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laser speckle imaging to validate the localization of the CBF
response to whisker stimulation under awake conditions
(Experiment III).

2, Results
2.1.  Simultaneous recordings of CBF and animal
locomotion

Fig. 2 shows the representative raw data on simultaneous
recordings of CBF and locomotion obtained from single animal
experiments. Upon whisker stimulation, CBF was transiently
increased and had a peak of about 20% relative to baseline. The
magnitude of the evoked response is distinguished relative to
the baseline fluctuations (Fig. 2A). In some trials, a slight
increase in baseline CBF was observed with an incidence of
spontaneous grooming (i.e., self-stimulation to whiskers)
(Fig. 2B). This spontaneously induced fluctuation was bal-
anced after averaging all 8 trials and the stimulus-induced CBF
change was obtained.

2.2.  Experiment I: Daytime vs. nighttime

A comparison of the results obtained from daytime and
nighttime experiments (n=7 animals) showed no significant
differences in evoked CBF and locomotion between the two
conditions (Fig. 3A and B). The mean amplitude of evoked
CBF was 24+12% and 23+6% for daytime and nighttime
conditions, respectively. In contrast, a slightly higher loco-
motion activity during pre-stimulus baseline periods was
observed in nighttime relative to daytime (0.13+0.11 and
0.11+0.09, respectively), although there were no statistically
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significant (P>0.05). Population data consistently showed an
equivalent response magnitude of evoked CBF (Fig. 3C) and
average 1.4+0.8 times higher locomotion (Fig. 3D) during
nighttime despite relatively large variations in the locomo-
tion across seven animals.

2.3. Experiment II: Longitudinal measurements

A reproducible and stable response of evoked CBF was consis-
tently observed across the 7-day experiments (n=7 animals). The
mean amplitude of evoked CBF was 21+7%, 19+5%, 17 +4% and
17+5%, on days 1, 3, 5, and 7 after operation day, respectively
(Fig. 4A and 4 C). In contrast, higher variations were observed for
the locomotion results. Mean of baseline locomotion was 0.09+
0.09,0.21+0.14,0.26+0.29 and 0.11+0.11 (arbitrary unit) on days 1,
3, 5, and 7 after operation day, respectively (Fig. 4B and D). The
statistically significant difference was observed for the locomo-
tion between day 1 and day 3 (Fig. 4B and D), but not for other
dates. This variation in the locomotion was mainly due to inter-
subject variations across different days; 0.15+0.11, 0.23+0.17,
0.19+0.29, 0.41+0.33, 0.29+0.16, 0.20+0.20 and 0.21+0.11, aver-
aged over 7-day experiments in individual seven subjects.
Statically significant differences (P<0.05) were found in four of
seven animals for the reproducibility of the locomotion
(Fig. 4D). In contrast, the inter-subject variation in evoked
CBF was considerably small; 17+2%, 16+1%, 13+1%, 14+2%,
17+1%, 26+4% and 24+3%. For the reproducibility of evoked
CBF, none of the subjects showed statistical significances
over 7-day experiments (Fig. 4C). Consequently, a coefficient
of variance (i.e., SD / mean) for the evoked CBF measured
across subjects (0.24-0.32; a median of 0.27) was two to
three-times higher than that obtained for single subjects on
different experiment days (0.08-0.16; a median of 0.11).

— |DF signal

Az s
3 -
E g
< <
3 2
g 2
=2 g
5 B
. £
1 S, [ ) 0

B 3 mmmm Crooming (Self stimulation) .. Locomotion L DF signat 3
3 [ng
3 8
= Q
3 3
5 2
> g
8 5
. £
1 i L 0

10 sec

Fig. 2 - Simultaneous recordings of cerebral blood flow and locomotion. Representative raw data showed the time-course of
CBF (black) and locomotion (gray) obtained from a single-trial measurement. (A) After the induction of air puff whisker
stimulation (10 Hz and 20 s), a transient increase in CBF was observed. The stimulation-induced increase in CBF was readily
identifiable relative to the baseline fluctuations. (B) In some trials, a slight increase in baseline CBF was observed in accordance
with an incidence of spontaneous grooming, i.e., self-stimulation to whiskers (thick black bar). These random changes in
baseline CBF were balanced by averaging eight stimulus trials.

257



106 BRAIN RESEARCH 1369 (2011) 103-111"

A 150% o Daytime
w 140% = Nighttime
o]
Q
k=3
@
i)
©
£
S
< N " .
Whisker stimutation
I
B 1.0 = Daytime
’;? 08 = Nighttime
&
c
k=]
B
£
3
e
]

" Whisker stimutation
20 .10 0 10 20 30 40

Time (sec)
C D
150% ;0_4
e L I -
140% ~ L —
o 5 0.31
© 130% - E=4
3 £0.2-
'§ 120% - §
£ PO
110% ~ £ 0.1
&
100% Lfg 0.0

Daytime ' Nighttime Daytime ' Nighttime
Fig. 3 - GBF and locomotion during daytime and nighttime
conditions. (A) A similar time-course of CBF response to
whisker stimulation (thick black bar) was observed between
daytime (gray line) and nighttime (black line) conditions. CBF
level was reported by normalizing the LDF signal with the
pre-stimulus baseline. Each response curve represents a
mean of all subject data (n=7 animals). (B) Locomotion was
also similar between the two conditions but a slightly higher
baseline was observed under the nighttime condition.

(C) Population data showed a consistent peak amplitude of
evoked CBF measured during daytime and nighttime
conditions. Each dot represents data from a single animal.
A bold spot and line represents the mean of all data.

(D) Baseline locomotion was 1.4 times higher under the
nighttime condition relative to the daytime condition,
although there were no significant differences (P>0.05)
between daytime and nighttime conditions.

These results consistently showed stable and reproducible
measurements of evoked CBF despite the relatively large
day-to-day variations in locomotion.

2.4.  Experiment III: CBF mapping

Fig. 5A represents the intensity distribution of speckle pattern
obtained during resting periods (without stimulation and no
locomotion) in a representative single animal. A high intensity
area in which pixel intensity represents the high mean blur
rate (MBR) was observed along the cortical blood vessels

visible on the surface, which is consistent with a previous
report (Matsuo et al., 2008). The preserved pattern of the
vascular map was reproducibly depicted after 1 week mea-
sured in the same representative animal (Fig. 5A’). Also, the
well-localized CBF response to whisker stimulation was
observed after dividing the frame obtained at activation peak
time with pre-stimulus baseline (Fig. 5B). The activation area
appeared differently from a pattern of the cortical surface
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Fig. 4 - Longitudinal CBF and locomotion measurements.
(A) Evoked CBF response to whisker stimulation was
consistently observed from day 1 (d1) to day 7 (d7). CBF level
was reported by normalizing the LDF signal with pre-
stimulus baseline. Each response curve represents the mean
of all data (n=7 animals). (B) In contrast, locomotion varied
from day to day. (C and D) Population data consistently
showed a reproducible and stable response of evoked CBF (C)
despite the relatively large variations in locomotion activity
(D). Each dot represents data from a single animal and a bold
spot and line represents the mean of seven animal data.
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Fig. 5 - Mapping of cerebral blood flow with laser speckle imaging. (A) Representative image of speckle contrast acquired at
resting condition. A vascular tree on the cortical surface appeared as high intensity pixels. Color bar indicates the mean blur
rate (MBR). (B) Stimulation-induced changes in CBF obtained from the same animal shown in panel (A). Red color area indicates
a large increase in CBF induced by whisker stimulation relative to pre-stimulus level. The same experiment was repeated
after 1 week (A’, B'). The images represent the reproducible patter of vascular tree and stimulus-induced localization of CBF
response. (C) Stimulus-induced CBF map obtained from other 6 animals (animals 2-7, from left top to right down).

A well-localized map of the CBF response to whisker stimulation was consistently obtained in the barrel area of the
somatosensory cortex. Color bar indicates relative changes (%) in MBR from pre-stimulus baseline.

vessels (see Fig. 5A), indicating that the MBR signals arise
from parenchyma microcirculation. This localized CBF
response was consistently observed after 1 week (Fig. 5B’).
The other 6 animals also consistently showed well-localized
CBF map in the somatosensory barrel area in response to
whisker stimulation (Fig. 5C). The location and sizes where
the greater signal changes were observed were matched to
those of the receptive field in the primary somatosensory
cortex responsible to the right whiskers (Paxinos and
Franklin, 2001).
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3. Discussion

The present study showed a stable and reproducible response
of CBF induced by whisker stimulation in awake mice in
despite of variable animal locomotion between daytime and
nighttime (Fig. 3) and over a week (Fig. 4). The findings indicate
that the effect of locomotion on hemodynamic response in the
barrel cortex is negligible. In contrast, the modulatory effect of
locomotion on visually evoked cortical activity was reported in
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similarly conducted awake mice experiments (Niell and
Stryker, 2010). The discrepancy between that study and the
present study could be due to a different cortex measured
(visual vs. somatosensory cortex) and/or the differences in
methodological approaches (electrophysiological recording vs.
hemodynamic measurements). In rat barrel cortex, electro-
physiological studies have shown a slight decrease in evoked
neural response to single stimulation during voluntary motor
activity relative to quiet immobility states, but highly sensitive
to multiple stimuli with short intervals (i.e., high frequency)
(Fanselow and Nicolelis, 1999). According to their reports,
stimulation with 10 Hz, applied in the present study, induced
relatively similar neural responses between with and without
locomotion conditions, which is in good agreement with the
present results. Another possibility is that we measured CBF
as a surrogate of neural activity, whereas the previous study
performed direct electrophysiological recording. The method-
ological differences should be considered, since it was shown
that a vascular signal originates from a subset of neural
population activity (Kocharyan et al., 2008). Also, nonlinear
coupling between neural and vascular activity was generally
known such as a threshold relationship (Nemoto et al., 2004;
Nielsen and Lauritzen, 2001; Sheth et al, 2004). A correct
understanding of the signal sources in hemodynamic-based
neuroimaging is therefore further needed specifically for
awake behaving animals.

We observed a slightly higher locomotion activity during
nighttime relative to daytime (Fig. 3). This result was in good
agreement with a previous report measured in Sprague-
Dawley rats (Wauschkuhn et al., 2005). In our experiments,
average 18% and 38% of trials detected the spontaneous
locomotion (i.e., moving and/or searching) during pre-
stimulus periods under daytime and nighttime conditions,
respectively. This indicates that a higher locomotion ob-
served in our results reflects a higher chance of locomotion
per unit time, but less increase in walking velocity. Upon
stimulation, this probability increased to 59% and 70% of
trials under daytime and nighttime conditions, respectively.
Although the reason why the animal starts to move
associated with the stimulation onset is not clear, one may
speculate that the animal felt something by the induction of
stimulation and started to explore it. Although we observed
higher locomotion activity under nighttime conditions, no
detectable difference in CBF response was observed between
both two conditions. This result further indicates that the
vascular mechanism for CBF response to neural activity is
locally managed, which is consistent with well-known
neurovascular coupling observed in anesthetized rodents
(Masamoto et al.,, 2007).

The pros and cons of hemodynamic neuroimaging in an
awake behaving animal model should be discussed. First,
awake models have advantages in the absence of possible
confounding factors due to the anesthetic action on neuro-
vascular physiology. For example, a role of nitric oxide on
neurovascular coupling was reported to be different in
anesthetized (a-chloralose) and unanesthetized conditions
(Nakao et al., 2001). It was shown that different anesthesics
and anesthesia depths produced different neurovascular
coupling (Franceschini et al., 2010; Masamoto et al., 2007;
Masamoto et al, 2009). Therefore, maintaining a constant

level of anesthesia for a period of imaging sessions and
across subjects is critically important for the reproducibility
of hemodynamic imaging in anesthetized animals (Austin et
al,, 2005; Hyder et al., 2002). Second, awake models make it
relatively easy to perform longitudinal experiments over
days or weeks. Some of the anesthetic agents which are
conventionally. used for neurovascular coupling studies,
such as a-chloralose and urethane, are not allowed for use
in survival experiments. In contrast, awake models allow for
repeated longitudinal measurements with a highly repro-
ducible manner, as shown in the present results. In the
present study, we found no time-dependent effects on the
longitudinal CBF responses over 1-week experiments (Fig. 4),
such as due to adaptation to repeated stimulation. This
could be due to limited short time-window. Future studies
should test the reproducibility over extended periods, i.e.,
several weeks and months, to probe the plastic changes in
neurovascular coupling. Third, awake models have big
advantages on cognitive research that are not possible
under an anesthetized condition. A recent study has
successfully demonstrated the motor cortex of behaving
mice engaged in cognitive tasks with two-photon imaging of
cellular calcium dynamics (Komiyama et al, 2010). This
study shows that spatiotemporal imaging of behaving
animal brain is a powerful way to understand the molecu-
lar/synaptic mechanism of cognitive functions and also the
pathogenesis of neurodegenerative disorders. Finally, robust
changes in hemodynamic signals induced by sensory stimuli
have been consistently reported in awake condition com-
pared to the anesthetized condition in the rodents (Berwick
et al., 2002; Lahti et al.,, 1999; Martin et al., 2006; Peeters et
al., 2001). As shown in the present study, the reproducibility
and robustness of the evoked hemodynamic responses in
the awake mouse barrel cortex are preferential features for
longitudinal studies of neurovascular plasticity, such as
during growth, development, and aging. However, behaving
animal imaging has the potential drawback that i) an animal
needs to be restrained which potentially stresses the animal
despite adaptation to the experimental condition, ii) the
image was distorted by animal motion, which becomes
critical in the micro-scale of cell imaging (Dombeck et al,,
2007), and iii) an imaging signal may vary depending on the
active and passive sensing states (Crochet and Petersen,
2006). These drawbacks should be considered in future
works with awake behaving mice.

The other advantages of using longitudinal mouse
models are that mice have a short lifecycle among the
species that have been used for neurovascular imaging
studies. This feature enables us to track their evolution in
a relatively cost-effective manner and engineer a variety of
gene-manipulated animals during a comparatively short
period. It should be noted that previous studies have
revealed a significant contribution of specific molecules to
neurovascular signal transduction using gene-knockout
mouse models, such as the null mutant of nitric oxide
synthase, cyclooxygenase, and tissue plasminogen activator
(Kitaura et al,, 2007; Ma et al., 1996; Niwa et al., 2000, 2001;
Park et al, 2008; Yang et al, 2003). Further studies of
longitudinal neurovascular and related behavioral measure-
ments with gene-manipulated mouse models would provide
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valuable information on the pathogenesis and therapeutic
approaches in a variety of neural disorders (Mayanagi et al.,
2008; Takeda et al., 2009).

4, Experimental procedures
4.1.  Animal preparation

A total of 21 male C57BL/6] mice (20-30 g, 7-11 weeks; Japan
SLC, Inc, Hamamatsu) were used in three separate experi-
ments: daytime-nighttime experiments (Experiment I, n=7),
longitudinal experiments (ExperimentII, n=7), and CBF mapping
experiments (Experiment III, n=7). The animals were housed in
a12-hour dark and 12-hourlight cycle room at a temperature of
25°C with ad libitum water and feed. All experimental
protocols followed the institutional guideline on humane
care and use of laboratory animals and were approved by the
Institutional Committee for Animal Experimentation.

For the surgical procedure, animals were anesthetized with
a mixture of air, oxygen, and isoflurane (3-5% for induction,
and 2% for surgery) through a facemask. The animals were
fixed in a stereotactic frame and the rectal temperature was
maintained at 38 °C using a heating pad (ATC-210, Unique
Medical Co. Ltd., Japan). A midline incision (10 mm) was made
to expose the skull over the left somatosensory cortex. The
skull (3 mm by 3 mm centered at 1.8 mm caudal and 2.5 mm
lateral from the bregma) was thinned to translucency using a
dental drill. A custom-made metal plate with a 7-mm
diameter hole in the center was attached to the skull with
dental resin. After completion of the surgery, the animals were
allowed to recover from anesthesia and housed for at least 1
day before initiation of the experiments.

4.2.  Experimental protocols

Animals were initially anesthetized with 1-2% isoflurane to fix
the animals in the experiment apparatus. A head plate
mounted on the animal’s skull was attached to a custom-
made stereotactic apparatus (Fig. 1) in reference to the method
of Dombeck et al. (2007). Animals were secured on a ball
(98 mm in outer diameter) made of styrofoam (9 g) and then
the isoflurane anesthesia was discontinued. The ball was
floated in inside perforated cup (100 mm in inner diameter) by
a jet of air produced with a motor-powered propeller from
beneath the cup. This allowed for the animals to exercise freely
on the ball while the animal’s head was fixed in an apparatus.
An air outlet (4 mm in inner diameter) was placed in front of
the tip of the nose at a distance of 10-20 mm. An air puff was
delivered to the entire right whiskers at a pressure of ~15 psi
via a compressed air bottle. A rectangular pulse stimulation
(50-ms pulse width and 100-ms onset-to-onsetinterval, i.e., 10-
Hz frequency) generated with a Master-8 (A.M.P.I) was induced
for a 20-s duration. In each experiment, eight consecutive trials
were repeated with an onset-to-onset interval of 120s. The
recording was started after approximately 30 min from the
cessation of anesthesia to stabilize the experimental condi-
tions. The recording took 30 min including 10 min for resting
baseline measurements (without whisker stimulation).
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Three experiments were conducted in three separate
groups of awake animals. In Experiment I, CBF and animal
locomotion were compared between daytime (12 pm to 2 pm)
and nighttime (12 am to 2 am) conditions. In Experiment II, CBF
and locomotion were measured every other day for 7 days. In
Experiment I1I, CBF mapping in response to whisker stimulation
was performed. In some experiments, animal behavior (e.g,,
grooming, self-motion of whiskers, and rest) during recording
was also videotaped with a digital camera for later reference.

4.3. Locomotion detection

Animal locomotion was measured by monitoring rotation of
the ball on which the animal was placed (Fig. 1). Rotational
position was detected using an optical computer mouse with a
spatial resolution of 0.3mm in the X-Y axis every 0.1s.
Walking distance of the animal was then calculated with
custom-built software and the digitalized information was
sent to a polygraph data acquisition system (MP150, BIOPAC
Systems, Inc., Goleta, CA) via digital-analog converter. The
data on walking distance were recorded at a rate of 100 Hz
with data acquisition software (AcqKnowledge, Biopac Sys-
tems, Inc., Goleta, CA).

4.4. Laser-Doppler flowmetry

Dynamic changes in CBF were monitored with laser-Doppler
flowmetry (FLO-C1, OMEGAWAUVE, Inc., Tokyo, Japan). The tip
of the LDF probe (Type NS, OMEGAWAVE, Inc., Tokyo, Japan)
was positioned on the thinned skull perpendicular to the
surface of the brain while avoiding large blood vessel areas.
The activated hot spot was preliminarily determined by
screening the response to whisker stimulation at several
points in the somatosensory area. Then, the X~Y position of
the LDF tip was marked on the edge of the cranial window for
reproducible placement of the LDF tip. The angle of the LDF
probe to the cortex was fixed with the manipulator, perpen-
dicular to the thinned skull surface. Also, the distance
between LDF tip and surface of the cranial window was
maintained among the different experiments. In each exper-
iment, the consistent level of the reflected light signal for the
LDF measurements was confirmed before initiation of the
recording. A time constant of the LDF instrument was 0.1,
and the LDF value (i.e., a representation of CBF) was recorded
with analog data recorder (AcgKnowledge, Biopac Systems,
Inc., Goleta, CA) at a rate of 200 Hz.

4.5.  Laser speckle imaging

CBF mapping was performed using a laser speckle imaging
technique as previously described (Matsuo et al.,, 2008). The
thinned skull area was illuminated with a laser diode at 780-
nm wavelength, and reflected light was measured with a CCD
camera (400 by 400 pixels) from the top of the cortex (dorsal
view) through a microscope. Because a speckle pattern gets
blurred with an increase in motion (i.e., red blood cell speed),
the mean blur rate (MBR) was measured to map CBF level
(Konisi et al., 2002). Four by four adjacent pixels with six
consecutive frames were used to calculate MBR (Matsuo et al.,
2008), resulting in an image resolution of 100 by 100 pixels and
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a frame rate of five frames per second. Stimulation-induced
CBF responses were represented by dividing the MBR in each
frame with that of the frame just before the onset of
stimulation on a pixel by pixel basis. Since laser speckle
technique is sensitive to movement of the illuminated cortex
(i.e., motion artifacts), this technique is suited to validate the
localization and quality of hemodynamic imaging in awake
behaving animals.

4.6.  Data analysis

CBF and locomotion signals were simultaneously recorded
using a biopac system that was synchronized with Master 8 at
the onset of whisker stimulation (Fig. 1). CBF and locomotion
data were analyzed offline. For the CBF time-course data, the
LDF signal was first down-sampled to 40 Hz to reduce data size
and random noise, and normalized toward a baseline level (20-s
pre-stimulus data) in each trial. The time-course data in each
trial was then averaged across all trials in each animal. Evoked
CBF amplitude was reported by measuring the peak value
within 5 s after the onset of stimulation and was represented as
a % change relative to the pre-stimulus baseline. Locomotion
was measured by calculating the mean walking distance (per
0.1s) during pre-stimulus baseline periods (20 s) in each trial
and averaged for all trials in each animal. For the statistical
analysis, student’s t-tests were performed for data of subject to
subject variations between daytime and nighttime in Experiment
1, across different days (vs. day 1) in Experiment II, and also data
of inter-subject variations across different days (vs. day 1) for
the reproducibility experiments in Experiment II. The obtained
values are reported as the meanzstandard deviation if not
otherwise specified.
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