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REVIEW

Investigating cellular identity and manipulating
cell fate using induced pluripotent stem cells
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Abstract

Induced pluripotent stem (iPS) cells, obtained from
reprogramming somatic cells by ectopic expression
of a defined set of transcription factors or chemicals,
are expected to be used as differentiated cells for
drug screening or evaluations of drug toxicity and
cell replacement therapies. As pluripotent stem cells,
iPS cells are similar to embryonic stem (ES) cells in
morphology and marker expression. Several types of
iPS cells have been generated using combinations

of reprogramming molecules and/or small chemical
compounds from different types of tissues. A
comprehensive approach, such as global gene or
microRNA expression analysis and whole genomic
DNA methylation profiling, has demonstrated that
iPS cells are similar to their embryonic counterparts.
Considering the substantial variation among iPS cell
lines reported to date, the safety and therapeutic
implications of these differences should be thoroughly
evaluated before they are used in cell therapies. Here,
we review recent research defining the concept of
standardization for iPS cells, their ability to differentiate

and the identity of the differentiated cells.

The potential of stem cells and reprogramming

During mammalian development, cells in the developing
fetus gradually become more committed to their specific
lineage. The cellular differentiation process specializes to
achieve a particular biological function in the adult, and
the potential to differentiate is lost. Cellular differen-
tiation has traditionally been thought of as a unidirec-
tional process, during which a totipotent fertilized zygote
becomes pluripotent, multipotent, and terminally differ-
entiated, losing phenotypic plasticity (Figure 1). However,
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recent cloning experiments using nuclear transplantation
have demonstrated that the epigenetic constraints im-
posed upon differentiation in mammalian oocytes can be
released and the adult somatic nucleus restored to a
totipotent embryonic state [1]. This process, a rewinding
of the developmental clock, is termed nuclear repro-
gramming.

Embryonic stem (ES) cells derived from the inner cell
mass of the mammalian blastocyst, an early-stage
embryo, were first established from mice by Evans and
Kaufman in 1981 [2]. Approximately two decades later, a
human ES (hES) cell line was established by Thomson
and colleagues [3]. ES cells possess a nearly unlimited
capacity for self-renewal and pluripotency: the ability to
differentiate into cells of three germ layers. This unique
property might be useful to generate a sufficient amount
of any differentiated cell type for drug screening or evalu-
ations of drug toxicity and for cell replacement therapy.
In addition, pluripotent stem cells provide us with an
opportunity to understand early human embryonic
development and cellular differentiation. Pluripotent ES
cells are spun off directly from pre-implantation embryos
[2-5]. To induce the somatic cell back to a pluripotent
state, a strategy such as nuclear transplantation is fraught
with technical complications and ethical issues. Thus, the
direct generation of pluripotent cells without the use of
embryonic material has been deemed a more suitable
approach that lends itself well to mechanistic analysis
and has fewer ethical implications [6].

In a breakthrough experiment, Takahashi and Yamanaka
[7] identified reprogramming factors normally expressed
in ES cells, Oct3/4, Sox2, c-Myc, and Klf4, that were
sufficient to reprogram mouse fibroblasts to become pluri-
potent stem cells closely resembling ES cells. Because
they were induced by the expression of defined factors,
these cells were termed induced pluripotent stem (iPS)
cells [7]. Since this landmark report in 2006, the tech-
nology has been rapidly confirmed among a number of
species, including humans [8,9], rhesus monkeys [10],
rats [11,12], rabbits [13], pigs [14] and two endangered
primates [15]. In addition, mouse iPS (miPS) cells can be
derived from: various cell types, including fibroblasts
[7,16], neural cells [17,18], liver cells [19], pancreatic B
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Figure 1. Hierarchical potential of stem cell development. A totipotent cell, such as a zygote and a blastomere of an early pre-implantation
embryo, can give rise to all of the cell types in the whole body and the extraembryonic tissues. During mammalian development, pluripotent cells
of the inner cell mass differentiate to give rise to lineage-committing stem cells and progenitor cells, and finally terminally differentiated cells by
losing differential potential. Embryonic stem (ES) cells are spun off directly from the inner cell mass of blastocysts and induced pluripotent stem
(iPS) cells are generated by reprogramming differentiated cells back to the pluripotent state. ES cells and iPS cells seem to have highly similar

cells [20], and terminally differentiated lymphocytes
[21,22]. Subsequently, human iPS (hiPS) cells have been
derived from various readily accessible cell types, includ-
ing skin fibroblasts [8,9], keratinocytes [23], gingival
fibroblasts [24], peripheral blood cells [25,26], cord blood
cells [27,28] and hair follicle cells [29].

These products and systems for this state-of-the art
technology provide useful platforms for disease modeling
and drug discovery, and could enable autologous cell
transplantation in the future. Given the methodologies
for studying disease mechanisms, disease- and patient-
specific iPS cells can be derived from patients. For
applying novel reprogramming technologies to biomedi-
cal fields, we need to determine the essential features of
iPS cells. In this review, we summarize the functional and
molecular properties of iPS cells in comparison to ES
cells in the undifferentiated state and with regard to
differentiation efficiency. We also review evaluation for
the types of differentiated cells derived from of iPS and
ES cells and compare the functions of these.

Reprogramming methods and factors

Although the establishment of iPS cells from somatic
cells is technically easier and simpler compared with
nuclear transplantation, several variables should be
considered due to variations in the reprogramming
process, including the reprogramming factors used, the

combinations of factors and the types of donor-parent
cells. Each method has advantages and disadvantages,
such as efficiency of reprogramming, safety, and
complexity, with the process used affecting the quality of
the resultant iPS cells. Initial generations of miPS and
hiPS cells employed retroviral and lentiviral vectors [7-9]
(Table 1), carrying the risk of both insertional mutagenesis
and oncogenesis due to misexpression of the exogenous
reprogramming factors, Oct3/4, Sox2, c-Myc, and Klf4.
In particular, reactivation of c¢-Myc increases tumori-
genicity in the chimeras and progeny mice, hindering
clinical applications.

Since the initial report of iPS cell generation,
modifications to the reprogramming process have been
made in order to decrease the risk of tumorigenicity and
increase reprogramming efficiency [30-32]. Several small
molecules and additional factors have been reported to
enhance the reprogramming process and/or functionally
replace the role of some of the transcription factors
(Table 1). Small molecules are easy to use and do not
result in permanent genome modifications, although iPS
generation using only a set of small molecules has not
been reported. Combining small molecule compounds
with reprogramming factors would enhance reprogram-
ming efficiency. Integration-free hiPS cells have been
established using Sendai virus [33,34], episomal plasmid
vectors [35,36], minicircle vectors [37], and direct protein
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Method Factors® Sources Enhancement factors
Adenovirus OSKM Mouse fibroblast and liver cells [77], human embryonic
fibroblast cells [78]
Bacteriophage OSKM Mouse embryonic fibroblasts, human amniocytes [79]
Episomal vector OSKMNL Human foreskin fibroblasts [36] SV40LT
Human fibroblasts, adipose stem cells, cod blood cells [80] SVA0LT, LIF, MEK/GSK3b/TGFBR inhibitor,
HA-100/human
OSKM*L Human dermal fibroblasts [81] p53 shRNA
Lentivirus OSKM Mouse pancreatic b cells [20]
Hurnan adult fibroblasts [82] p53 siRNA, UTF1
Mouse B lymphocytes [21] C/EBPa or Pax5 shRNA
OSNL Human newborn foreskin [9]
Human fibroblasts [83] SV40LT
OSKMNL Human fibroblasts [84]
OSN Gut mesentery-derived cells [85], human amnion-derived cells [86]
0] Human epidermal keratinocytes [87] TGFBR/MEK1 inhibitor, PDKT activator,
sodium butyrate
Minicircle vector OSNL Human adipose stromal cells [37)
microRNA miR-200c, Human and mouse adipose stromal cells [64]
302a/b/c/d,
369-3p/5p
mRNA OSNL Human fibroblasts [88]
OSKM(L) Primary human neonatal epidermal keratinocytes [40]
piggyBAC OSKM Human and mouse embryonic fibroblasts [89,90]
Plasmid OSKM Mouse embryonic fibroblasts [35,91]
OSNL Human foreskin fibroblasts [92] MEK inhibitor
Protein OSKM Mouse embryonic fibroblasts [38] VPA
OSKM Human fibroblasts [39]
Retrovirus OSKM Human fibroblasts [8], mouse fibroblasts [7], human keratinocytes [23],
human peripheral blood cells [25]
Human fibroblasts, adipose stem cells [93] Vitamin C, VPA
OSK Adult human dermal fibroblasts [30]
Mouse embryonic fibroblasts [94] Wnt3a
Rat liver progenitor cells [11] MEK/ALKS5/GSK3b inhibitor
Mouse embryonic fibroblasts [93] Vitamin C
Mouse and human fibroblasts [32] GLIST
Mouse embryonic fibroblasts [95] mmu-miR-106a/18b/20b/19b/92a/363 or
302a/302b/302c/302d/367
Human fibroblasts [96] hsa-miR-302b or 372
oK Mouse embryonic fibroblasts [97] BIX01294, BayK8644
Neonatal human epidermal keratinocytes [98] GSK3b inhibitor
o] Mouse neural stem cells [99]
Mouse fibroblasts [100] GSK3b inhibitor, vitamin C, BMP4
hsa-miR- Human skin cancer cells [101]
302a/b/c/d
Sendai virus OSKM Human fibroblasts [33], human cord blood [102]

30, 0CT3/4; S, SOX2; K, KLF4; M, C-MYC; M¥, L-MYC; N, NANOG; L, LIN28. ALK, anaplastic lymphoma kinase; BayK8644, L-type calcium channel agonist; BIX01294,
histone methyltransferase inhibitor; BMP, bone morphogenetic protein; GSK, glycogen synthase kinase; GLIS, GLI (MIM 165220)-related Kruppel-like zinc finger; LIF,
leukemia inhibitory factor; PDK, pyruvate dehydrogenase kinase; shRNA, short hairpin RNA; siRNA, small interfering RNA; TGFBR, transforming growth factor beta
receptor; UTF, undifferentiated transcription factor; VPA, valproic acid (histone deacetylase inhibitor).
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[38,39] or mRNA [40] delivery (Table 1). However, direct
delivery of proteins or RNA requires multiple transfec-
tion steps with reprogramming factors compared to
other viral integration methods.

iPS cells appear indistinguishable from ES cells

The key to generating iPS cells is to revert somatic cells to
a pluripotent state that is molecularly and functionally
equivalent to ES cells derived from blastocysts (Table 2).
Reprogrammed iPS cells express endogenous transcrip-
tion factors that are required for self-renewal and main-
tenance of pluripotency, such as OCT3/4, SOX2, and
NANOG, and for unlimited proliferation potential, such
as TERT [8,9]. Telomeres were elongated in iPS cells
compared to the parental differentiated cells in both
humans and mice [41,42]. In addition, cellular organelles
such as mitochondria within hiPS cells were morpho-
logically and functionally similar to those within ES cells
[43]. The establishment of an ES cell-like epigenetic state
is a critical step during the reprogramming of somatic
cells to iPS cells and occurs through activation of endoge-
nous pluripotency related genes. Bisulfite genomic
sequencing has shown that the promoter regions of the
pluripotency markers NANOG and OCT3/4 are signifi-
cantly demethylated in both hiPS and hES cells [8,44],
and the heterogeneity of X chromosome inactivation in
hiPS cells is similar to that in ES cells [45].

In terms of multilineage differentiation capacity, miPS
cells from various tissue types have been shown to be
competent for germline chimeras [19,32,46]. It was shown
that miPS cells generated viable mice via tetraploid
complementation [47,48]. In the mouse system, iPS cells
retain a developmental pluripotency highly similar to
that of mouse ES cells according to the most stringent
tests. Although it has been generally assumed that
autologous cells should be immune-tolerated by the
recipient from whom the iPS cells were derived, Zhao
and colleagues [49] reported that the transplantation of
immature miPS cells induced a T-cell-dependent immune
response even in a syngeneic mouse. This is an un-
expected result but some issues need to be considered:
the influence of the cell type of origin on the immuno-
genic properties of resultant iPS cells must be explored;
undifferentiated iPSCs should never be used for medical
applications; and the mechanism of aberrant gene
expression should be determined [50].

To functionally assay hiPS cells, teratoma formation
and histological analysis to confirm the presence of struc-
tures derived from all three germ layers are currently
regarded as the most rigorous ways to prove pluripotency
of human stem cells. Recently, Miiller and colleagues [51]
proposed the use of PluriTest, a bioinformatics assay for
the prediction of stem cell pluripotency using microarray
data. Such microarray-based gene expression and DNA
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methylation assays are low cost, save time and have been
used to evaluate the differentiation efficiency of
individual cell lines [52].

ES and iPS cells differ in their epigenetic signatures
Epigenetic modification of the genome ensures proper
gene activation for maintaining the pluripotency of stem
cells and also differentiation into proper functional cells
[1]. It will be important to assess the epigenetic state of
hiPS cells compared to donor parent cells and embryo-
derived hES cells. Analyzing epigenetic states, such as
histone modifications and DNA methylation of selected
key pluripotency genes, showed the chromatin state of
iPS cells to be identical to that of ES cells upon repro-
gramming (reviewed in [53]).

Genome-wide analyses of histone methylation patterns
have demonstrated that iPS cells were clearly distin-
guished from their origin and similar to ES cells in the
mouse [54]. All of these analyses, however, reported
some differentially methylated regions (DMRs) between
ES and iPS cells. Recent studies found that miP$ cell lines
retained the residual signatures of DNA methylation of
the parental cells [55,56]. Additionally, some of the
hyper-methylated regions in hiPS cells are also hyper-
methylated in the original cells, meaning that an
epigenetic memory is inherited during the reprogram-
ming process through early passaging [57]. Parental cell-
related DMRs and incomplete promoter DNA methyla-
tion contributed to aberrant gene expression profiles in
iPS cells to some extent [58]. The other remaining DMRs
appeared to be aberrantly methylated regions established
in iPS cells during reprogramming that differ from both
the parental cells and the ES cells. Nishino and colleagues
[57] compared methylation profiles of six hiPS cell lines
and two hES cell lines and reported that approximately
60% of DMRs were inherited and 40% were iPS-specific.
Interestingly, most aberrant DMRs were hyper-methy-
lated in iPS cell lines [57,59]. Lister and colleagues [60]
also compared methylation profiles in five hiP$S cell lines
and two hES cell lines and found that the hiPS cells
shared megabase-scale DMRs proximal to centromeres
and telomeres that display incomplete reprogramming of
non-CpG methylation, and differences in CpG methyla-
tion and histone modifications in over a thousand DMRs
between hES and hiPS cells. Although lots of studies have
detected several DMRs shared between iPS and ES cells,
no DMRs were found in all iPS cell lines.

microRNAs (miRNAs), which are also epigenetically
regulated, play critical roles in gene regulation by target-
ing specific mRNAs for degradation or by suppressing
their translation. Several studies recently reported the
presence of unique clusters of miRNAs, such as the human
and mouse miR-302 cluster in ES and iPS cells [61,62].
These miRNAs enhance the transcription factor-mediated
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Table 2. Characteristics of human induced pluripotent stem cells compared to human embryonic stem cells

Variable factor Characteristics

Characteristics of hiPS cells

Cell source

Without the use of embryonic material

Enable autologous cell transplantation

Technique for the

generation of iPS cells components

Simply trans-activating several transcription factors and/or exposure to several chemical

Variables due to reprogramming methods and/or donor-parental cells

Morphology
Proliferation potency
Pluripotency Genes

Gene promoter

Cell surface antigens

Teratoma formation

Flat and tightly packed colony identical to hES cells

Unlimited self-renewal identical to hES cells

0OCT3/4, NANOG, SOX2 expression identical to hES cells
0CT3/4, NANOG demethylation identical to hES cells

SSEA3, SSEA4, TRA-1-60, TRA-1-81 positive identical to hES cells
Differentiation into three germ layers similar to hES cells

Heterogeneity {complete XCl, partial XCl, pre-XCl) similar to hES cells

Accumulated mtDNA mutations transmitted from parental cells

Genetic mutations during reprogramming

X chromosome

inactivation (XCl)

Mitochondria Genome
Morphology
Function

Telomere

Epigenetic profile

microRNAs

Globular shape with only small christae similar to hES cells and ES cell-like distribution
Expression of nuclear factors involved in mitochondrial biogenesis

Telomere elongation and ES cell-like telomerase activity

Retention of somatic memory and aberrant methylation during the reprogramming process

Up-regulation of miR-302 cluster identical to hES cells

ES, embryonic stem; hES, human embryonic stem; hiPS, human induced pluripotent stem; iPS, induced pluripotent stem; mtDNA, mitochondrial DNA; XCl, X

chromosome inactivation.

reprogramming process (Table 1). Furthermore, two
independent groups generated human and mouse iPS
cells by adding only miRNAs in the absence of any
additional protein factors [63,64]. Two reports have
described a small number of differences in miRNA
expression patterns between hiPS and hES cells [62,65],
although our preliminary analysis showed that miR-372
and miR-373 are expressed at similar levels in both hiPS
and hES cells and they were not detected in parental
cells.

Changes of epigenetic profiles in iPS cells during
culture

It is possible that iPS cells vary in their epigenetic profiles
and degree of pluripotency due to differential levels of
reprogramming. Nishino and colleagues [66] investigated
the effect of continuous passaging on DNA methylation
profiles of seven hiPS cell lines derived from five cell
types. Although de novo DMRs that differ between hES
and hiPS cells appeared at each passage, their number
decreased and they disappeared with passaging; there-
fore, the total number of DMRs that differ between ES
and iPS cells decreased with passaging. Thus, continuous
passaging of the iPS cells diminished the epigenetic
differences between iPS and ES cells, implying that iPS
cells lose the characteristics inherited from the parental
cells and develop to very closely resemble ES cells over

time [66]. They also confirmed that the transgenes were
silenced at each passage examined, indicating that the
number of DMRs that differed between ES and iPS cells
decreased during the transgene-independent phase. This
is consistent with a study by Chin and colleagues [67],
who found that the gene expression profile of hiPS cells
appeared to become more similar to that of hES cells
upon extended passaging. Although comprehensive DNA
methylation profiles have recently been generated for
hiPS cells, it seems harder to determine common DMR
sites during iPS reprogramming. There are three possible
explanations for the many inconsistent results regarding
iPS cell-specific DMRs: hiPS cells have only been
analyzed at a single point of passage in almost all studies;
inherited methylation from parental cells is non-synchro-
nous and stochastic, much like aberrant methylation,
rather than deterministic [66]; and the aberrant hyper-
methylation at DMRs in iP$S cells occurs ‘stochastically’
throughout the genome during passaging [66].

Genetic changes during reprogramming and
extended culture

Genomic stability is critical for the clinical use of hiPS
cells. The occurrence of genetic changes in hES cells is
now well known as well as that the karyotypic changes
observed are nonrandom and commonly affect only a few
chromosomes [68]. Recent studies revealed that the
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reprogramming process and subsequent culture of iPS
cells in vitro can induce genetic changes. Three types of
genomic abnormalities were seen: aberrations of somatic
cell origin, aberrations present in early passages but not
of apparent somatic cell origin, and aberrations acquired
during passaging. Notably, the high incidence of chromo-
some 12 duplications observed by Mayshar and colleagues
[69] caused significant enrichment for cell cycle-related
genes, such as NANOG and GDF3. Another study
reported that regions close to pluripotency-associated
genes were duplicated in multiple samples [70]. Selection
during hiPS cell reprogramming, colony picking and
subsequent culturing may be factors contributing to the
accumulation of mutations.

Impact of epigenetic differences on pluripotency
One of the goals of using hiPS cells is to generate
functional target cells for medical screening and thera-
peutic applications. For these applications, it must be
evaluated thoroughly whether small DMRs among ES
and iPS cells affect the competency, differentiation
propensities, stability and safety of iPS cells. It remains to
be elucidated how the degree of these differences
contributes to the variance in pluripotency among ES
and iPS cells. Analysis of iPS cells obtained from mouse
fibroblasts and hematopoietic and myogenic cells
demonstrated that cellular origin influences the potential
of miPS cells to differentiate into embryoid bodies and
different cell types in vitro. In a related study, Kim and
colleagues [56] compared the ability to differentiate to
blood lineages of iPS cells derived from fibroblasts,
neural cells, hematopoietic cells and ES cells in the mouse
system, and demonstrated consistent differences in
blood-forming ability - that is, blood derivatives showed
more robust hematopoiesis in vitro than neural deriva-
tives. Therefore, low-passage iPS cells derived from differ-
ent tissues harbor residual DNA methylation signatures
characteristic of their somatic tissue of origin, which
favors their differentiation along lineages related to the
parental cell, while restricting alternative cell fates.
Similarly, Miura and colleagues [71] demonstrated that
differences in gene expression in miP$ cells derived from
different types of parental cells result in variations in
teratoma formation. These studies demonstrate that re-
programming to generate iPS cells is a gradual process
that modifies epigenetic profiles beyond the acquisition
of a pluripotent state.

Prediction for pluripotency and differentiation
preference

Significant variation has been also observed in the differ-
entiation efficiency of various hES cell lines [72].
Incomplete DNA methylation of somatic cells regulates
the efficiency of hiPS cell generation [58], and selection
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of parental cell types influences the propensity for
differentiation [73,74]. Such differences must be better
understood before hES and hiPS cell lines can be confi-
dently used for translational research. To predict a cell
line’s propensity to differentiate into the three germ
layers, Bock and colleagues [52] performed DNA methy-
lation mapping by genome-scale bisulfite sequencing and
gene expression profiling using microarrays and quanti-
fied the propensity to form multiple lineages by utilizing
a non-directed embryoid bodies formation assay and
high-throughput transcript counting of 500 lineage
marker genes in embryoid bodies using 20 hES cells lines
and 12 hiPS cell lines over passages 15 to 30. They bio-
informatically integrated these genomic assays into a
scorecard that measures the quality and utility of any
human pluripotent cell line. The resulting lineage score-
card pinpoints quantitative differences among cell-line-
specific differentiation propensities. For example, one
hES cell line that received a high score for endoderm
differentiation performed well in directed endoderm
differentiation, and other hES cell lines that received high
scores for neural lineage differentiation efficiently differ-
entiated into motor neurons. In addition, two hiPS lines
that the scorecard predicted to have a low propensity to
differentiate into the neural lineage were impaired in
motor neuron-directed differentiation. On the other
hand, other hiPS lines that the scorecard predicted to
have a high propensity to differentiate into ectodermal
and neural lineages were found to differentiate well into
motor neurons. Therefore, the scorecard can detect
lineage-specific differences in the differentiation propen-
sities of a given cell line [52].

Functional assay for differentiated cells from iPS
and ES cells

Although the propensity for differentiation could be
predicted, it remains to be elucidated whether iPS cell-
derived cells are functionally and molecularly the same as
ES cell-derived cells. To address this issue, two studies
conducted functional assays comparing differentiated
neural cells derived from iPS cells to those derived from
ES cells by marker gene expression and action potential
measurements [75,76]. There was some variation in
efficiency and quantitative differences in motor neuron
generation among the lines, but the treatment of neuro-
epithelial cells from pluripotent stem cells with retinoic
acid and sonic hedgehog resulted in the generation of iPS
and ES cell lines with a neuronal morphology that
expressed TUJ1. In addition, electrophysiological record-
ings using whole-cell patch clamping showed inward and
outward currents, and it was concluded that ES cell- and
iPS cell-derived neurons are similarly functional at a
physiological level. These studies demonstrated that the
temporal course and gene-expression pattern during
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Figure 2. Workflow for human iPS cell applications. 1. Selection: choosing donor parent tissue considering accessibility, efficiency of
reprogramming, and differential propensity. It would be useful to evaluate the expression of somatic memory genes, such as C9orf64, which
reduces the efficiency of induced pluripotent stem (iPS) cell generation [58]. 2. Showcasing/evaluation: provides annotated information on
reprogramming methods, culture conditions, physical data on stem cells, and global data on DNA methylation, transcription and microRNAs
(miRNAs). It is very informative to integrate the genetic and epigenetic and biological data, such as differential propensity [52,76]. 3. Application:
using annotation data, we can select the most appropriate iPS cell lines for our applications. Various hiPS cell lines (shown as differently shaded
spheres) would be listed before further processing of the application. Valid cell lines (colored purple and blue) could be functionally and
molecularly selected for appropriate applications, such as cell replacement therapy and/or drug screening.
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neuroepithelial cell differentiation and production of
functional neurons were nearly identical between ES and
iPS cells, regardless of the reprogramming method, cellular
origin, and differences between iPS and ES cells. These find-
ings raise hopes of applying human iPS cells to the model-
ing of diseases and potential autologous cell transplantation.

It is important to acquire scientific information on
pluripotential stem cells for further applications, such as
industrial and clinical uses. Pluripotent stem cells,
including disease-specific stem cells, could be showcased
with useful annotation data and the most appropriate cell
lines could be selected (Figure 2).

Conclusion

Many issues have yet to be resolved before the results of
stem cell research can benefit the public in the form of
medical treatments. In this review, we have discussed the
substantial variation observed among pluripotent stem
cells, including transcriptional and epigenetic profiles in
the undifferentiated state, the ability to differentiate into
various types of cells, and the functional and molecular
nature of embryoid body or stem cell-derived differentiated

cells. These results suggest that most, but not all, iPS cell
lines are indistinguishable from ES cell lines, even though
there is a difference between the average ES cell and the
average iPS cell. Thus, ES and iPS cells should not be
regarded as one or two well-defined points in the cellular
space but rather as two partially overlapping point clouds
with inherent variability among both ES and iPS cell lines
[52,76]. Notably, human iPS cells seemed to be more
variable than human ES cells. No single stem cell line
may be equally powerful for deriving all cell types in
vitro, implying that researchers would benefit from
identifying the best cell lines for each application.
Furthermore, for clinical use in the future, it is important
to use both ES and iPS cells in research, and to standard-
ize reprogramming methods, culture equipment and
techniques and to optimize differentiation methods and
evaluate the functions and tumorigenicity of differen-
tiated cells.

This article is part of a review series on Induced pluripotent stem cells.
Other articles in the series can be found online at
http://stemcellres.com/series/ipsc
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Introduction

Human corneal endothelial cells (HCEC) are hexagonal in shape
and form a fragile monolayer lying posterior to the surface of the
cornea. These cells maintain corneal transparency by their tight
intercellular barrier and perform an ion transport pump function
through Na*/K*-ATPase, which regulates the hydration of the
corneal stroma [1,2]. If HCEC sustain damage, excessive hydration
and opacity of the cornea occur, resulting in decreased vision.

Corneal endothelia are believed not to increase in adult humans
and in fact gradually decrease by approximately 0.5% per year
[3,4,5]. Damage, injury or HCEC disease such as Fuchs’ corneal
dystrophy [6], diabetes [7], trauma [8], cataract surgery {9] or
elevation of intraocular pressure [10] does not lead to increased
proliferation but rather to an increase in cell size to compensate for
the wounded area [11]. Once the cell number falls below 1,000
cells/mm?, the monolayer of enlarged HCEC cannot maintain
corneal translucency [12] and surgical treatment is required to
restore vision.

Penetrating keratoplasty has long been the surgical treatment of
choice, involving replacement of a total layer of cornea by donor
material. However, it can also result in adverse effects such as

@ PLoS ONE | www.plosone.org

astigmatism and severe rejection requiring long term usage of
immunosuppressive drugs [13]. Recently, alternative transplanta-
tion strategies, including modified posterior lamellar keratoplasty
techniques such as deep lamellar endothelial keratoplasty (DLEK)
[14], Descemet’s stripping with endothelial keratoplasty (DSEK)
[15] and Descemet membrane endothelial keratoplasty (DMEK)
[16] have been introduced to overcome these problems. Despite
these advances, an increasingly aging population requiring corneal
transplants and inadequate tissue quality limit the availability of
donor corneas, such that alternative ways of preparing endothelial
cell monolayers need to be explored.

HCEC were originally believed to be incapable of expanding
in vitro, but have been successfully isolated and cultured by
introducing stimulating agents such as epidermal growth factor,
platelet-derived growth factor-BB, bovine pituitary extract and
fetal bovine serum [17,18]. However, the number of cells with
proliferative activity and the ability to respond to such agents is
relatively low, and much variation in proliferative activity exists

“between donors of different ages [19,20]. Thus, there is a

requirement to achieve a stable and effective culture of cells in
terms of both cell proliferation and physiologic function.
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The HCEC cell cycle is mainly regulated by the p53 and pRB
pathways, both of which have been inactivated by human
papilloma virus (HPV) type 16 E6/E7 to successfully immortalize
cells. Kim et al. reported the establishment of an immortalized
HCEC line using HPV type 16 E6/E7 on lyophilized human
amniotic membrane [21]. However, several studies have reported
carcinogenesis of the cell line established by viral oncogenes
including HPV type 16 E6/E7 or SV40 large T antigen [22,23].
Therefore a corneal endothelial cell line developed in this way
does not appear to be suitable for the treatment of human corneal
diseases. To resolve this problem, we expressed mutant cyclin-
dependent kinase (Cdk) 4 and CyclinD!1 to inactivate the pRB
pathway and generate corneal endothelial cell lines without
transducing viral oncogenes.

Results

HCEC with Descemet’s membranes were proliferated slowly in
a culture dish coated in type IV collagen. After two passages, the
cells were transferred into 24-well dishes and transfected with a
retroviral vector carrying E6/E7 or mutant Cdk4 and CyclinD1.
Three cell lines were successfully generated, as shown in Fig. 1A,
with obvious differences in growth (Fig. 1B). Protein expression
from the transduced gene was confirmed by western blotting
(Fig. 1C). As previously reported [21], THCEC (E6/E7) was
immortalized, and THCEC (Cyclin) demonstrated the same
proliferative capacity as THCEC (E6/E7), while primary cells
grew more slowly even when cultured in 10% fetal bovine serum.
These results indicate that induction of mutant Cdk4 and
CyclinD1 is sufficient to generate a HCEC line that proliferates
at a faster rate than the primary cell line.

Proliferation capacity was also confirmed by immunohisto-
chemistry of Ki-67 (Fig. 2A). Expression of downstream genes of
CyclinD1 which are associated with cell proliferation was analyzed
by real-time polymerase chain reaction (PCR) (Fig. 2B). Positive
staining of Ki-67, which is detected in the nucleus, was confirmed
in both THCEC (Cyclin) and THCEC (E6/E7). Real-time PCR
also revealed that CDC2 and PCNA, target genes of E2F (an
upstream transcriptional factor), that are activated by CyclinD1,
were up-regulated in THCEC (E6/E7) and especially in THCEC
(Cyclin).

Expression of genes involved in active transmembrane trans-
porter activity, including Na*/K*-ATPase, or cell adhesion,
including ZO-1 and N-cadherin, were assessed by semi-quantita-
tive reverse transcriptase (RT)-PCR (Fig. 3A). Expression of
intercellular adhesion molecules was confirmed by immunohisto-
chemistry (Fig. 3B-]). Semi-quantitative RT-PCR showed that
there was no significant difference between the three cell lines
regarding the expression of genes associated with several molecules
of cell adhesion or of ion transporter channels, which are
characteristically expressed by HCEC [21,24]. This was also
confirmed by real-time PCR (data not shown).

Z0O-1 and N-cadherin, key HCEC adhesion molecules [24],
demonstrated positive staining at the intercellular junction in
HCEH (Fig. 3F, 1) and THCEC (Cyclin) (Fig. 3E, H), while
neither ZO-1 nor N-cadherin was detected in THCEC (E6/E7)
despite sufficient cellular density (Fig. 3G, J). Although positive
staining of ZO-1 and N-cadherin was observed at the intercellular
junction in THCEC (Cyclin), ZO-1 staining also occurred around
the nucleus (Fig. 3E), indicating the immature distribution of the
Z0O-1 protein. In THCEC (Cyclin) and HCEC, hexagonal
morphology was identified both by phase-contrast micrography
(Fig. 3B, C) and immunocytochemistry, while the structure of
hexagonal cell shape was not maintained in THCEC (E6/E7)
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Corneal Endothelial Cell Line with Pump Function

(Fig. 3D). These data indicate that THCEC (Cyclin) and HCEC,
but not THCEC (E6/E7), maintain contact inhibition which is
crucial for preserving the monolayer.

Scanning electron microscopy was performed to reveal detailed
information on the cellular junction (Fig. 4). THCEC (Cyclin) and
HCEC showed a clear cellular junction including a tight junction,
whereas THCEC (E6/E7) grew as a multilayer without forming a
cellular junction, which confirms the immunohistochemistry
result.

Representative traces of circuit current driven by the Na*/K™*-
ATPase were of similar shapes in both HCEC and THCEC
(Cyclin) (Fig. 5A). These circuit currents maintain corneal
translucency and their levels in both cell lines were clearly reduced
by the presence of the Na*/K*-ATPase inhibitor ouabain, which
confirms that the origin of the current is Na*/K*-ATPase.
Meanwhile, the pump function in THCEC (Cyclin), detected in
both earlier and later passages of cells, was more variable than that
in HCEC (Fig. 5B), possibly indicating incomplete Na*/K*-
ATPase activity or the presence of an intercellular barrier that
regulates ion permeability. No regular circuit current was detected
in THCEC (E6/E7) (Fig. 5A, B), which probably reflects the
absence of intercellular adhesion preventing free ion transport
across the membrane. This experiment clearly showed that the
THCEC (Cyclin) monolayer has similar Na*/K*-ATPase activity
to that of HCEC.

A tumorigenesis assay of nude mice detected no solid tumor in
either THCEC (Cyclin) or THCEC (E6/E7), while Hela cells
formed a solid tumor in all mice (Table 1). Since THCEC (Cyclin)
has a similar morphology and pump function to HCEC, THCEC
(Cyclin) could be suitable for HCEC studies.

Discussion

THCEC (E6/E7) was shown to achieve immortalization with a
highly activated proliferative capacity, as previously described
[21]. However, the cell lines did not show normal intercellular
contact or normal pump function, probably because contact
inhibition in the cell line was not achieved. Meanwhile, THCEC
(Cyclin) was demonstrated to have normal physiologic function
with a greater proliferative capacity than primary cells, but slightly
lower than that of THCEC (E6/E7).

In expanding the cellular life span, E7 has been shown to play a
role in the inactivation of pRB, while E6 activates telomerase [25]
and accelerates p53 degradation, which induces the Cdk inhibitor
p21 [26]. However, little is known about the effector sites of the
viral oncogene that may be related to genetic instability of
immortalized cells. In the present study, expression of genes
specific to HCEC was not drastically different between the three
cell lines. However, key proteins including ZO-1 and N-cadherin
that are important in forming intercellular contacts were detected,
probably because of the unknown influence of viral oncogenes on
post-translational modification, posttranslational import or protein
stability/degradation.

We recently established genetically stable, non-transformed
immortalized ovarian surface epithelium (OSE) cell lines without
viral oncogenes by expressing mutant Cdk 4, CyclinD1 and
hTERT, based on the hypothesis that inactivation of the pRb
pathway and activation of telomerase are sufficient for OSE
immortalization [27]. Meanwhile, Rane et al. demonstrated that
mutant Cdk 4 (Cdk4R24C) is sufficient to induce carcinogenesis in
several other tissues including those of the pancreas, pituitary and
brain [28], and Joyce and colleagues showed that HCEC are
arrested in the G1 phase and regulated by CKIs, pl6INK4a and
p21WAF1/Cipl [29]. Considering the importance of maintaining
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Figure 1. Establishment of THCEC (E6/E7), THCEC (Cyclin) and HCEC. (A) HCEC with Descemet’s membrane were placed on Type IV collagen-
coated 35 mm cell culture dishes with growth medium (P0). After one passage (P1), retroviral infection was conducted in 6-well cell culture dishes at
P2. THCEC (E6/E7) and THCEC (Cyclin) were infected by retroviral vectors carrying HPV16 E6/E7 and both CyclinD1 and Cdk4R24C, respectively. (B)
Growth curves of THCEC (E6/E7), THCEC (Cyclin) and HCEC cell lines. THCEC (E6/E7) was immortalized as reported previously, and THCEC (Cyclin)
obtained the same proliferative activity as that of THCEC (E6/E7). Transfection was performed on day 0 for THCEC (E6/E7) and THCEC (Cyclin), with
population doublings of 2. For HCEC, primary culture commenced on day 0. (C) Western blotting confirmed the expression of the following
transgenes: E6 and E7 in THCEC (E6/E7), and CyclinD1 and Cdk4R24C in THCEC (Cyclin).

doi:10.1371/journal.pone.0029677.g001

morphology and physiologic function in HCEC, we only
transduced mutant Cdk 4 and CyclinD1, not hTERT, in the
present study. We believe that our careful method enabled
THCEC (Cyclin) to form a fragile and regularly arranged
monolayer complete with physiologic function.

Although THCEC (Cyclin) has similar characteristics to
primary HCEC, immunohistochemistry and the Ussing chamber
assay also highlighted the differences between the cells. ZO-1
protein was expressed around the nucleus of THCEC (Cyclin) but
not in primary cells. Since semi-quantitative PCR detected almost
the same level of mRINA expression between the cell lines, staining
around the nucleus in THCEC (Cyclin) probably reflects an error
in posttranslational import of ZO-1 protein. The Ussing chamber
assay detected a similar pump function between THCEC (Cyclin)
and primary cells, but the current in THCEC (Cyclin) was more
variable than that of the primary cells, which might have been
caused by reduced Na*/K*-ATPase activity, immature intercel-
lular adhesion allowing irregular intercellular ion transport or
differences in cellular density.

Cells established by a retrovirus carry a potential risk of
promoting carcinogenesis [30], and direct transplantation to

*&). PLoS ONE | www.plosone.org

humans of cell sheets composed of such cells may lead to complex
problems. Recently, to resolve this problem, several studies have
reported the establishment of untransfected corneal endothelial
cell lines [31,32,33], which are the most ideal cell lines for the
treatment of human corneal disease. Meanwhile, alternative
bioengineering approaches, including lipofection of p27kipl
siRNA [34], proteomics technology analyzing the difference
between younger and older HCEC [35] and drug usage of
promyelocytic leukemia zinc finger protein, a cell cycle transcrip-
tional repressor and negative regulator [36], have also been
introduced. The present findings support the idea that targeting
the interaction between p16INK4a and Cdk4 using such methods
is a promising strategy to generate HCEC with sufficient
proliferative capacity and physiologic function.

Materials and Methods

Isolation and cell culture of human corneal cells

Ethics Statement. A cornea was excised from the surgically
enucleated eye of a 2-year-old infant undergoing therapy for
retinoblastoma, with the approval (approval number, #156) of the
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Figure 2. Evaluation of proliferative capacity. (A) Inmunohistochemistry of Ki-67 in three cell lines. Positive staining of Ki-67, located in the
nucleus, was obviously identified in THCEC (Cyclin) and THCEC (E6/E7), but rarely detected in HCEC. (B) Real-time PCR of downstream genes of
cyclinD1 associated with proliferation. Gene expression levels of both CDC2 and PCAN were clearly higher than that of HCEC. The gene expression
was much more activated in THCEC (Cyclin) in which the expression of E2F, an upstream transcriptional factor of two genes, was constitutively
activated by transduced mutant Cdk4 and CyclinD1.

doi:10.1371/journal.pone.0029677.g002

Ethics Committee of the National Institute for Child and cells and tissues were performed in line with the tenets of the
Health Development, Tokyo, Japan. Signed informed consent Declaration of Helsinki.

was obtained from the donor’s parents, and the surgical specimens The corneal piece, which was grossly normal with no
were irreversibly de-identified. All experiments handling human pathological lesions, was cut 1.5 mm from the corneal limbus,
] ~
A = 5 THCEC (Cyclin) HCEC THCEC (E6/E7)
4] ~ N . s e
™ 7o) % Pk 5
g &
o 9
Q
¢ 8¢
EEE
Nat/K*
ATPase
GLON3
SCL4A4
VDAC3
Z0—1
N-cadherin _
N-cadherin
Keratin 12 _

G3PDH

Figure 3. HCEC-associated genes and cytolocalization of junctional components expressed by cell lines. (A) Semi-quantitative reverse
transcriptase polymerase chain reaction for HCEC-associated genes. Total RNA was prepared from cultured cells seven days after reaching confluency.
No significant difference in mRNA expression was observed between the three cell lines. Compared with phase-contrast micrographs of (8) THCEC
(Cyclin), (C) HCEC and (D) THCEC (E6/E7), cytolocalization was examined by immunofluorescence staining of ZO-1 (E, F,G) and N-cadherin (H, I, J).
THCEC (E6/E7) did not stain positive for intercellular junctional molecules, while ZO-1 and N-cadherin stained positive at the junction in THCEC
(Cyclin) and HCEC.

doi:10.1371/journal.pone.0029677.g003
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Figure 4. Transmission electron microscopy of cell line intercellular junctions. The junctional complex was detected at the intercellular
junction in THCEC (Cyclin) and HCEC. No component of the intercellular junction was found in THCEC (E6/E7), in which cells grew in multilayers

without being inhibited by cellular contact (scale bar=200 nm).
doi:10.1371/journal.pone.0029677.g004

avoiding contamination of the trabecular meshwork tissue. HCEC
with Descemet’s membrane were stripped from the posterior
surface of the corneal tissue with sterile surgical forceps under a
dissecting microscope. They were cut into two pieces and cultured
in a cell culture dish covered with Type IV collagen in a growth
medium (GM); Dulbecco’s modified Eagle’s medium (DMEM)/
Nutrient mixture F12 (1:1) with high glucose supplemented
with 10% fetal bovine serum, insulin-transferrin-selenium and
MEM-NEAA (Gibco, Auckland, NZ). Cells were subcultured after
reaching confluency by treating with trypsin/EDTA and seeded at
a density of 5x10° cells/well in 6-well dishes.

Viral vector construction and viral transduction
Lentiviral vector plasmids, CSII-CMV-cyclin D1 and -
CDK4R24C were constructed by recombination using the

Gateway system (Invitrogen, Carlsbad, CA) as described previ-
ously [37]. Briefly, cDNAs of human cyclinD1 and a mutant
form of Cdk4 (Cdk4R24C: an inhibitor resistant form of Cdk4,
generously provided by Dr Hara) were recombined with a
lentiviral vector, CSII-CMV-RfA (a gift from Dr Miyoshi), by
LR reaction to create a Gateway expression plasmid (Invitrogen)
according to the manufacturer’s instructions.

Previous work has described the production of recombinant
lentiviruses with the vesicular stomatitis virus G glycoprotein
[37], the recombinant retrovirus vector plasmid, pCLXSN-
16E6E7 encoding HPV16 E6/E7 (16E6E7) [38] and recombinant
retroviruses [39]. Following the addition of recombinant viral fluid
to cells seeded in 24-well dishes in the presence of 4 pg/ml
polybrene, the cells were infected by the viruses. Stably transduced
cells with an expanded life span were designated transduced
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Figure 5. The pump function of cell lines. Short-circuit currents representing Na*/K+ATPase activity from corneal cell monolayers on the insert
well area of 4.67 cm? were calculated before and after addition of the Na*/K+ATPase inhibitor ouabain. (A) Representative tracings of short-circuit
current (uA/well)-obtained. with cell monolayers of THCEC (Cyclin) (upper panel), HCEC (middle panel) and THCEC (E6/E7) (lower panel). THCEC
(Cyclin) possessed equal transport activity to HCEC, whereas no pump function was detected in THCEC (E6/E7). (B) Time-course changes in the
average short circuit current of cultured monolayers of cell lines at 1, 5, 10 and 20 min. Data shown are for (A) THCEC (Cyclin) at PD8, (#) THCEC
(Cyclin) at PD 21, (+) HCEC and (M) THCEC (E6/E7); all data are expressed as mean=*SD of four replicate experiments of each cell line.

doi:10.1371/journal.pone.0029677.g005
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Table 1. Tumorigenesis assay of cell lines in BALB/C nude mice.

Corneal Endothelial Cell Line with Pump Function

Inoculated cells Total dose (cell/mouse)

THCEC (E6/E7)

doi:10.1371/journal.pone.0029677.t001

human corneal endothelial cell by E6/E7 (THCEC (E6/E7)) and
transduced human corneal endothelial cell by Cdk4R24C/
cyclinD1 (THCEH (Cyclin)).

Culture of transfected cell lines and growth curve

When the cultures reached subconfluence, the cells were
harvested with 0.25% trypsin and 1 mM EDTA, collected into
tubes, and centrifuged. The cells were counted using a cell viability
analyzer (Vi-CELL Cell Viability Analyzer, Beckman Coulter,
Brea, CA), and population doubling (PD) was calculated. The
pellets were suspended in growth medium, and the cells were
passaged at a density of 5x10° cells/well in a 100-mm dish. The
original cells were regarded as PD 2 (day 0).

Western blot analysis

Western blotting was conducted as described previously [40].
Antibodies against Cdk4 (ser473; Cell Signaling Technology,
Danvers, MA), CyclinD1 (clone G124-326; BD Biosciences,
Franklin Lakes, NJ), B-actin (sc-1616; Santa Cruz Biotechnology,
Santa Cruz, CA) were used as probes, and horseradish peroxidase-
conjugated anti-mouse, anti-rabbit (Jackson Immunoresearch
Laboratories, West Grove, PA) or anti-goat (sc-2033; Santa Cruz
Biotechnology, Santa Cruz, CA) immunoglobulins were employed
as secondary antibodies.

Immunocytochemistry

Cell lines were grown on Type IV collagen-coated glass dishes
14 days after reaching confluency and were fixed with 4%
formaldehyde (pH 7.0) for 15 min at room temperature. Cell lines
were then rehydrated in phosphate buffered saline (PBS),
incubated with 0.2% Triton X-100 for 15 min and rinsed three
times with PBS for 5 min each. After incubation with 2% BSA to
block nonspecific staining for 30 min, cell lines were incubated
with anti-ZO-1 (1:50; sc-8146; Santa Cruz Biotechnology, Santa
Cruz, CA), anti-N-cadherin (1:50; sc-7939; Santa Cruz Biotech-
nology) and anti-Ki67 (1:100; ab15580; Abcam, Cambridge, UK)
for 16 h at 4°C. After three washes with PBS, cell lines were
incubated with the secondary antibody for 60 min, followed by
counterstaining with 4',6-diamidino-2-phenylindole (1:200; sc-
3598; Santa Cruz Biotechnology) for 10 min.

Semi-quantitative RT-PCR

Total RNA was extracted from 1x10° cultured HCEC using
the RINeasy Plus mini-kitH (Qiagen, Germantown/Gaithersburg,
MA) according to the manufacturer’s instructions and quantified
by absorption at 260 nm. Total RNA was then reverse-transcribed
into cDNA using Superscript III Reverse Transcriptase (Invitro-
gen, Carlsbad, CA) with oligo random hexamers. cDNAs of each
component were amplified by PCR using specific primers and
DNA polymerase. The reaction was first incubated at 95°C for
10 min, followed by 39 cycles at 98°C for 30 s, 58°C for 30 s and
74°C for 30 s. PCR primers are listed in Table 2.

@ PLoS ONE | www.plosone.org

Number of mice (% mortality)

Number of mice with tumor

Quantitative real-time RT-PCR

Total RNA extraction and reverse transcription into cDNA was
carried out as above. Each quantitative real-time RT-PCR for
target genes, including Cell Division Cycle 2 (CDC2) and
proliferating cell nuclear antigen (PCNA), was performed using
the Chromo#4 real time detection system (Bio-Rad, Hercules, CA).
For a 20 ml PCR, the cDNA template was mixed with the primers
to final concentrations of 200 nM and 10 pl of SsoFast EvaGreen
Supermix (BIO-RAD), respectively. The reaction was first
incubated at 95°C for 10 min, followed by 45 cycles at 95°C for
10 s, 57°C for 15 s, and 72°C for 20 s.

Transmission Electron Microscopy

Cell lines cultured on Type IV collagen-coated dishes were fixed
in HEPES buffered 2% glutaraldehyde and subsequently post-
fixed in 2% osmium tetroxide for 3 h on ice. Specimens were then
dehydrated in graded ethanol and embedded in the epoxy resin.
Ultrathin sections were obtained by ultramicrotomy and stained
with uranyl acetate for 10 min and modified Sato’s lead solution
for 5 min then submitted to TEM observation (JEM-2000EX,
JEOL).

Measurement of pump function

The pump function of confluent monolayers of HCEC was
measured using an Ussing chamber as described previously [41].
Cells cultured on Snapwell inserts coated with Type IV collagen
were placed in the Ussing chamber EM-CSYS-2 (Physiologic
Instruments, San Diego, CA) with the endothelial cell surface side
in contact with one chamber and the Snapwell membrane side in
contact with another chamber. The chambers were carefully filled
with  Krebs-Ringer bicarbonate (120.7 mM NaCl, 24 mM
NaHCOg3, 4.6 mM KCI, 0.5 mM MgCl,, 0.7 mM Na,HPO,,
1.5 mM NaH,PO, and 10 mM glucose bubbled with a mixture of
5% COg, 7% Og and 88% Ny to pH 7.4). The chambers were
maintained at 37°C using an attached heater.

The short-circuit current was sensed by narrow polyethylene
tubes positioned close to either side of the Snapwell, filled with
3 M KCI and 4% agar gel and connected to silver electrodes.
These electrodes were connected to the computer through the
Ussing system VCC-MC2 (Physiologic Instruments) and an iWorx
118 Research Grade Recorder (iWorx Systems, Dover, NH), and
the short-circuit current was recorded by Labscribe2 Software for
Research (iWorx). After the short-circuit current had reached a
steady state, ouabain (final concentration, ] mM) was added to the
chamber, and the short-circuit current was re-measured. The
pump function attributable to Na®/K*-ATPase activity was
calculated as the difference in short-circuit current measured
before and after the addition of ouabain.

Tumorigenesis assay

Cells were harvested by Trypsin/EDTA treatment, collected
into tubes, and centrifuged, and the pellets were suspended in
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Table 2. Oligonucleotide sequences for RT-PCR.

Corneal Endothelial Cell Line with Pump Function

Sequence

Name

5'-TCA CCA GGA GGT AGC CGA T-3’

R: 5'-ACC TGC CCT ACA GCT TTG TA-3

G G
R: 5'-TCA ATT TGA CTC CTG GTC GAA-3’

Ll
'-GGT TGT ACC ACA ACG CAC TAA-3'
5'-CGA GCA‘ TAA ACA CAA AGC GTA A-3

R: 5'-GGA GCA AAG CTG ACC TGA AC-3’

5’-ATG AAA CCG GGC TAT CTG CTC-3'

5'-TGA GCA GCA TCA AAC TGT GTA G-3’

R: 5'-CCG AGT GGT CCC ATC ATC TG-3'
R: 5'-TCT CTT AGC ATT ATG TGA GCT GC-3'

5'-GTG GTG CAG GAG GCA TTG CTG A-3'

5'- TCTTCGGCCCTI' AGTGTAATGAT-3’

R: 5'- CATGTACTGACCAGGAGGGATAG-3’

Size (bp) Accession Number

doi:10.1371/journal.pone.0029677.1002

DMEM. The same volume of Basement Membrane Matrix (BD
Biosciences) was added to the cell suspension. Cells (1.7x10° of
THCEC (Cyclin) and THCEC (E6/E7) were inoculated subcu-
tancously into dorsal flanks of each of three Balb/c nu/nu mice
(CREA, Japan) for 60 days. A total of 2.0x10° HeLa cells per
mouse were used as positive controls. The skin of dorsal flanks of
inoculated mice was surgically opened and the tumorigenic status
was examined.
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Introduction

There are two distinct endoderm lineages in early embryogen-
esis, the extraembryonic endoderm (ExEn) and the definitive
endoderm (DE). The first of these lineages, the ExEn plays crucial
roles in mammalian development, although it does not contribute
to the formation of body cells. In early embryogenesis, a part of the
inner cell mass of the blastocyst differentiates into the primitive
endoderm (PrE). The PrE differentiates into the ExEn that
composes the parietal endoderm, which contributes to the primary
yolk sac, and the visceral endoderm, which overlies the epiblast
[1,2]. In contrast, the second of the endoderm lineages, the DE
arises from the primitive streak (PS), which is called the
mesendoderm [3]. The DE has the ability to differentiate into
the hepatic and pancreatic tissue [4].

The establishment of human embryonic stem cells (ESCs) [5]
and human induced pluripotent stem cells (iPSCs) [6,7] has
opened up new opportunities for basic research and regenerative
medicine. To exploit the potential of human ESCs and iPSCs, it is
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necessary to understand the mechanisms of their differentiation.
Although growth factor-mediated ExEn or DE differentiation is
widely performed, it leads to a heterogeneous population
[8,9,10,11]. Several studies have utilized not only growth factors
but also modulation of transcription factors to control downstream
signaling cascades [10,12,13]. Sox17, an Sry-related HMG box
transcription factor, is required for development of both the ExEn
and DE. In mice, during ExEn and DE development, Sox17
expression is first observed in the PrE and in the anterior PS,
respectively [14]. Previous study showed that stable Sox17 -
overexpression promotes ExEn differentiation from mouse ESCs
[12]. On the other hand, another previous study has demonstrated
that DE progenitors can be established from human ESCs by
stable expression of SOXI17 [10]. The mechanism of these
discrepancies which occurs in SOX17 transduction still remains
unknown. Also, the role of SOX17 in human ExEn differentiation
still remains unknown. Therefore, it is quite difficult to promote
directive differentiation into either ExEn or DE cells by SOX17
transduction.
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Figure 1. Efficient ExEn differentiation from human ESC- and iPSC-derived PrE cells by SOX17 transduction. (A-D) Undifferentiated
human ESCs (H9) and BMP4-induced human ESC-derived cells, which were cultured with the medium containing BMP4 (20 ng/ml) for 0, 1, 2, 3, and 4
days, were transduced with 3,000 VP/cell of Ad-SOX17 for 1.5 h. Ad-SOX17-transduced cells were cultured with 20 ng/m! of BMP4, and then the gene
expression levels of (A) the ExEn markers (AFP, GATA4, LAMB1, and SOX7), (B) the trophectoderm markers (CDX2, GATA2, hCGa, and hCGB), (C) the
pluripotent marker (NANOG), and (D) the DE marker (GSC) were examined by real-time RT-PCR on day 5 of differentiation. The horizontal axis
represents the day on which the cells were transduced with Ad-S0X17. The expression levels of undifferentiated human ESCs on day 0 were defined
1.0. (E) On day 1, human ESC-derived PrE cells, which were cultured with the medium containing BMP4 for 1 day, were transduced with Ad-LacZ or
Ad-SOX17 and cultured until day 5. The ExEn cells were subjected to immunostaining with anti-AFP or anti-SOX7 antibodies, and then analyzed by
flow cytometry. (F) After Ad-LacZ or Ad-SOX17 transduction, the efficacies of ExEn differentiation from the human ES cell line (H9) and the three

human iPS cell lines (201B7, Dotcom, and Tic) were compared on day 5 of differentiation. All data are represented as the means=SD {(n = 3).

doi:10.1371/journal.pone.0021780.g001

In this study, we utilized SOX17 as a stage-specific regulator of
ExEn and DE differentiation from human ESCs and iPSCs. The
human ESC- and iPSC-derived cells were transduced with
SOX17-expressing adenovirus vector (Ad-SOX17), and the
resulting phenotypes were assessed for their ability to differentiate
into ExEn and DE cells in uitro. In addition, we examined whether
SOX17-transduced cells have the ability to differentiate into the
hepatic lineage. The results showed that stage-specific overexpres-
sion of the SOXI7 transcription factor promotes directive
differentiation into either ExEn or DE cells.

Results

The induction of human ESC-derived PrE cells and
human ESC-derived mesendoderm cells

To determine the appropriate stage for SOX17 transduction,
ExEn or DE cells were differentiated from human ESCs by a
conventional method using BMP4 (20 ng/ml) or Activin A
(100 ng/ml), respectively (Figures S1 and S2). Experiments for
bidirectional differentiation using BMP4 and Activin A indicated
that PrE cells were obtained on day 1 (Figure S1) and mesendoderm
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cells were obtained on day 3 (Figure S2). We expected that
stage-specific SOX17 transduction into PrE cells or mesendoderm
cells could promote ExEn or DE differentiation, because the time
period of intiation of SOX17 expression was correlated with the
time period of formation of PrE cells (day 1) (Figure S1C) and
mesendoderm cells (day 3) (Figure S2C), respectively.

PrE stage-specific SOX17 overexpression promotes
directive ExEn differentiation from human ESCs

To examine the effect of forced and transient expression of
SOXI17 on the differentiation of human ESC- and iPSC-derived
cells, we used a fiber-modified adenovirus (Ad) vector containing
the EF-1a promoter and a stretch of lysine residues (KKKKKKK,
K7) peptides in the C-terminal region of the fiber knob. The K7
peptide targets heparan sulfates on the cellular surface, and the
fiber-modified Ad vector containing the K7 peptides has been
shown to be efficient for transduction into many kinds of cells
[15,16].

Because the time period of initiation of SOX17 expression was
correlated with the time period of formation of PrE cells (day 1)
(Figure S1), we expected that stage-specific SOX17 transduction
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