLIs of an immortal organism and
became prosperous without exception. Figure 4 shows
successive changes of VLI distribution, number of
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" Figure 4. Evolutionarily emerging and surviving VLI of
mortal organism certainly surpassed VLIs of immortal
organism and became prosperous with adaptive divergence
under various environmental conditions. Successive changes
of individual distribution, the number of individual, and the
frequency of mutation were illustrated. (A) 0.005 of mutation
rate. (B) 0.002 of mutation rate. (C) 0.001 of mutation rate.

individuals, and frequency of mutation for each mutation rate.
For example, for the mutation rate of 0.005 [Figure 4 (A)], a
VLI with a genetic program for death emerged at the 30
passage durations’ mark and produced offspring without
extinction. In the case of 0.002 and 0.001 mutation rates
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[Figure 4 (B), (C)], a VLI with a genetic program for death
emerged at 11 and 29 passage durations respectively. Both
produced offspring without extinction.
Successive changes in the number of individuals and the
frequency of mutation shown in Figure 4 demonstrate massive
activities of mortal organisms compared to those of immortal
organisms. The number of VLIs of a mortal organism grew at
a sluggish pace shortly after emergence. However the mortal
organisms extended their habitation area by degree, moved
ahead of immortal organisms around the 300 or 400 passage
duration mark, and then continued to extend their habitation

arca.

There was no difference observed in the number of VLIs of a
mortal organism introduced by the difference in mutation rate.
We think the difference in the frequency of mutation of mortal
organisms is reasonable because it may be introduced by the
difference in mutation rates.

Table2: Probability of evolutionary emergence and survival of

mortal organism

Mutation Evolutionary emergence and survival
rate Frequency Probability
0.005 7 times per 200 trial 3.5%
0.002 7 times per 500 trial 1.4%
0.001 2 times per 800 trial 0.25%

Discussion

1) Mortal organism survived and prospered within a
certain probability

We carried out an evolutionary simulation experiment using
our artificial ecosystem SIVA-TO05, modeled for a finite,
heterogeneous terrestrial environment and arranged in a
biomolecular hierarchy. In many cases, we observed that
when a mortal organism endowed with an evolutionarily
acquired genetic program for death was born in a place in
which immortal organisms already existed, the mortal
organism, instead reproducing, became extinct by means of
self-decomposition, overwhelmed by the indigenous immortal

organisms.

Nonetheless, our simulation process also demonstrated that
some mortal organisms were evolutionarily appeared and
managed to survive at a probability of 0.25% to 3.5% in
accordance with mutation rates (Table 2). Furthermore,
without exception, the mortal organisms that could overcome
extinction thereafter prospered to the extent that they
surpassed immortal organisms and continued to prosper,
thanks to adaptive divergence under various environmental

conditions.

Although the probability of the survival and prosperity of the
mortal organisms as shown in our simulations was low, it was,
nonetheless, significant. Thus we can expect that mortal
organisms might evolutionarily emerge, survive and prosper
with adaptive divergence in other ecosystems under various
environmental conditions while various ecosystems would
repeatedly receive not a few opportunities for mutation.
Considering the result of the experiment that a 0.25-t0-3.5%
probability for simulated ecosystems in which mortal




organisms prosper within a short duration of 800 passage
durations applied to the terrestrial ecosystem, we believe that
scale and heterogeneity of the earth’s environment and length
of time having elapsed during the evolution of terrestrial life
and its concomitant ecosystem constitute sufficient probability
for the possibility that mortal organisms could be
evolutionarily selected and prosper terrestrially. Hence no
inconsistency exists between our results and the experimental
results described in our previous report (Oohashi et al. 2001).

2) Explanation of the superiority of mortal organisms

The transition of a number of individual organisms (Figure 4)
indicates that the number of mortal organisms surpasses that
of immortal organisms at the point in time after which 300-to
400 passage durations has elapsed, and that mortal organisms
continue to prosper thereafter. How do mortal organisms
overwhelm immortal organisms in this process? One
interpretation of this phenomenon is as follows:

Immortal organisms dominate space and materials once they
have been secured while the volume of resources to sustain
life activities monotonically decreases. With less chance of
reproduction in association with decrease of resources,
chances for mutation as well as those for evolutionary
adaptation are likewise reduced without limit.

On the other hand, mortal organisms release space for other
organisms and return optimum parts for them to reutilize
through self-decomposition upon termination of their mortal
life. By doing so, equally benign or enhanced habitat
environmental conditions can thus be secured for the all
organisms including their own offspring in the ecosystem,
which, in turn, will repeat the alternation of generation by
utilizing finite space and materials. It is conceivable that due
to accumulated mutations through the alternation of
generations, new organisms emerge as a result of accelerated
evolutionary adaptation in neighboring areas under
environmental conditions that had not previously permitted
the existence of earlier generations.

Independent of the studies that we have undertaken since 1987
(Oohashi et. al., 1987, 1996, 1999, 2001, 2009, 2011), Todd
implemented artificial death in his ALife system (Todd, 1993,
1994), and those experiments supported the recognition shared
with us that death affords another entity its space in which to
exist, and that death, accordingly, is essential throughout the
ongoing evolutionary process. Nevertheless, the model of
death constructed by Todd differs from our model of death in
two patently obvious respects. First, death in Todd’s model
affords no process by which the organism might decompose
itself into constituent parts for the efficient and collective
reutilization of other organisms, which is an essential feature
of our model. Second, the death of an individual in Todd’s
model appears as a probabilistic phenomenon, or as a given
result controlled by the simulation system, in sharp contrast to
the activation of death in our model, which is a process
genetically regulated in the individual that starts from
detection either of the end of its life span or of excess
unconformity with the environment. Consequently, it would
be difficult to use the ALife system as constructed by Todd to
investigate the evolutionary emergence of death itself.

It is noteworthy that the mechanism of programmed self-
decomposition, observed as being evolutionarily selected in
this study, accords benefits not only to direct offspring but
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also to all organisms of the entire ecosystem. It is difficult to
produce a tenable explanation for this phenomenon based only
on the “selfish gene” paradigm.

Programmed self-decomposition has been observed as a life
phenomenon of existent terrestrial life as previously reported
(Oohashi et al, 1987, 2009). The gradual consolidation of
these complementary approaches—ALife simulations and
biological experiments—will likely throw added light on this
topic in the future.

3) Conclusion

The evolutionary simulations using our artificial ecosystem
SIVA-T05 show that, if mortal organisms evolutionarily
acquire a genetic program for autonomous death and then
appear among a population of immortal organisms, such
mortal organisms, endowed as they are with a genetic program
for autonomous death, can survive and will surpass immortal
organisms lacking autonomous death and will prosper with
adaptive divergence under various environmental conditions
within a certain probability.

The above results thus support our hypothesis that originally
immortal organisms evolve into mortal organisms by
acquiring a new genetic program for autonomous death.
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Development of a Brain PET System, PET-Hat:
A Wearable PET System for Brain Research

Seiichi Yamamoto, Member, IEEE, Manabu Honda, Tutomu Oohashi, Keiji Shimizu, and Michio Senda

Abstract—Brain functional studies using PET have advantages
over fMRI in some areas such as auditory research in part be-
cause PET systems produce no acoustic noise during acquisition.
However commercially available PET systems are designed for
whole body studies and are not optimized for brain functional
studies. We developed a low cost, small, wearable brain PET
system named PET-Hat dedicated for brain imaging. It employs
double counter-balanced systems for mechanical supports of the
detector ring while allowing the subject some freedom of motion.
The motion enables subject to be measured in the sitting position
and move relatively freely with the PET during acquisition. The
detector consists of a Gd,SiO5 (GSO) block, a tapered light guide
and a flat panel photomultiplier tube (FP-PMT). Two types of
GSO are used for depth-of-interaction (DOI) separation allowing
the use of a small ring diameter without resolution degradation.
The tapered light guide allows the use of larger GSO blocks with
fewer FP-PMTs. Sixteen detector blocks are arranged in a 280 mm
diameter ring. Transaxial and axial field-of-view (FOV) are 20 cm
and 4.8 cm, respectively. Energy resolution of the block detectors
was ~ 15% full width at half maximum (FWHM) and timing
resolution was ~ 4.6 ns FWHM. Transaxial resolution and axial
resolution at the center of the FOV were ~ 4.0 mm FWHM and
~ 3.5 mm FWHM, respectively. Sensitivity was 0.7% at the
center of the axial FOV. Scatter fraction was ~ 0.6. Hoffman
brain phantom images were successfully obtained. We conclude
that the PET-Hat is a promising, low cost, small, wearable brain
PET system for brain functional studies.

Index Terms—Brain, GSO, PET, PSPMT, wearable.

I. INTRODUCTION

N the early stage of human activation studies, positron
emission tomography (PET) was used and many interesting
brain functional insights were obtained [1]-[4]. After the intro-
duction of the functional magnetic resonance imaging (fMRI)
[5]-[6], most of these brain functional studies were shifted
from PET to fMRI because the latter does not require positron
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radionuclides and thus does not require injections and has no
radiation exposure. Furthermore, the activation sensitivity to
the stimulation is generally higher than PET.

One drawback of the fMRI studies is the acoustic noise from
the gradient sequence which makes it difficult to use for audi-
tory experiments in human studies. Acoustic noise in MRI is
usually more than 100 dB sound presser level (SPL) requiring
headphones or bone conduction speakers for the auditory stim-
ulation for fMRI studies, making it quite different from natural
auditory conditions

Another drawback of the fMRI studies is that subject needs
to lie in narrow and deep tunnel of the MRI making most of
subjects uneasy, especially for subjects of claustrophobic show
difficulty in measuring in MRI [7] and [8].

Brain functional studies using PET have advantages over
fMRI in some areas such as auditory research of the brain be-
cause recent PET systems basically produce no acoustic noise
with acquisition. However commercially available PET systems
are designed for whole body studies and are not optimized for
brain functional studies. Most of the commercial available PET
systems are for imaging human body thus the diameter of the
detector ring is large enough to image the human whole body
increasing the cost and reducing the sensitivity of the PET
system [9]-[12]. In addition, these commercially available PET
systems measure subject lying on the bed in the tunnel of the
PET. In the case of PET/CT system, the length of the tunnel
became longer [9], [11] and the similar drawback to MRI
system may be serious for claustrophobic subjects.

In the brain functional studies using delicate auditory stimu-
lation, fMRI may not be a candidate for the imaging modality
because of the serious acoustic noises and narrow spaces in the
MRI measurements. PET will have an advantage for these appli-
cations. Commercially available whole-body PET systems are
better, but like the MRI, subjects are measured while lying on
the bed in the relatively long tunnel. In addition, the acoustic
noise level in the tunnels of PET systems is much smaller than
in MRI but relatively high from such as the cooling fans of the
electronics in the gantry of the system.

For the measurements of sensitive stimulation such as the de-
tection of hypersonic effect [13], subject must be measured in
a silent and relaxed condition where the only target stimulus
activates the subject. For the relax condition, it will be better
to be measured in the sitting position. And if the detector ring
can move with the subject’s head, the subject may feel more
relaxed during PET measurement while minimizing the head
movement.

Some PET systems dedicated for brain measurements have
been developed [14]-[18]. However in most of the PET system,
subject must be lying on the bed during measurement while one

0018-9499/$26.00 © 2011 IEEE
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Fig. 1. Conceptual drawing of the PET-Hat.

of the PET systems can measure in the sitting or standing po-
sition [18] but subject cannot move freely during measurement
with the PET system. If the subject can move relatively freely
while measurement, new neurological data that are impossible
to measure such as measurements of blood flow changes during
body or heads movement may become possible. Trying to sat-
isfy these demands on the PET brain studies, we have developed
a low cost, small and wearable PET system named PET-Hat.

II. MATERIALS AND METHODS

A. Conceptual Design of the PET-Hat

Fig. 1 shows the conceptual drawing of the PET-Hat. The
PET-Hat employs double counter-balanced systems in the me-
chanical supports. The detector ring of the PET system is sup-
ported by arms around which the detector ring can freely ro-
tate during acquisition because the detector ring is balanced in
the arms. The arms are supported by a stand and the detector
weight is counterbalanced, which allows flee up and down mo-
tion. In addition, the stand can freely rotate around the base of
the stand. These three motions enable subject to move relatively
freely with the PET detector ring during acquisition by softly
connecting the detector ring with the subject head.

B. GSO DOI Detector Block of the PET-Hat

The block detector for the PET-Hat consists of a GdsSiOs5
(GSO) block, a tapered light guide and a flat panel photomul-
tiplier tube (FP-PMT). GSO was selected for the scintillators
because the decay times can be controlled by the Ce concen-
tration. Two types of GSO are stacked in the depth direction to
form the depth-of-interaction (DOI) detector [19] and [20]. The
DOI detection makes it possible to minimize the ring diameter
of the PET system because it can reduce the spatial resolution
degradation at off-center of the field of view (FOV). The tapered
light guide is used to increase the size of the GSO blocks and
reduce the number of FP-PMTs used for the PET-Hat.

The sizes of the GSO scintillators are 4.9 mm X 5.9 mm X
7 mm for inner layer (GSO with 1.5 mol% Ce: decay time of
40 ns) and 4.9 mm X 5.9 mm X 8 mm for outer layer (GSO
with 0.4 mol% Ce: decay time of 80 ns), respectively. The inner
layer means the layer closer to subject and the outer closer to
the PSPMTs Light output difference between these two types
of GSO were within 5%.

Depth length of these GSO scintillators was reduced to min-
imize the weight of the block detector for increasing the safety
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Fig. 2. Photograph of GSO block detector (from the top, GSO block, tapered
light guide and FP-PMT) used for the PET-Hat. In photograph, printed boards
of weighted summing amplifiers are shown under FP-PMT.

and decreasing the inertia of the PET-Hat. These GSO scintilla-
tors are combined into 11 x 8 matrix to form a block with size 55
mm (transaxial) X 48 mm (axial) . The GSO block is optically
coupled to a FP-PMT through the tapered light guide. For the
FP-PMTs, Hamamatsu H8500, 2-inches 8 x 8§ multi-anode type
[21] were used. The tapered light guide has 48 mm x 48 mm area
in the bottom (near to the FP-PMT) surface and 55 mm X 48 mm
in the top (near to the GSO block) surface and 8 x 8 tapered cells
are combined with multi-layer optical film (ESR: 3M) between
them. Fig. 2 shows the assembled GSO block detector with GSO
block, tapered light guide and FP-PMT.

C. Configuration of PET-Hat

Sixteen GSO DOI block detector was arranged in a ring with
diameter 280 mm. The signals from each GSO block detector
is weighted summed and is fed to 100 MHz analog to digital
(A-D) converters of the data acquisition system [22] and sig-
nals are integrated with two different integration time (120 ns
and 320 ns) [23], calculating the position using the Anger prin-
ciple by field programmable gate array (FPGA). Also coinci-
dences are measured digitally among eight groups (2 block de-
tectors for 1 group) and stored in list mode to the personal com-
puter (PC). The data acquisition system is basically the same as
that used for small animal PET systems [22]. Time window was
set to 16 ns and lower energy window to 350 keV. The gain of
the FP-PMTs was manually tuned to be similar level before ac-
quiring the position map of the block detectors for setting the
position boundaries and energy windows. Data for normaliza-
tion was measured using a 24 cm diameter ring source phantom
containing F-18 solution.

Fig. 3 shows the developed PET-Hat system. It consists of a
detector ring with double counter balanced arm, reclining chair
and a notebook PC. End-shields made of two layers of 2 mm
thick tungsten contained rubber were pasted at the lower edge
of the detector ring. The end-shield covered scintillator blocks
and the length was 2 cm.

The data acquisition system is encased under the detector
ring. The control of the PET-Hat as well as data processing in-
cluding image reconstruction is controlled by the notebook PC
by wireless communication with a desk-top PC under the de-
tector ring.

Fig. 4 shows photograph of the PET-Hat with a subject. Sub-
ject can sit on the reclining chair and the PET-Hat can be set
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Fig. 3. Developed PET-Hat system.

Fig. 4. PET-Hat system with subject; front view (left) and side view (right).

from the top. By softly connecting the subject’s head to detector
ring using such as a straw hat that is attached at the detector ring
of the PET-Hat, the subject can move relatively freely with the
detector ring of the PET-Hat during acquisition.

Parts of a movie showing the movement of the PET-Hat with
subject are shown in Fig. 5. The horizontal movement of the
head and detector ring of the PET-Hat is shown in Fig. 5(a),
the vertical movement in Fig. 5(b). The subject and the detector
ring were connected with a straw hat that was connected with
the detector ring of the PET-Hat.

D. Performance Evaluation of PET-Hat

1) Spatial Resolution: Spatial resolution measurements were
made using a 1 mm diameter spherical shape Na-22 point source
(radioactivity: 300 kBq) positioned at the center, 0 cm, 4 cm, 6
cm and 8 cm from the center of the FOV. Random coincidences
were subtracted using the delayed data. At each position, more
than 100 k counts were accumulated. List mode data were sorted
into sinograms, after single slice rebinning with maximum ring
difference of 4 and 2D filtered back-projection with ramp equiv-
alent real space filter was used for reconstruction. Images were
made with and without DOI correction.

2) Axial Resolution: Axial resolution was measured using
the same Na-22 point source (1 mm diameter spherical shape
point source, with radioactivity of 300 kBq). Images of the
point source were reconstructed using 2D filtered back-projec-
tion with ramp equivalent real space filter and coronal images
were re-sliced and evaluated.

3) Sensitivity: Sensitivity was measured by moving a Na-22
point source (1 mm diameter spherical shape point source, with
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Fig. 5. Parts of a movie showing movement of the PET-Hat with subject; hor-
izontal movement (a) and vertical movement (b).

radioactivity of 300 kBq) in the axial direction and true coinci-
dence rates were measured as a function of axial position.

4) Scatter Fraction: Scatter fraction was measured using a
National Electrical Manufacturers Association (NEMA) 20 di-
ameter, 70 cm long phantom using F-18 solution (radioactivity:
~ 10 MBq) contained in the tube. The phantom was positioned
at the center of the FOV. Scatter fraction was evaluated inside
the FOV (20 cm). Scatter fraction was evaluated based on the
NEMA NU 2001 standard [24].

5) Count Rate Performance: Count rate performance was
measured using a NEMA standard 20 cm diameter, 70 cm height
phantom contained ~ 74 MBq F-18 solution. Following the
decay of F-18, prompt, delayed and prompt minus delayed count
rate were measured.

Noise equivalent count rate was also evaluated using the fol-
lowing formula with k = 2 because we used delayed coinci-
dence for random correction.

TxT
NECR = (T(+ kPm2 S)
where
T true count rate
R random rate
k Delayed coincidence fraction
S scatter rate

6) Hoffiman Brain Phantom Imaging: The Hoffman brain
phantom [25] contained 20 MBq of F-18 solution was posi-
tioned at the center of the FOV of the PET-Hat and measure-
ments were made for 2 hours and total counts of ~ 50 Mc
were acquired. Data were reconstructed by 2D filtered back-pro-
jection using the normalization data. Analytical correction and
single value subtraction were used for attenuation correction and
scatter correction, respectively.
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Fig. 6. Position map of the GSO block detector with position boundary (a)
energy spectrum (b) pulse shape spectrum (c) and timing spectrum (d) of the
GSO DOI block detector.

III. RESULTS

A. Performance of the GSO DOI Block Detector

Fig. 6(a) shows the position map of the GSO block detector.
Gamma photons form Cs-137 (661-keV) were irradiated from
~ 5 cm from the top of the GSO DOI block detector. The po-
sition map showed clear separation of all the GSO scintillators.
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Fig. 7. Transaxial resolution as a function of distance from center.

The separation is good enough to divide each GSO scintillator
using square boundaries. Fig. 6(b) shows an energy spectrum
for one of the GSO scintillators in the block detector for Cs-137
gamma photons. The spectrum showed a single peak although
the GSO scintillators consist of dual layer GSO with different
decay times. Energy resolution was 15% full width at half max-
imum (FWHM).

Fig. 6(c) shows a pulse shape spectrum of one of the GSO sc-
itnillators of the block detector for Cs-137 gamma photons. The
pulse shape spectrum showed good separation of these two types
of GSO with different decay times. The right peak in Fig. 6(c)
is the GSO with 1.5 mol % Ce and left is the with 0.4 mol% Ce.
The peak to valley (P/V) ratio among these peaks was 14. With
this P/V ratio, the percent error in separation of two layers is al-
most zero.Fig. 6(d) shows the timing spectrum measured using
a positron source between GSO block detectors. Timing reso-
lution was 4.6 ns FWHM. The timing spectrum showed wider
distribution at the bottom area so time window was set relatively
wider (16 ns).

B. Performance of PET-Hat System

1) Spatial Resolution: Fig. 7 shows transaxial resolution as
a function of distance from the center. Transaxial resolutions at
the center of the FOV were 4.0 mm FWHM with DOI correction
and 4.3 mm FWHM without DOI correction at the center of
the FOV and 4.2 mm FWHM with DOI correction and 5.0 mm
FWHM without DOI correction at 8 cm from the center of the
FOV.

2) Axial Resolution: The axial resolution at the center of the
FOV was 3.5 mm FWHM.

3) Sensitivity: Sensitivity profile as a function of the axial po-
sition is shown in Fig. 8. Sensitivity for point source was 0.72%
at the center of the axial FOV. The count rate outside the axial
FOV (48 mm) is from the scatter coincidence between detector
blocks when the source is outside FOV.

4) Scatter Fraction: Scatter fraction as a function of slice
number is shown in Fig. 9. Average scatter fraction was 0.6.

5) Count Rate Performance: Count rate characteristic is
shown in Fig. 10. The maximum prompt minus delayed count
rate was ~ 12 kcps and NECR was 0.82 kcps within the
measured activity range.
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Fig. 10. Count rate characteristic measured using 20 cm diameter, 70 cm height
cylindrical phantom.

6) Images of the Hoffman Brain Phantom: Images of the
Hoffman brain phantom at the central 9 slices are shown
in Fig. 11. In the images we can observe the small structures of
the gray matter regions of the phantom.

IV. DISCUSSION

We successfully developed a wearable brain PET system. The
PET-Hat could move relatively freely with subject movement.
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Fig. 11. Hoffman brain phantom images contained F-18.

However the rotation or sideways neck motion produced the sift
of position in the straw hat (connecting part of PET-Hat and
head) that may produce image degradation from subject move-
ments. For more free movement, rotation of the detector ring
with the subject can add one more free movement of the subject
with some sacrificing of the increase of the weight of the de-
tector ring. The increase of the weight increases the inertia thus
increases force for starting and stopping the movement of the
detector ring.

The sensitivity of the system can be increased by several
ways; increase the depth of the scintillators, use of the dense,
high atomic number scintillators such as LGSO, LYSO, or LSO
and increase the axial FOV. These attempts to increase the sen-
sitivity also increase the weight of the detector ring that will re-
quire more safety mechanism for the mechanical support such
as counter balanced system.

In this PET-Hat system, the effect of DOI detection was not
very obvious because the depth of the GSO scintillators were
relatively short, 7 mm and 8 mm. If we select GSO scitnillators
with longer depth, the difference of the spatial resolution with
and without DOI detection would be more attractive. However
in this case, the weight of the detector ring would more heavy.

The scatter fraction of the system was relatively high, higher
than the whole body PET systems [9]-[12]. The reasons are the
end-shield of the detector ring is set only the lower side of the
detector ring and its thickness and length are small. For the brain
studies, only the scatter from the lower side of the ring will be
important because there is no activity on the upper side of the
detector ring. Thus the scatter contribution of the human studies
will be smaller than that used NEMA phantom. The use of an
additional gamma shield from the body such as gamma absorb
apron may be useful for the human studies.

The image quality of the Hoffman brain phantom shown in
Fig. 11 was not very attractive. One reason is the low sensitivity
of the system with the small axial FOV (44 mm) and the short
scintillators depth (15 mm). The other reason is the low NECR
of the system because of the high scatter fraction and random
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rate. Using the filtered back-projection for the image reconstruc-
tion is another reason of the limited quality of the phantom im-
ages. Optimization of the system parameters such as lower en-
ergy level or time window may improve the image quality in
somehow. Also applying an iterative image reconstruction will
improve the image quality of the PET system.

V. CONCLUSION

We have . successfully developed the PET-Hat for brain re-
search. The PET-Hat could be measured in the sitting position
of the subject and could move with the subject. We conclude
that the PET-Hat is promising, low cost, small size, wearable
brain PET system for brain functional studies.
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ABSTRACT

Simultaneous transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI)
may advance the understanding of neurophysiological mechanisms of TMS. However, it remains unclear if
TMS induces fMRI signal changes consistent with the standard hemodynamic response function (HRF) in both
local and remote regions. To address this issue, we delivered single-pulse TMS to the left M1 during
simultaneous recoding of electromyography and time-resolved fMRI in 36 healthy participants. First, we
examined the time-course of fMRI signals during supra- and subthreshold single-pulse TMS in comparison
with those during voluntary right hand movement and electrical stimulation to the right median nerve
(MNS). All conditions yielded comparable time-courses of fMRI signals, showing that HRF would generally
provide reasonable estimates for TMS-evoked activity in the motor areas. However, a clear undershoot
following the signal peak was observed only during subthreshold TMS in the left M1, suggesting a small but
meaningful difference between the locally and remotely TMS-evoked activities. Second, we compared the
spatial distribution of activity across the conditions. Suprathreshold TMS-evoked activity overlapped not only
with voluntary movement-related activity but also partially with MNS-induced activity, yielding overlapped
areas of activity around the stimulated M1. The present study has provided the first experimental evidence
that motor area activity during suprathreshold TMS likely includes activity for processing of muscle afferents.
A method should be developed to control the effects of muscle afferents for fair interpretation of TMS-induced
motor area activity during suprathreshold TMS to M1.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Transcranial magnetic stimulation (TMS) is now widely applied to
basic and clinical studies in neuroscience. However, the mechanisms
of how TMS influences behavior are not completely clear. It is
conceivable that TMS most strongly influences neural activity beneath
the TMS coil, but it has been proven that TMS can also modulate
neural activity in the remote regions (Paus et al.,, 1997). Advance in
technology now allows for combining TMS and functional magnetic
resonance imaging (fMRI), which can measure locally and remotely
induced activity changes in the whole brain (Bestmann et al., 2003;
Bohning et al,, 1998; Hanakawa et al., 2009).

Previous TMS-fMRI studies have measured TMS-induced changes of
blood-oxygenation level-dependent (BOLD) signals, which are widely
used as a surrogate marker of the summation of synaptic/neuronal
activity. The BOLD contrast reflects hemodynamic changes involving a

* Corresponding author at: Department of Functional Brain Research, National Institute
of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira
187-8502, Japan.
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complex interaction between levels of oxygenation, blood flow and
blood volume (Nair, 2005; Wang et al., 2004). The coupling
mechanisms of synaptic/neuronal activity and BOLD signals remain
ambiguous although BOLD signals show reasonable correlation with
synaptic and neuronal activities measured with electrophysiological
methods (Logothetis, 2000; Ogawa et al., 2000). Notably, recent studies
have shown that TMS may change cerebrovascular reactivity (Rollnik
et al, 2002; Sallustio et al., 2010). Since the sympathetic nervous
system regulates reactivity of the cerebral vasculature, possible
interference of TMS with sympathetic regulation may explain this
finding. Alternatively, TMS could disrupt functions of the local circuitry
consisting of interneurons and astrocytes, regulating dilation of
arterioles (Zonta et al., 2003). Since TMS would most strongly influence
the region beneath the coil, we cannot exclude the possibility that TMS
may particularly affect the neurovascular coupling of the stimulated
site. Previously, near-infrared spectroscopy (NIRS) was applied to
examine the time-course of hemodynamic signal changes following
single-pulse TMS. One study reported increases in oxyhemoglobin after
both single-pulse TMS and voluntary movement (Noguchi et al., 2003)
while another one found marked decreases in deoxyhemoglobin
without increases in oxyhemoglobin and total hemogiobin (Mochizuki
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et al, 2006). This discrepancy may partly stem from the possible
disruption of hemodynamic responses during TMS.

Previous TMS-fMRI studies applying TMS to the primary motor
cortex (M1) consistently reported activity in local and remote motor
areas during TMS. Intriguingly, the directly stimulated M1 shows
significantly increased activity only with stimulation above the level
of resting motor threshold (RMT) whereas the remote motor areas
including the supplementary motor areas (SMA) showed significant
activity below the RMT (Bestmann et al, 2003; Fox et al., 2006;
Hanakawa et al., 2009; Speer et al., 2003). It remains unknown why
remote motor areas show blood flow changes at lower stimulation
intensities than does the M1 on which TMS should exert a direct
impact. This paradox could at least in part result from the fact that the
previous TMS-fMRI studies employed standard hemodynamic re-
sponse functions (HRF) to detect BOLD signal changes. That is, the
profile of BOLD signal changes in M1 beneath the TMS coil could differ
from that in remote motor areas because of the possible disruption of
normal neurovascular coupling.

In the present study, we conducted an fMRI experiment to
characterize the time-course and spatial distribution of BOLD signal
changes evoked by TMS in the motor areas. Previous research has
described the time-course of TMS-evoked activities using a block-
design fMRI (Bestmann et al, 2004; Bohning et al., 1999), which
precludes a fine analysis of the signal time-course in response to each
stimulus. The primary purpose of the present study was thus to
examine time-course of fMRI signal changes following single-pulse
TMS with a finer temporal resolution than ever. This knowledge
should provide an important basis to justify the comparison of the
spatial distribution of fMRI activity during TMS with that during other
tasks shown to induce HRF-compatible fMRI signal changes. After
gaining knowledge on the time-course of TMS-induced activity, we
then compared the spatial distribution of activity during single-pulse
TMS with that during motor and somatosensory reference conditions.
The reference conditions included cued voluntary movement and
electrical median nerve stimulation (MNS), both of which involved
the same effector with the TMS. The findings suggested the effects of
muscle afferents onto motor area activity during suprathreshold TMS
to the M1.

Experimental procedures
Subjects

Thirty-six healthy adults (mean age=27.0years; range 20-
46 years) participated in the present experiment. None of the
participants reported any history of neuropsychiatric disorders,
including epilepsy. All participants were right handed. The review
board of the National Center of Neurology and Psychiatry approved
the study protocol. The subjects were fully informed about the
experimental procedure, and all gave written informed consent prior
to participation.

Stimulation and electromyography monitoring

A 3-Tesla whole-body MRI scanner equipped with a circular
polarization head coil (Siemens Magnetom Trio; Erlangen, Germany)
was used for the experiment. We delivered TMS to the hand
representation of the left M1 (M1-hand). The “motor hot spot” where
TMS evoked a maximal motor response in the right abductor pollicis
brevis (APB) muscle was identified for each participant while lying
supine on the scanner bed. The APB was the primary muscle of interest
in this experiment, in accord with our previous experiment (Hanakawa
et al,, 2009). An MRI-compatible figure-of-eight TMS coil with an outer-
wing diameter of 70 mm (MR coil, Magstim, Witland, Wales, UK) was
positioned tangentially to the scalp at the “motor hot-spot”. The
orientation of the TMS coil was approximately 45° from the medial-

lateral axis. The TMS coil was connected to a stimulator (SuperRapid,
Magstim, Witland, Wales, UK) via a 7-m cable running through a wave
guide tube appropriate for radiofrequency wave filtering. The TMS
stimulator produced biphasic electrical pulses of approximately 250-ps
duration and a rise time of 50 ps.

For the MNS-fMRI experiment, electrical stimulation was delivered
through a pair of MRI-compatible electrodes (Nihon Kohden, Tokyo,
Japan). The electrodes were connected to an electric current
stimulator (Nihon Kohden, Tokyo, Japan) placed outside the scanner
room. The maximum stimulator output was 50 mV. Constant-voltage
square waves with a pulse duration of 0.3 ms were applied to the right
median nerve at the wrist. The sensory threshold was determined by
each participant’s verbal report of sensation in the first three fingers
without muscle twitching. A motor threshold for eliciting APB activity
was determined with EMG monitoring in each participant. No
participants reported a sensation of pain. The electrical stimulation
procedure did not cause any artifacts in the functional MR images.

EMG was monitored and recorded during the fMRI experiments.
For EMG recording during fMRI, we used a modified version of the
“stepping-stone sampling” (SSS) method (Hanakawa et al.,-2009),
which was originally developed for combined electroencephalogra-
phy and fMRI recording (Anami et al., 2003). In 14 participants who
underwent the TMS-fMRI experiment only, motor evoked potentials
(MEPs) were recorded from the right APB and the right abductor digiti
minimi (ADM) muscles using SynAmps (Neuroscan, Sterling, VA,
USA). Surface electrodes with shielded plates and cables were placed
over the right APB and ADM muscles with an inter-electrode distance
of approximately 2 cm. In the rest of the subjects, MEPs were recorded
from the bilateral APB and ADM muscles using BrainAmp ExG MR
(Brain Products, Gilching, Germany). EMG signals were fed to a digital
amplifier electrically through a radiofrequency filter (SynAmps) or to
a battery-driven amplifier placed on the scanner bed (BrainAmp ExG
MR). A ground electrode was placed on the dorsal surface of the right
wrist. As the SSS method requires exact synchronization between the
timing of EMG sampling and that of gradient pulses for MRI
acquisition, the SynAmps amplifier was externally driven by the
clock of the MRI scanner. For this purpose, the clock frequency was
down-sampled from the original 10 MHz to 10 kHz using a custom-
made clock divider (CD5; Physio-Tech, Tokyo, Japan). Furthermore,
trigger pulses from the scanner were sent to the CD 5 clock divider to
synchronize the onset of EMG measurement and MRI acquisition. For
EMG recorded with BrainAmp ExG MR, the amplifier and MRI scanner
were synchronized using SyncBox (Brain Products, Gilching,
Germany) to receive the clock and trigger signals from the scanner.
EMG data were either sampled at a digitization rate of 1 kHz with an
amplitude resolution of 0.336 pV/bit and a dynamic range of 22 mV
(SynAmps), or a digitization rate of 5kHz with an amplitude
resolution of 0.5 JV/bit and a dynamic range of 16 mV (BrainAmp
EXG MR). The data sampled with BrainAmp EXG MR were down-
sampled from 5 kHz to 1 kHz to match the sampling rate of the data
from SynAmp at a later processing stage.

Isometric contraction was employed for all types of movements in
the present experiment. Custom-made, non-magnetic splints covering
the hand, wrist and elbow joints were used to restrict the movement of
the upper limbs on both sides. Then, both upper limbs were tightly
fixed with elastic bandages and taped onto the splints. The setup was
intended to minimize joint movements, and the effects of antagonistic
muscles due to stretching. In addition, the fixation of the hand position
should minimize changes of EMG and the shape of imaging artifacts on
EMG over time. The position of the TMS coil was adjusted while
stimulation was delivered every 5 s to elicit stable production of MEPs
from the right APB muscle. The TMS coil was then fixed immobile to the
scanner bed with a custom-made holder made from polyetheretherke-
tone plastic. Foam pads and vacuum cushions were used to minimize
head motion during scanning. After the participant's head was
positioned at the MRI gantry center, the RMT was defined individually



