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Abstract: Exploitation of a specific biological property is one of the best approaches for developing novel cancer-targeted
drugs. Melanogenesis substrate, N-propiony! cysteaminylphenol (NPrCAP: amine analog of tyrosine) may provide a
unique drug delivery system (DDS) because of its selective incorporation into melanoma cells. It may also act as a
melanoma-targeted therapeutic drug because of its production of highly reactive free radicals (melanoma-targeted
chemotherapy). Utilization of magnetite nanoparticles can also be a good platform to develop thermo-immunotherapy
because of heat shock protein (HSP) generation upon exposure to the alternating magnetic field (AMF). This study shows
the feasibility of this approach in experimental study using in vivo and in vitro B16 melanoma cells and preliminary
clinical study to a limited number of advanced melanoma patients. The therapeutic protocol against the primarily
transplanted tumor with or without AMF once a day every other day for a total of three treatments not only inhibited the
growth of primary transplant, but also prevented the growth of the secondary, re-challenge transplant and increased life
span of the host mice. HSP70 production at the site of primary transplant and CD8'T cell infiltration at the site of the re-
challenge melanoma transplant were seen. Four patients entered in the preliminary clinical trial by following the basic
outline of this animal protocol and two of them showed PR and CR. We hope to establish in situ vaccination

immunotherapy for melanoma metastases by melanogenesis-targeted chemo- and thermotherapy.

Keywords: Melanoma, chemothermoimmunotherapy, chemotherapy, immunotherapy, thermotherapy, melanogenesis,

nanomedicine.

INTRODUCTION

Management of metastatic melanoma is extremely
difficult challenge for physicians and scientists. Currently
only 10% with metastatic melanoma patients survive for five
years because of the lack of effective therapies [1]. There is,
therefore, an emerging need to develop innovative therapies
for the control of advanced melanoma.

Exploitation of biological properties unique to cancer
cells may provide a novel approach to overcome this
difficult challenge. Melanogenesis is inherently cytotoxic
and uniquely occurs in melanocytic cells; thus, tyrosine
analogs that are tyrosinase substrates can be good candidates
for melanoma-specific drug targeting and therapies [2]. N-

*Address correspondence to this author at the Institute of Dermatology &
Cutaneous Sciences, Sapporo, Japan; Tel: +81-11-887-8266; Fax: +81-11-
618-1213; E-mail: jimbow@sapmed.ac.jp
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propionyl and N-acetyl derivatives of 4-S-cysteaminylphenol
(NPr-and NAcCAP) were synthesized, and found to possess
effects on in vivo and in vitro melanomas through the
oxidative stress that derives from production of cytotoxic
free radicals [3-7]. We now provide evidence that the unique
melanogenesis cascade can be exploited for developing a
novel chemo-thermo-immunologic strategy (CTI Therapy)
for advanced melanoma by conjugating NPrCAP with
magnetite nanoparticles (NPrCAP/M).

Intracellular hyperthermia using magnetite nanoparticles
(10-100nm-sized, Fe;0,) has been shown to be effective for
treating cancers in not only primary but also metastatic
lesions [8-10]. Incorporated magnetite nanoparticles generate
heat within the cells after exposure to AMF due to hysteresis
loss [11]. In this treatment, there is not only the heat-
mediated cell death but also immune reaction due to the
generation of heat shock proteins (HSPs) [12-21]. HSP
expression induced by hyperthermia has been found to be
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involved in tumor immunity, providing the basis for
developing a novel cancer therapy (thermo-immunotherapy).

Our approach is based upon the combination of (1) direct
killing of melanoma cells by chemotherapeutic and thermo-
therapeutic effect of melanogenesis-targeted drug and (2)
indirect killing by immune reaction (in situ vaccination) after
exposure to AMF. It is hoped from these rationales a strategy
that a tumor-specific drug delivery system is developed and
selective cell death can be achieved by exposure to AMF,
which then can induce HSP expression through either
necrotic or non-necrotic process or combination of the two,
without damaging non-cancerous tissues and establish
immune reaction targeted to other metastatic melanoma
lesions, hence providing “in situ vaccination” strategy.

In this report we compared, by utilizing the mouse B16
melanoma system, at first, their chemotherapeutic and
thermo-therapeutic effect on primary transplant of melanoma
cells with and without AMF exposure (heat generation) and
then examined the immunotherapeutic effect on the second,
re-challenge transplant of the same melanoma cells to
evaluate if the growth of distant metastatic melanomas can
be inhibited. We also investigated the possible association of
HSP production, CD8" T cell activation and MHC expre-
ssion along with rejection of the re-challenge melanoma.
Finally we will introduce the preliminary therapeutic effect
of this CTI strategy which is based upon for a limited
number of advanced melanoma patients.

Our final goal is the development of novel CTI therapy
by establishing not only melanoma-targeted chemo-
thermotherapy but also in sifi vaccination immunotherapy to
advanced melanoma through exploitation of melanogenesis
cascade.

EXPLOITATION OF MELANOGENESIS
POTENTIAL SOURCE IN NOVEL
DEVELOPMENT TO MELANOMA

FOR
DRUG

The major advance of drug discovery for targeted therapy
to cancer cells may be achieved by exploiting their unique

Jimbow et al.

biological property. The biological property unique to the
melanocyte and melanoma cell resides the biosynthesis of
melanin ~ pigments  within  specific  compartments,
melanosomes. Melanogenesis begins with the conversion of
amino acid, tyrosine to dopa and subsequently to dopa
quinone in the presence of tyrosinase. This pathway is
unique to all of melanocytes and melanoma cells including
“amelanotic” melanoma. With the interaction of melanocyte-
stimulating hormone (MSH)/melanocortin 1  receptor
(MCIR), the melanogenesis cascade begins from activation
of microphthalmia transcription factor (MITF) for induction
of either eu- or pheomelanin biosynthesis. Tyrosinase is the
major player of this cascade. It is a glycoprotein and its
glycosylation process is regulated by a number of molecular
chaperons, including calnexin in the endoplasmic reticulum
[22,23]. Vesicular transport then occurs to carry tyrosinase
and its related proteins from trans-Golgi network to
melanosomal compartments. In this process a significant
number of transporters, such as small GTP-binding protein,
adaptor proteins and PI3kinase are involved in early
melanosomal maturation, to which early and late endosomes
are closely associated. Once melanin biosynthesis is
completed to conduct either eu- or pheomelanogenesis
within melanosomal compartments, they will move along
dendritic processes and transferred to surrounding
keratinocytes [24-26].

Synthesis of Sulfur Analogs (Amine and Amide) of
Tyrosine, Cysteaminylphenols

Then how can the melanogenesis cascade be exploited
for better development of novel therapeutic approach to
melanoma? In our approach two basic concepts are emerged
toward this goal. One is that the incorporation of tyrosinase
substrates, such as sulfur homologue of tyrosine (cysteinyl-
phenol) and its amine derivative, cysteaminylphenol will be
selectively incorporated into melanoma cells through active
transport on the cell surface, which we believe, can be used
as the basis for development of a novel drug delivery system
(DDS). Another is the fact that melanin biosynthesis per se, if

Ratbnale n Expbitation of M elanogenesis Cascade for
M ebnom a-Targeted Chem o-Them o~In m unotherapy

1. Selective Incorporation of Melanogenesis (tyrosinase)
Substrates into Melanoma Cells as the Basis for Novel DDS

Development

SBelective Drug Delivery System (DDS)

r Tyrosin}i-s.e 1
Tyrosine — | -
N

Dopa—> Q — -~ ”

H,0,

—r—>
OH,
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Quinones and Cytotoxic Free Radicals

2. Production of Cytotoxic Free Radicals During Melanin Biosynthesis
as a Potential Source for Pharmacologic and Immunogenic Agents for

Developing Anti-Melanoma Agents

Fig. (1). Two basic strategies reside in our CTI approach. One is the drug delivery system and another is the production of cytotoxic free

radicals. Both are based upon tyrosinase-mediated melanogenesis.
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overproduced, is toxic to melanoma cells through the
production of quinone and cytotoxic free radicals, which can be
used as the potential source for pharmacologic and
immunologic agents for developing anti-melanoma agents (Fig.
1).

This cytotoxicity primarily derives from tyrosinase-
mediated formation of dopaquinone and other quinone
intermediates, which form cytotoxic free radicals. In order to
utilize this unique biosynthesis pathway for cytocidal
compound in controlling melanoma growth, N-acetyl and N-
propionyl derivatives of cysteaminylphenol (CAP) have been
synthesized [27,28] (Fig. 2). These compounds were found
to possess cytocidal effect on in vivo and in vitro melanomas
through the oxidative stress resulting from production of
cytotoxic free radicals after conversion to cysteaminyl-
catechol in the presence of tyrosinase [3-6] (Fig. 2).

Specific Drug Delivery System and Melanocytotoxicity of
Cysteaminylphenols

The specific DDS and selective cytotoxic properties were
shown by a number of approaches. For example, both
NPrCAP and NAcCAP can selectively disintegrate follicular
melanocytes after single or multiple ip administration to
new-born or adult C57 black mice [3, 29]. In the case of
adult mice after repeated ip administration of NPrCAP,
white follicles with 100% success can be seen at the site
where hair follicles were plucked to stimulate new
melanocyte growth and active tyrosinase synthesis. A single
ip injection of NPrCAP into a new born mouse resulted in
the development of silver follicles in the entire body coat.
The selective disintegration of melanocytes can be seen as
early as in 12 hr after a single ip administration. None of
surrounding keratinocytes or fibroblasts showed such
membrane degeneration and cell death.

The specific cytotoxicity of NPrCAP and NAcCAP was
examined on various types of culture cells by MTT assay
[30]. Among them, only melanocytic cells except HelLa
showed the low IC50. The administration of high
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concentration caused irreversible damage to melanoma cells
on the colony formation assay. The cytotoxicity to these cells
was dose-dependent. However, the cytotoxicity to HeLa
cells on DNA synthesis was transient and reversible. The
cytotoxicity on DNA synthesis inhibition was time-depen-
dent and irreversible on melanoma cells, but was transient on
HeLa cells. Molecular mechanism for cytotoxic action by
NAcCAP and NPrCAP appears to involve two major target
sites. One is cytostatic action which derives from the DNA
synthesis inhibition through the interaction of quinone and
free radicals with SH-enzymes and thymidine synthase.
Another is the cytocidal action by damage of DNA and
mitochondrial ATP through oxidative stress and interaction
with SH-enzyme [7] (Fig. 3). They bind protein disulphide
isomerase [31].

Selective Growth Inhibition Effect of Cysteaminyl-
phenols to Melanoma Cells

The selectivity and specificity of our synthetic
compounds to melanoma cells were evaluated by the in vivo
and in vitro studies. The selective uptake of our drug by
melanoma cells and tissues was shown by employing '“C-
labelled cysteaminylphenol. A high, specific uptake of
NAcCAP was seen by melanoma cell lines, such as SKmel 23.
In addition, a melanoma-bearing mouse showed, on the whole
body autoradiogram, the selective uptake and covalent binding
of NAcCAP in melanoma tissues of lung and skin. In another
experiment, we examined to what extent one can block the
melanoma growth in both in vifro culture and i vivo lung
metastasis assays by administration of NAcCCAP combined
with BSO, buthionine sulfoxide, which blocked the effect of
anti-oxidants. There was a marked growth nhibition of
cultured melanoma cells in the presence of BSO, indicating
that the selective cytotoxicity by our CAP is related to the
quinone and free radicals. The i vivo lung metastasis
experiment also showed the decreased number of lung
melanoma colonies [3]. The problem was, however, that a
fairly large number of amelanotic melanoma lesions were seen
to grow in the lung. NPrCAP has been developed with the hope

Tyrosinase Kinetics and Interactiosf N-acetyl and propiony!
CysteaminylphenolsNAGNPrCAP)
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Fig. (2). Values of Km and Vmas were obtained by utilizing mushroom tyrosinase. The two compounds were also the substrates of B16

mouse melanoma tyrosinase.
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Fig. 3). Tyrosine analogs of NACCAP and NPrCAP have two cytotoxic effects, i.e., cytocidal and cytostatic, upon exposure to tyrosinase.

of increasing the cytotoxicity and overcoming a part of the
problem.

STRATEGY FOR DEVELOPMENT OF CHEMO-
THERMO-IMMUNOTHERAPY FOR MELANOMA
BY MELANOGENESIS SUBSTRATES

Synthesis for Conjugate of N-Propionyl Cysteaminyl-
phenol and Magnetite Nanoparticles

In order to further increase the cytotoxicity to both
melanotic and amelanotic cells, we conjugated NPrCAP with
magnetite nanoparticles, which generate heat upon exposure
to an alternating magnetic field (AMF). We expected this

combination of NPrCAP and magnetite nanoparticles to be a
potential source for developing not only anti-melanoma
pharmacologic but also immunogenic agent. It was expected
that NPrCAP/magnetite nanoparticles complex could be
selectively incorporated into melanoma cells. The degraded
melanoma tissues from oxidative stress by NPrCAP and heat
shock by AMF exposure would produce the synergistic
effect for generating tumor-infiltrating lymphocytes, TIL
that will kill melanoma cells in distant metastases (Fig. 4).
Four nanoparticles were synthesized and two them, i.e.,
NPrCAP/M and NPrCAP/PEG/M were used for animal and
human studies respectively (Fig. 5).

Strategy orM ebnogenesis-Targeted CTITherapy
NPxCAP plus Magnetite with AMF

Selective Drug Delivery
pDSs)

NPrCAP @—* NPrCAC 'i'-—'>

T inhse 7
r yrosm%sej - —» —> -t+> Cell Death

o H0,  OH,
§
i _
0, Q 5
Oxidative Stress | | Melanoma )
Cell Apoptosis “» Antigen(s)

N-Propionyl-4-S-CAP (NPrCAP)
CHCHNHCOCHLH, e TIL
Heat Shock o gHeatShock -
Cell Necrosis | | Protein Distant
Metastases

Fig. (4). NPrCAP/magnetite complex has two phases of cell destruction/death processes. One is cell apoptosis which derives from oxidative
stress upon exposure to tyrosinase and another is cell necrosis that results from heat shock upon exposure to alternating magnetic field
(AMF).
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Fig. (5). ML :neutral magneto-liposome, CML: cationic magneto-liposome.

Magnetite nanoparticles have been employed for
thermotherapy in a number of cancer treatments including
human gliomas and prostate cancers [32-35]. They consist of
10-100nm-sized iron oxide (Fe;04) with a surrounding
polymer coating and become magnetized when placed in
AMF [9]. We synthesized, in our initial study, the conjugate
of NPrCAP with neutral magnetite-liposome nanoparticles
(NPrCAP/ML) and 4SCAP/CML in which 4SCAPwere
embedded in cationic magneto-liposomes (Fig. 5). There
was, however, non-specific electrostatic interaction between
cationic magneto-liposomes and various non-target cells [35]
and non-specific aggregations in neutral magneto-liposomes.
A promising technique is the wuse of tumor-targeted
magnetite nanoparticles, and this approach is extended by
synthesizing another type of magnetite nanoparticles,
NPrCAP/M and NPrCAP/PEG/M, on which NPrCAP is
superficially and directly bound on the surface of magnetite
nanoparticles without using liposomes [37]. Iron particles
have been previously shown to be incorporated into melano-
cytes and melanosomes. NPrCAP/M and NPrCAP/PEG/M
are chemically stable, and can be produced in large
quantities and employed to effect melanoma-targeted
chemotherapy (by NPrCAP) and thermo-immunotherapy (by
magnetite with HSP), hence providing a basis for a novel
chemo-thermo-immunotherapy (CTI therapy). Most of the
experiments described below were carried out by employing
NPrCAP/M except in preliminary clinical trials to which
NPrCAP/PEG/M was used.

Development of Chemo-, Thermo- and Immunotherapy
by Exploiting Melanogenesis Substrates

Our basic strategy in designing chemo-thermo-
immunotherapy (CTI therapy) drugs is that tyrosinase
substrates, NPrCAP/M, will be selectively aggregated on the
melanoma cell surface by active transport through a still
unknown receptor system and that they will be incorporated
into early and late endosomes to which tyrosinase will also
be transported from TGN to form stage I melanosomes.
Once NPrCAP/M is incorporated into melanosomes, it will

be then retained and aggregated in the melanosomal
compartments as there will be no melanosome transfer
occurring in melanoma cells (Fig. 6). Thus we should be able
to selectively destroy melanoma cells by heat generated by
AMF exposure from magnetite nanoparticles which are
accumulated only in melanosomal compartments. In fact, we
could see NPrCAP/M nanoparticles which were selectively
aggregated in melanoma cells compared to non-melanoma
cells (Fig. 7). NPrCAP/M nanoparticles were found to be
specifically incorporated and aggregated in melanosomal
compartments at 2 weeks after ip administration by electron
microscopy (Fig. 8). After AMF exposure, there will be
selective disintegration of melanoma tissues as can be seen
by Berlin Blue staining (Fig. 9) [36,37].

In hyperthermia treatment, the expression of heat shock
proteins (HSPs) plays an important role in immune reactions
[12-16, 38, 39]. Accumulating evidence from our group [18-
20] and from others [21] implicates HSP expression induced
by hyperthermia in tumor immunity and opens the door to
novel cancer therapy based on hyperthermia treatment
(thermo-immunotherapy). In such a strategy, a tumor-
specific hyperthermia system that can induce necrotic cell
death via HSP expression without damaging non-cancerous
tissues would be highly desirable. An intracellular hypert-
hermia system using tumor-targeted magnetite nanoparticles
facilitates tumor-specific hyperthermia; this can induce
necrotic cell death via HSP expression, which in turn induces
antitumor immunity.

Protocols of Experimental Chemo-Thermo-Immuno-
therapy by Employing Melanogenesis Substrates

In this study, we employed three cell lines of B16
melanoma, i.e., B16F1, B16F10 and B160VA cells and
compared the thermo-therapeutic protocols in detail by
evaluating the growth of the re-challenge melanoma as well
as the duration and rates of survival of melanoma-bearing
mice (Fig. 10). It is expected that our nanoparticles will also
be selectively incorporated into human melanoma cells, (Fig.
7).
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Fig. (6). NPrCAP/magnetite complexes (NPrCAP/M and NPrCAP/PEG:polyethylene glycol/M are selectively incorporated into melanoma
cells probably through active transport on the cell membrane and accumulate in endosomes, i.e., precursors of melanosomes.
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Fig. (7). NPrCAP/magnetite nanoparticles are selectively incorporated into human melanoma cells compared to non-melanocytic cells.
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Fig. (9). NPrCAP/magnetite nanoparticles are accumulated in melanoma tissues and then degraded upon exposure to AMF.
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Fig. (10). The most effective thermo-immunotherapy for the growth inhibition of re-challenge melanoma transplant is achieved by the
treatment repeated three times on every other day intervals without complete degradation of the primary melanoma.

We first evaluated the chemotherapeutic effect of
NPrCAP/M with or without heat. NPrCAP/M without heat
inhibited growth of primary transplants to the same degree as
did NPrCAP/M with heat, indicating that NPrCAP/M alone
has a chemotherapeutic effect. However, there was a
significant difference in the melanoma growth inhibition of
re-challenge transplants between the groups of NPrCAP/M
with and without heat. NPrCAP/M with AMF exposure
showed the most significant growth inhibition in re-
challenge melanoma and increased life span of the host
animals, i.e., 30-50% complete rejection of re-challenge
melanoma growth, indicating that NPrCAP/M with heat
possesses a thermo-immunotherapeutic effect (Fig. 11).
Specifically our study indicated that the most effective
thermo-immunotherapy for re-challenge B16 melanoma can

be obtained at a temperature of 43°C for 30 min with the
treatment repeated three times on every other day intervals
without complete degradation of the primary melanoma (Fig.
10). Our therapeutic conditions and their effects differ from
those of magnetically mediated hyperthermia on the
transplanted melanomas reported previously [40]. cationic
magneto-liposomes-mediated hyperthermia for B16 mela-
noma showed that hyperthermia at 46°C once or twice led to
regression of 40-90% of primary tumors and to 30-60%
survival of mice, whereas hyperthermia at 43°C failed to
induce regression of the secondary tumors with 0% survival
of mice [40].

We analyzed HSP70 production in the primary tumor and
CD4" and CD8" T cell infiltration into the re-challenge
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Fig. (11). NPrCAP/M with AMF exposure shows the most significant growth inhibition of re-challenge melanoma transplant and increased

the life span of the hosts (ILS).

secondary tumor. Our study showed that NPrCAP/M-
mediated hyperthermia at 43°C for 15 to 30 min and 46°C
for 15 min produced a large amount of HSP70, Fig. (12).
This stress protein forms a complex with intracellular
peptides released from degrading tumor cells and presented
by the MHC class I molecules of professional antigen-
presenting cells [20]. Although thermotherapy at 46°C for 15
min could induce HSP70 as abundantly as that at 43°C for
30 min, this condition failed to suppress the re-challenge
melanoma transplant as efficiently as 43°C thermotherapy
Fig. (12). This suggests that immunological factors other
than HSPs are at least in part responsible for rejection of the
second re-challenge melanoma. Hyperthermia at 43° for 1 hr
revealed the expression of MHC class I molecules after 24 h
in association with enhanced expression of HSP70 [41]. Heat
treatment of tumor cells permits enhanced cross-priming,
possibly via up-regulation of both HSPs and tumor antigen
expression [21]. Thus, by inducing HSP70 and possibly
MHC class I, our protocol of NPrCAP/M-mediated
hyperthermia at 43°C can be an effective therapy for the
treatment of advanced metastatic melanoma.
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NPrCAP/M-mediated hyperthermia at a relatively low
temperature (43°C) effectively inhibited the growth of
second transplant, re-challenge melanoma. It may be
possible that superficially bound NPrCAP possesses an
important role not only in targeting nanoparticles to
melanocytic cells and a chemotherapeutic effect on these
cells but also in causing potentially an immunotherapeutic
effect.

Melanocytotoxic and Immunogenic Properties of N-
Propionyl Cysteaminylphenol (NPrCAP) and Magnetite
Conjugates

Hyperthermia increases the expression of intracellular
HSPs which is important in and necessary for the induction
of antitumor immunity [42,43]. Over expression of HSPs,
such as HSP 70, increases tumor immunogenicity by
augmenting the chaperoning ability of antigenic peptides and
presentation of antigenic peptides in MHC class I molecules
[44, 45] . In this process professional antigen presenting
dendritic cells play unique and important roles in taking up,
processing and presenting exogenous antigens in association
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Fig. (12). NPrCAP/M with AMF exposure causes the significant production of HSP70.

with MHC class T molecules. Our working hypothesis for
induction of in situ vaccination immunotherapy is that CTI
therapy causes degradation of melanoma tissues which
results in the release of HSP/melanoma antigen complex.
This complex is taken up by professional antigen-presenting
dendritic cells through HSP receptor. Subsequently after
internalization within the dendritic cells, MHC and antigen
peptide complex is presented to CD&+ T cells with the
induction of acquired immunity, Fig. (13).

In our animal study it was indicated that NPrCAP/M by
itself  inhibits melanoma growth by not only
chemotherapeutic effect but also a unique immunogenic

property [46]. Our current working hypothesis for this
finding is that there is a difference in the cyototoxic
mechanism and immunogenic property of NPrCAP/M
between experimental groups with and without AMF
exposure. The animals with NPrCAP/M plus AMF exposure
resulted in non-apoptotic necrotic cell death with immune
complex production of melanoma peptide as well as HSP 70
and a small amount of HSP 90. The group with NPrCAP/M
plus AMF exposure showed the most significant growth
inhibition of the re-challenged melanoma growth which
resulted in the almost complete survival of the host animals
as long as for 3 months that we have conducted our
experimental protocol.
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Fig. (13). CTI therapy causes the degradation of melanoma cells which results in the release of HSP/melanoma antigen complex that is taken

up by antigen-presenting dendritic cells through HSP receptor.
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It is, however, important to note that those animals
bearing B16F1, B16F10 and B160VA melanoma cells
showed not only significant rejection of second re-challenge
melanoma transplantation by administration of both NPrCAP
alone and NPrCAP/M minus AMF exposure but also
apoptotic or apoptotic cell death which was associated with
immune complex production of HSP90 and melanoma
peptide [44]. When NPrCAP was given systemically ip. to
black C57BL/6 mice, it caused depigmentation of black hair
follicles which was found to be derived from selective
apoptotic disintegration of follicular melanocytes [47].
Melanin intermediates produce reactive oxygen species such
as superoxide and H,O, [5, 47, 48]. This unique biological
property of melanin intermediates not only causes cell death,
but also may produce immunogenic properties. The
molecular  interaction  between = NPrCAP  chemo-
immunotherapeutic and magnetite/ AMF thermo-
immunotherapeutic properties needs to be further studied.

SUMMARY AND PERSPECTIVES
In this communication, we are able to show that:

1. NPrCAP with conjugation of magnetite nanoparticles,
NPrCAP/M, with/without AMF exposure can induce
cytotoxic T cells that inhibit the growth of re-
challenged melanoma transplanted at the opposite site
of body;

2. NPrCAP alone appears to generate both
chemotherapeutic and immunotherapeutic property to
B I6melanoma cells through both apoptotic and non-
apoptotic processes respectively;

(V5]

Melanogenesis cascade can be utilized as the basis for
developing melanoma-targeted DDS and chemo-
thermo-immunotherapy agents.

Based upon these animal experiments, a preliminary
human clinical trial has been carried out by employing
NPrCAP/PEG/M plus AMF after we received the approval
of our human clinical trials for a limited number of stage 111
and IV melanoma patients (Clinical Trial Research No. 18-
67, Sapporo Medical University). The therapeutic protocol
followed the basically identical experimental schedule as that
of animal experiments. In this clinical trials, however, we
utilized NPrCAP/PEG/M which was made by conjugating
polyethylene glycol between NPrCAP and magnetite
nanoparticles, (Fig. 5). Among four patients two of them
showed complete and partial responses to our treatment and
have been able to carry out normal daily activities after CTI
therapy. In one patient, for example, four distant cutaneous
metastasis sites were evaluated and either significant
regression or shrinkage of all of these four melanoma lesions
was seen. The patient was able to survive 30 months after
several trials of CTI therapy. The pathological and
immunological specimens revealed dense aggregation of
lymphocytes and macrophages at the site of CTI therapy.
Importantly there was a trend to have an almost identical
distribution of CD8" T cells and MHC class 1 positive cells.
Another patient had many lymph node metastases, but still
has been surviving more than 32 months. In order to evaluate
the overall therapeutic effect to advanced melanoma, it is
important to have larger-scaled clinical trials and define
concisely the molecular interaction between chemothera-

Jimbow et al.

peutic and thermo-immunotherapeutic effect in our CTI
therapy.

ACKNOWLEDGEMENTS

This work was supported by a Health and Labor Sciences
Research Grant-in-Aid (H21-Nano-006) for Research on
Advanced Medical Technology from the Ministry of Health,
Labor and Welfare of Japan.

ABBREVIATIONS

DDS = drug delivery system

HSP = heat shock protein

AMF = alternating magnetic field

NPrCAP/M = N-propionyl 4S cysteaminylphenol/
magnetite nanoparticle

NPrCAP = N-propionyl 4S cysteaminylphenol

CTI therapy = Chemo-thermo-immunotherapy

MSH = melanocyte stimulating hormone

MITF = microphthalmia transcription factor

MCIR = melanocortin 1 receptor

NAcCAP = N-acetyl 4S cysteaminylphenol

BSO = buthionine sulfoxide

PEG = polyethylene glycol

NPrCAP/PEG/M= N-propionyl 4-S cysteaminylphenol/
polyethylene glycol/ magnetite
nanoparticle

ML = non-cationic magneto-liposome

CML = cationic magneto-liposome
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Abstract

This article further discusses, in conjunction to our previous report in Geriatric Dermatology
Seminar, vol4, 2009,¥some aspects in biological significance of melanin pigmentation to the skin aging
process. There are two forms of melanin pigments, Le., eu- and pheomelanin, in the skin. We dis-
cussed here again what regulates for (a) cellular and molecular significance of eumelanin biosynthesis
to the skin aging and (b)pheomelanin biosynthesis and its involvement in the skin aging including
photo-carcinogenesis. The biological alteration in the epidermal melanin unit (EMU) is one of the ma-
jor events in the skin aging process. The important determinant of skin protection from external
stimuli such as UV radiation (UVR) is the total amount and distribution pattern of eumelanin in the
EMU. In contrast, pheomelanin and its precursors are photochemically unstable in the presence of
UVR. Free radicals are produced and photolysis of pheomelanin and its precursor pigments may lead
to severe DNA damage. Their oxidation products produce short-lived singlet oxygen and its conver-
sion to hydroxyl radials, thus affecting significantly in the skin aging process.

Abbreviation :

AHP, aminohydroxy phenylalanine; APs, adaptor proteins; ASIP, agouti signaling protein:
DCT, dopachrome tautomerase; DNM, dysplastic melanocytic nevi; EMU epidermal melanin unit;
GERL, Golgi~endoplasmic reticulum-lysosome ; EPR, electron paramagnetic resonance ; HPLC, high~
pressure liquid chromatography ; HSP, Hermansky-Pudlak syndrome: LAMP, lysosome-associated
membrane protein; Mc 1 r, melanocortin-1 receptor ; Mgrn, mahogunin; MITF, microphthalmia-as-
sociated transcription factor; oMSH, alfa melanocyte-stimulating hormone; mV vs. NHE, millivolt
vs. normal hydrogen electrode; PhO-, phenoxyl radical; POMC, pro-opiomelanocortin; PTCA, Py-
role—2,3,5-tricarboxylic acid; PUVA, psoralen-ultraviolet A TGN, trans-Golgi network; TYRP
(Tyrp), tyrosinase-related proteins: UVA, ultraviolet A ; UVB, ultraviolet B; UVC, ultraviolet C;
UVR, ultraviolet radiation; DHI 2 CA, dihydroxyndole-2-carboxylic acid; 5, 6 DHI 1 Me, 5.6 dihy-
droxyindole-1-methyl

Keywords : Melanin pigmentation, Aging process of skin, FEumelanin, Pheomelanin and Epider-
mal melanin unit.

Melanin pigmentation of human skin color
can be photobiologically subdivided into two
components. The first, constitutive skin color,
designates the amount of cutaneous melanin pig-
mentation generated in accordance with cellular
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genetic programs in the absence of direct influ-
ences by radiations, usually of solar origin. It is
generally taken to be the level of pigmentation
in those parts of the body habitually shielded
from light. The second, facultative (inducible)
skin color or “tan” characterizes the short-lived
immediate tanning reaction and absolute in-
creases in melanin pigmentation or delayed tan-
ning above the constitutive level edited by di-
rect exposure of the skin to UV light. Faculta-
tive color change (delayed tanning) is considered
to be reversible in that the hyperpigmentation
of the skin tends to decline over time toward
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the constitutive level when exposure to UVR is
discontinued. Skin pigmentation induced by en-
docrine changes as in pregnancy is another type
of facultative color change. In turn, alterations
in endocrine balance may significantly influence
the response of human skin to UVR. Accord-
ingly, facultative color changes in man arise
from the complex interplay of light, hormones
and genetic potential of the epidermal melanin
unit (EMU), the basic multi-cellular organ of
melanin metabolism that affects significantly to
the skin aging process.

1. Induction of melanogenesis and oxidative

stress after exposure to UV radiation

The EMU is composed of the orderly inter-
action of a melanocyte and associated pool of
keratinocytes with four major biological and bio-
chemical processes, ie,(a)the activation of
melanocyte and synthesis of melanosomes after
exposure to UVR,(b) melanization of these mela-
nosomes within the melanocyte, (¢) their transfer
from the tip of melanocytic dendrite to sur-
rounding keratinocytes and (d) their degradation
within keratinocytes and exfoliation from them.
If there is any alteration of these processes,

hypo- or hyperpigmentation occurs, resulting in
various skin color which ranges from white,
light brown, brown to black color (Fig. 1).

Alterations of the EMU in response to ex-
posure to intrinsic and extrinsic factors are
often linked to oxidative stress that produces
imbalanced redox status beyond the protective
capacities of detoxifying enzymes (Fig.2).
Melanocytes can produce such cytotoxic prod-
ucts during biosynthesis of melanin pigments.
The biosynthetic pathway of melanin pigments
is catalyzed by the enzyme tyrosinase. Ty-
rosinase requires oxygen for its enzymic activ-
ity, and it catalyzes two—electron oxidation proc-
esses. which consist of one-electron transfer
system from electron donors {phenol/ catechol
amines) to electron acceptors(quinones/ quinine
amines), therefore the whole process resolves
for the production of “free radicals”.

Phenoxyl radicals (PhO ) are formed dur-
ing radiolytic oxidation of or tyrosine or phe-
nol. ™ They are very strong oxidizing agents,
as indicated by their redox potential (Table).
They may, therefore, oxidize many biological
electron donors. Because PhO * is an one-elec-
tron oxidant, the semiquinone radical from hy-

CASCADE OF MELANIN AND MELANOSOME
BIOGENESIS

s melanocyte

Figure 1! UVR to the skin stimulates the cascade of melanin biosynthesis through activation of
oMSH pre-existing in keratinocytes and melanocytes, as well as new synthesis of oMSH
in these two cell types. MSH will binds melanocortin 1 receptor (MC 1 R) present on the
cell surface of the melanocyte that will then activate microphthalmia associated transform-
ing factor (MITF-M), leading the new synthesis and activation of tyrosinase and its related
proteins (tyrosinase related protein 1: TYRP 1 and dopachrome tautomerase: DCT).
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Figure 2 : Comparison B melanin biosynthesis in eumelanin and pheomelanin.

One-Electron Redox Potential (m V vs. NHE) of Some Redox Couples at pH 7.4

Redox couple E, Ref.
Q/QH,
Catechol 530 46
P-Hydroquinone 459 46
DOPA 460 25
6-OH-DOPA -110(pH 13.5) 47
Q/ Q-.
o-Benzoquinone 210 49
- Benzoquinone 99 49
ArO/ ArOH
Phenol 950 25
Tyrosine 940 6
4-Hydroxyanisole(4-HA) 600 46
5-Hydroxyindole(5HI) 216(pH 13.5) 46
5-Hydroxytryptophan(5HT) 210585(pH 13.5) 49

0,/ 0,"

MV vs. NHE: millivolt vs. normal hydrogen electrode

Reszka and Jimbow: Oxidative Stress in Dermatology, p294, 1993
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Scheme : RADIOLYTIC REACTIONS IN MELANIN BIOSYNTHESIS PROCESS.
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droquinone is an obligatory intermediate. Elec-
tron paramagnetic resonance (EPR) studies have
shown that phenoxyl radicals can oxidize
catechol to 1, 2-benzosemiquinone radical. ®
Phenoxyl radicals oxidize NADH and ascorbate,
and they react with superoxide radical and mi-
crosomal electron transport system . *#4 Phe-
noxyl radicals dimerize through the formation of
C-C and C-O bonds. These dimmers are better
electron donors than the starting phenols. ¥

In eumelanin pigmentation, 5,6-Dihydroxyn-
dole-2-carboxylic acid (56 DHI 2 CA) and its
decarboxylated analog, 56 DHI (Scheme 6 A),
are produced during melanin pigmentation. By
the action of the enzyme O-methyl transferase
(or dopachrome tautomerase), these dihydroxy-
indoles may be transformed into mono- and di-
methoxylated derivatives, 5 H6 MI (2 CA), 5
. M 6 HI(2 CA), and 5,6 DMI(2 CA), respectively
(Scheme 8 A and 8 B). Oxidation of these in-
doles may lead to free radical of formation. 5,6
DHI, 56 DHI 2 CA, and 5,6 dihydroxyindole~1-
methyl (5,6 DHI 1 Me) gave rise to semiquinone
and semiquinone imine cation radicals when oxi-
dized by radiolytically produced azidyl radical,
N;-. Y Free radicals derived from carboxylated
DHI are more stable than radicals from decar-
boxylated DHI. The increased stability may be
the consequence of the presence of the ionized
carboxylic group in the molecule. 5,6-Idole qui-
nine, quinine imine, and quinine methide
(Scheme 6B, 6 C, and 6D, respectively) are
found to be the secondary products of 5,6 DHI
oxidation. ® In Scheme 6 B was formed by dis-
mutation of the initially produced semiquinones
and then rearranged to 6 C and 6 D. Decay of
quinones was followed by the formation of trihy-
droxyindole derivative THI (Scheme 7). Using
selectively methoxylated hydroxyindoles, the in-
termediate responsible for the formation of THI
was identified to be quinine methide (Scheme 6
D) . 32)

Thus, based on radiolytic reactions, melanin
pigmentation process may be viewed in such a
way that the melanin synthesis is initiated by
the formation of semiquinone radical from a di-
hydroxyindole followed by its transformation to
quinine indole, its tautomers, and THI product.
THI reacts rapidly with 5,6-indolequinone, qui-
nine imine, or quinine methide to give rise to
dimmers or oligomer products. In contrast to
the mechanism of melanin formation suggested
by photochemical reactions, this model of mela-

nin synthesis does not attribute any essential
role to phenoxyl radicals. *"

Quinones can be toxic at least by two
mechanisms, Le., either directly reacting with
the-SH group of essential cellular molecules, or
creating oxidative stress by redox cycling which
results in superoxide radical (O.~) and hydro-
gen peroxide. Quinones undergo one-electron
reduction by cellular redox system to semiqui-
nones, which are then re-oxidized by O to qui-
nine and O, . Semiquinone radicals can also be
produced in the melanogenic pathway non-en-
zymically, through mechanisms involving: (a)
disproportion of quinine and hydroquinone
forms of reactants (catechols and hydroxyin-
doles) ; (b) oxidation of catechol (amine) s by su-
peroxide ; and (c)metal ion (iron, copper)-cata-
lyzed oxidation of catechol (amine) s by oxygen.
In addition, UVR/or physical injury can stimu-
late semiquinone formation from melanogenic
compounds via direct interaction (causing photo
—ionization and/or photo—homolysis of phenolic

- OH groups in catechol amines and hydroxyin-

doles), or indirectly, through photosensitization
(e.g. as in UV-B or psoralen plus UVA, PUVA).
These processes are partly responsible for the
UV light-stimulated cytotoxicity (Fig. 3).%

2, Tyrosinase gene families and melanin bio-
synthesis

Besides tyrosinase, the major melanogene-
sis enzyme, converting tyrosine to dopa and
subsequently to dopaquinone, two molecules are
related to tyrosinase and are referred to as ty-
rosinase-related proteins (TYRPs in humans and
Tyrps in animals) (Fig. 2, 4) ; (a) TYRP-1, which
is relevant to brown locus protein in mice and
(b) TYRP-2, which is also present in melano-
somes and has a dopachrome tautomerase
(DCT) activity. These three are called ty-
rosinase gene family because of the structural
homology among them and the identification of
respective genes in the same melanocyte cDNA
expression library by anti-tyrosinase antibody
iImmunoscreening.

Melanosomes and lysosomes share many
common structural similarities. We and other re-
search groups have identified lysosome-associ-
ated membrane protein (LAMPs) which are as-
sociated with the membrane of the two gran-
ules®*®They may derive from the common pri-
mordial melanogenesis—associated gene. Re-
peated exposure of human melanocytes to UVB
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